
Bill Dudney
Jonathan Lehr

Jakarta Pitfalls

Time-Saving Solutions
for Struts, Ant, JUnit, and Cactus

449156 FM.qxd 6/24/03 10:12 AM Page i

C1.jpg

449156 FM.qxd 6/24/03 10:12 AM Page iv

Bill Dudney
Jonathan Lehr

Jakarta Pitfalls

Time-Saving Solutions
for Struts, Ant, JUnit, and Cactus

449156 FM.qxd 6/24/03 10:12 AM Page i

Executive Publisher: Robert Ipsen
Vice President and Publisher: Joe Wikert
Executive Editor: Robert Elliott
Assistant Development Editor: Eileen Bien Calabro
Editorial Manager: Kathryn A. Malm
Senior Production Editor: Angela Smith
Text Design & Composition: Wiley Composition Services

This book is printed on acid-free paper. ∞

Copyright © 2003 by Bill Dudney and Jonathan Lehr. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8700. Requests to the Pub-
lisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc.,
10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail:
permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with respect
to the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty may
be created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with
a professional where appropriate. Neither the publisher nor author shall be liable for any
loss of profit or any other commercial damages, including but not limited to special, inci-
dental, consequential, or other damages.

For general information on our other products and services please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or
registered trademarks of Wiley Publishing, Inc., in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of
their respective owners. Wiley Publishing, Inc., is not associated with any product or ven-
dor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

ISBN: 0-471-44915-6

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

449156 FM.qxd 6/24/03 10:12 AM Page ii

For Sarah
—BD

For my wife, Kathryn
—JL

449156 FM.qxd 6/24/03 10:12 AM Page iii

449156 FM.qxd 6/24/03 10:12 AM Page iv

Acknowledgments ix

About the Authors xi

Introduction xiii

Chapter 1 Testing: Cactus and JUnit 1
Pitfall 1.1: No Assert 4

Example 6
Solving Pitfall 1.1: Assert the Intent 9

Step-by-Step 9
Example 10
Example 2: Cactus 15

Pitfall 1.2: Unreasonable Assert 20
Example 21
Solving Pitfall 1.2: Assert the Intent 23

Pitfall 1.3: Console-Based Testing 24
Example 25
Solving Pitfall 1.3: System.out Becomes Assert 28

Step-by-Step 29
Example 29
Example 2: Cactus 31

Pitfall 1.4 Unfocused Test Method 34
Example 35
Solving Pitfall 1.4: Keep It Simple 38

Step-by-Step 38
Example 39

Contents

v

449156 FM.qxd 6/24/03 10:12 AM Page v

Pitfall 1.5: Failure to Isolate Each Test 45
Example 46
Solving Pitfall 1.5: Use setUp and tearDown and

Introduce Test Decorators 50
Step-by-Step 51
Example 52
Example 2: Introduce Test Decorators 55

Pitfall 1.6: Failure to Isolate Subject 58
Example 59
Solving Pitfall 1.6: Introduce Mock Objects 62

Step-by-Step 62
Example 62

Chapter 2 Struts ActionForms 67
Pitfall 2.1: Copy/Paste Formatting 70

Example 72
Solving Pitfall 2.1: Consolidate and Generalize

Formatting Code 74
Step-by-Step 75
Example 76

Pitfall 2.2: Copy/Paste Conversion 96
Example 98
Solving Pitfall 2.2: Consolidate and Generalize Bean

Population Code 101
Step-by-Step 101
Example 102

Pitfall 2.3: Copy/Paste Validation 119
Example 121
Solving Pitfall 2.3: Consolidate and

Generalize Validation Code 123
Step-by-Step 126
Example 127

Chapter 3 Struts Actions 147
Pitfall 3.1: Business-Tier Code in Actions 149

Example 151
Solving Pitfall 3.1: Move Business-Tier

Code to BusinessDelegate 157
Step-by-Step 158
Example 159

Pitfall 3.2: Copy/Paste Code in Actions 172
Example 172
Solving Pitfall 3.2: Move Common Code to Base Class 173

Step-by-Step 174
Example 174

vi Contents

449156 FM.qxd 6/24/03 10:12 AM Page vi

Pitfall 3.3: Accessing ActionForms in the Session 182
Example 183
Solving Pitfall 3.3: Add ActionForm

Locator Method to Base Class 187
Step-by-Step 188
Example 188

Pitfall 3.4: Overloaded ActionMappings 192
Example 192
Solving Pitfall 3.4: Create Separate ActionMappings

for Navigation and Form Submission 195
Step-by-Step 195
Example 195

Chapter 4 Struts TagLibs and JSPs 197
Pitfall 4.1: Hard-Coded Strings in JSPs 199

Example 200
Solving Pitfall 4.1: Move Common Strings to

Resource Bundles 201
Step-by-Step 201
Example 201

Pitfall 4.2 Hard-Coded Keys in JSPs 203
Example 203
Solving Pitfall 4.2:Replace Hard-Coded Keys with Constants 204

Step-by-Step 205
Example 205

Pitfall 4.3: Not Using Struts Tags for Error Messaging 209
Example 210
Solving Pitfall 4.3: Replace Custom Messaging with

Struts Messaging 210
Step-by-Step 211
Example 211

Pitfall 4.4: Calculating Derived Values in JSPs 214
Example 214
Solving Pitfall 4.4: Move Calculations to Value Object 215

Step-by-Step 216
Example 216

Pitfall 4.5: Performing Business Logic in JSPs 218
Example 219
Solving Pitfall 4.5: Move Business Logic to a Helper Class 220

Step-by-Step 221
Example 221

Pitfall 4.6: Hard-Coded Options in HTML Select Lists 224
Example 224
Solving Pitfall 4.6: Move Options Values to a Helper Class 225

Step-by-Step 225
Example 226

Contents vii

449156 FM.qxd 6/24/03 10:12 AM Page vii

Pitfall 4.7: Not Checking for Duplicate Form Submissions 229
Example 229
Solving Pitfall 4.7: Add Tokens to Generated JSP 230

Step-by-Step 230
Example 230

Chapter 5 Ant 233
Pitfall 5.1: Copy-and-Paste Reuse 235

Example 235
Solving Pitfall 5.1: Introduce Antcall 237

Step-by-Step 237
Example 238

Pitfall 5.2: No Distinction between Different Types of Builds 243
Example 244
Solving Pitfall 5.2: Introduce Properties File 245

Step-by-Step 245
Example 246

Pitfall 5.3: Building Subprojects 249
Example 249
Solving Pitfall 5.3: Centralize the Build 251

Step-by-Step 252
Example 253

Pitfall 5.4: No Logging from Custom Tasks 257
Example 257
Solving Pitfall 5.4: Add Logging 259

Step-by-Step 259
Example 260

Appendix A Pitfall Catalog 263

Appendix B References 273

Appendix C What’s on the Web Site 277

Index 279

viii Contents

449156 FM.qxd 6/24/03 10:12 AM Page viii

I would like to thank first and foremost Christ, for all He has done in my
life to teach me to be more than I was and to inspire me to be more than I
am. I would also like to thank my wonderful wife Sarah, without her sup-
port and love I’d be lost. And I’d also like to thank my great kids that keep
life interesting. Andrew, Isaac, Anna and Sophia you are the definition of
joy. I’d also like to thank my mom for always making me look the word up
in the dictionary even though I complained enough to deserve to be sent to
my room. I’d also like to thank Jon Crater and Bill Willis for all their great
feedback on the content of this book. It’s a better book because of them. I
would also like to thank my co-workers Chris Noe and Sridhar Valavala
for teaching me so much, and for listening to my endless Monty Python
quotes. My hovercraft is indeed full of eels. And finally I’d like to thank
Eileen Bien Calabro for all her hard work on turning my gibberish into
English and helping me to deliver a better book. I hope you learn as much
from reading this book as I did in writing it.

—Bill Dudney

Writing this book has truly been an adventure for me, and I am grateful to
my co-author, Bill Dudney, for inviting me to participate. As is the case I
suppose with most technical books, this one is the work of many hands,
and I am indebted to Bill Willis, Jon Crater, and Eileen Calabro for their
invaluable assistance.

For the past year and a half, I have had the very good fortune of working
with a wonderful team of developers who have shared many insights that
helped deepen my understanding of the Struts framework and the possi-
bilities of web applications in general. In particular, I owe much to Carl

Acknowledgments

ix

449156 FM.qxd 6/24/03 10:12 AM Page ix

Lindberg and Harshal Chaudhari, as well as Shailesh Patel, Shoekai Yeh,
Jason Jobe, Michael Cymerman, Nikolai Teleguine, Diana Schmidt, and
Sergey Muzyka. I would also like to thank Chris Cordrey of Gale Force
Software for his help in assembling the team, with a special note of thanks
to Bob Leonard.

Above all, I am grateful to my beloved wife, Kathryn, for her patience,
support, and sacrifice while I juggled the full-time responsibilities of lead-
ing a framework development team with the demands of co-authoring this
book.

—Jonathan Lehr

x Acknowledgments

449156 FM.qxd 6/24/03 10:12 AM Page x

Bill Dudney is a Java Architect with Object Systems Group. He has been
building J2EE applications and software for 5 years and has been doing
distributed computing for almost 14 years. Bill has been using Jakarta tools
since there was a Tomcat and has been a major advocate of using open
source tools and building unit tests on all his projects. After struggling for
years to keep make off his resume he discovered Ant and was glad to be
known as the ‘build guy’ again. He is the co-author of both J2EE AntiPat-
terns and Mastering JavaServer Faces (Wiley).

Jonathan Lehr is an independent consultant in the Washington, D.C., area
with over twenty years experience in software development and developer
training. He is the author of over a dozen courses on Object-Oriented Pro-
gramming and other development topics, and for the past eight years has
designed and architected e-commerce applications in Objective C and Java
for Fortune 100 financial and telecommunications companies. He currently
leads a user-interface framework team that provides reusable Struts-based
components and infrastructure enhancements for use by development
teams at a major financial institution. He is also the co-author of Mastering
JavaServer Faces (Wiley).

About the Authors

xi

449156 FM.qxd 6/24/03 10:12 AM Page xi

449156 FM.qxd 6/24/03 10:12 AM Page xii

What Is a Pitfall?

A pitfall is a common, overlooked, unsound way of developing and
designing software. The consequences of pitfalls vary: Some are as mild as
slightly decreased performance, but some have more severe consequences,
like slipping schedules, difficult maintenance, and lack of changeability.
Pitfall-strewn code can also be a major problem for new developers. The
time it takes for a new developer to become effective is directly related to
the cohesiveness of the code. Cohesive code is easy to follow and under-
stand because it flows logically. Code filled with pitfalls is hard to follow
because it does not flow logically.

The need to avoid pitfalls is paramount. Over time, any application that
is being used will have bugs that need to be fixed and new features that
need to be added, and thus it will require maintenance. The fewer pitfalls
that are in the design and code, the easier this maintenance will be to per-
form. To illustrate this principal, imagine a shopping cart application. The
application has browse, add products, checkout, and ship functionality.
Over time, customers might request more functionality, such as the ability
to search the product catalog. If some of the code to implement the search
functionality is in the StrutsAction classes and some of the code is in a busi-
ness tier object such as a JavaBean or an EJB, adding the new search func-
tionality will be more difficult than if the original code is contained solely
in the business tier.

Oddly, pitfalls rarely keep systems from working. An application can be
riddled with pitfalls and still not have a problem functioning early on, but

Introduction

xiii

449156 FM.qxd 6/24/03 10:12 AM Page xiii

the consequences of the pitfalls will eventually surface. For example, a
project can be proceeding according to plan for months. Then, the second
iteration begins, and mass chaos ensues. Many projects have failed during
later iterations because the early code was too hard to maintain.

Also, unlike other development problems, the consequences of pitfalls
don’t make themselves obvious. If we do something like cast an object to
the wrong type, the Java runtime is kind enough to inform us of that fact
with an exception the first time the code is executed. But if our code is
stuck in a pitfall, there is no runtime to tell us; we simply have to wait for
the consequences to manifest themselves. This is why it is important to
study the pitfalls that others have fallen into and to recognize them before
we fall into them ourselves.

As a result of the delayed nature of the consequences, it is sometimes
hard to justify fixing code stuck in a pitfall. After all, management is rarely
keen on rewriting the whole system just to remove a couple of pitfalls (and
rightly so because there would almost certainly be other pitfalls introduced
as a result). So how do you get buy-in to fix the code? The most important
thing to keep in mind when trying to justify fixing code is the longer-term
payoff of code that is easier to understand and maintain. For example,
copying and pasting the formatting code in one of your Struts forms (Pit-
fall 4.1) is particularly bad for the long-term maintainability of the form.

It is also important to remind management of the long-term conse-
quences of pitfalls if you hope to ask for the time and resources to address
them. The most important aspect to communicate to management is that
fixing pitfalls does not have to mean rewriting. Instead, inform manage-
ment that the code is changed in a disciplined way to achieve better design
and implementation without starting over. Also emphasize that when fix-
ing pitfalls, the internal structure of the code might change a lot, but the
interface changes only slightly.

Of course, studying pitfalls before any of these issues occurs will save
both you and management time, energy, and money down the road. But
remember that studying pitfalls is not enough. You also need to find a way
to work out of them when necessary or, better yet, to avoid them alto-
gether. The good news is that every pitfall has at least one solution, and all
of the Jakarta pitfalls discussed in this book come with both solutions and
tips for avoidance.

Pitfalls in Jakarta

Jakarta is part of the Apache open source project, and its emphasis is on
server-side Java solutions. There are many great projects hosted by the

xiv Introduction

449156 FM.qxd 6/24/03 10:12 AM Page xiv

Jakarta folks, but we focused on these three subprojects because they are
widely used: Ant, Cactus, and Struts.

Ant
Ant has almost entirely replaced make as the build tool for Java developers.
Ant allows developers to declare how their applications should be built
and packaged. The declaration is written in a straightforward XML-based
configuration file that is used to direct Ant from step to step. Ant is also
customizable to allow developers to build their own tasks and use them in
their configuration files.

Pitfalls in Ant arise typically from a lack of experience. Another area that
gives rise to pitfalls is the perceived similarity between make files and
build files. Many developers making the switch from make to Ant end up
writing make files instead of build files. Chapter 5, “Ant,” deals with these
issues.

Cactus
Cactus is a derivative of JUnit that provides server-side unit testing for
J2EE components. With Cactus, unit tests can be written to perform on the
server side fully integrated with the application server. This setup provides
a great way to ensure that your components will perform as expected in an
actual J2EE runtime environment. Because Cactus runs in the application
server environment, the tests can use the actual server objects instead of
having to try to build mock objects.

Although unit testing server-side objects with Cactus is far easier than it
would be without Cactus, developers still make mistakes and end up with
code that is hard to understand or maintain. The most common cause for
these mistakes is lack of understanding of how to do unit testing in the first
place. Chapter 1, “Testing: Cactus and JUnit,” explains in depth what goes
wrong and how to fix it.

Struts
Struts is the Web-based UI framework that has become a de facto standard in
the J2EE community. Struts provides an implementation of the Model-View-
Controller (MVC) framework for building Web applications. The view is
built from a large array of custom tags and JSPs. There are two controllers in
Struts: a central servlet that listens to requests and delegates to application-
specific controllers to perform the task specified in the request, and the
Action that you write. The model is left to the developer to build. The appli-
cation controller classes (that is, Actions) are responsible for converting the

Introduction xv

449156 FM.qxd 6/24/03 10:12 AM Page xv

model-level data into data that Struts is able to understand (that is, Action-
Forms) as well as converting from the ActionForms back to the application-
specific model.

Struts makes building Web-based applications easier than it has ever
been before, but there is a common set of things that developers, especially
new Struts developers, do wrong. Several pitfalls come from not having a
good understanding of the architecture of Struts. Other pitfalls arise from
not building the Struts components (Actions and ActionForms) in a way
that will work well in a three-tier environment. Chapters 2, 3, and 4 capture
these pitfalls as well as their solutions.

These three tools from Jakarta have proven to be a major force in the J2EE
community. Many projects have been greatly enhanced by using Struts for
their Web-based UI, Ant to build, and Cactus to test the project.

Why This Book?

The kinds of mistakes that are chronicled in this book are real-world expe-
riences we have faced as developers working with these tools—the kinds
of experiences that cause actual delays in schedule, or allow major bugs to
get into the users’ hands, or led to lots of rewrites in maintenance because
the code was so hard to change or understand.

The Jakarta open source community has exploded over the last couple of
years with insanely popular—and useful—projects, including the ones
covered here: Ant, Cactus, and Struts. Given the relative newness of the
technology, many developers are inexperienced with these tools and are
getting trapped by the same pitfalls over and over. This book is an attempt
to capture some of the most common pitfalls and the means to arrive at
solutions. It is our hope that you will be saved the frustration of being
trapped by the same pitfalls that have trapped us.

Even if you are an experienced developer, that doesn’t mean that you
can’t get something out of this book. After all, just because everyone uses a
technology does not always mean that they use it correctly. It takes time for
common mindshare to develop around a concept and for common prob-
lems and solutions to become well known. For example, early adoptors of
Ant, Cactus, and Struts suffered from poor documentation. Over time, the
documentation has become very good for all three of these Jakarta projects,
but some developers are still building bad code out of habit. What we pro-
vide here, therefore, is not an introductory Ants, Cactus, or Struts book; it’s
a way to improve code incrementally and to find out about the nooks and
crannies that could make your code hard to maintain or perform poorly. In

xvi Introduction

449156 FM.qxd 6/24/03 10:12 AM Page xvi

the end, the pitfalls and solutions in this book will help you build better
applications that are easier to maintain and that will perform better.

Organization of the Book

In each chapter, we first give a brief introduction to the chapter topic and
offer lists of pitfalls and their related solutions. Sometimes, a single solu-
tion applies to one or more pitfalls in a chapter. When that happens, we
cover the solution in detail under the first pitfall to which it applies and
refer you to the original solution the next time it is applicable.

Pitfalls
Every pitfall in this book is numbered and named. We describe each pitfall in
detail, and we explain how developers typically become trapped in it. We
also provide information on how a developer can avoid being trapped and
what the common symptoms and consequences of each pitfall are. For exam-
ple, Pitfall 5.1: Business Tier Code in Chapter 5 documents the typical bad
practice of putting code that belongs in the model into the StrutsAction
classes and describes how to clean up the code so that it is better partitioned.

Where applicable, the pitfall descriptions also document the pitfall from
different perspectives. Often a pitfall will manifest in different ways,
depending on a number of factors. The pitfall descriptions in this book
address each of these different manifestations in a way that will help devel-
opers identify the pitfall in their code or design.

To make the discussion more concrete, we also provide an example for
each pitfall. Sometimes, the example is abbreviated in an effort to make it
more clear. It is better to have an example that clearly illustrates the pitfall
than to explain all the details.

Solutions
After each pitfall’s example, we offer a solution, called Solving Pitfall X.X.
Each solution contains general information, ways the solution can be
applied to all the variations of the pitfall, step-by-step guidance, and a
detailed example. The solutions essentially walk you through taking your
pitfall-riddled code and converting to better, pitfall-free code.

Some solutions will affect the design of the application, but others will
affect only the code. During the discussion of the solutions, however, we
will focus mostly on the code because as the code is changed the design
will be changed as well.

Introduction xvii

449156 FM.qxd 6/24/03 10:12 AM Page xvii

A Note about JUnit Testing

Testing often gets a bad reputation. It is often pushed to the end of a proj-
ect, then dropped because of schedule issues. Then the project goes into the
hands of testers without any developer-based testing, leading to a land-
slide of bugs. A unit test makes sure that small units of functionality on a
particular class are working correctly, so this cycle doesn’t repeat itself.
With enough unit tests in place, the official testers on your project will be
bored, and your application will sail through testing.

Why Unit Test?
First and foremost, it is necessary to have unit tests in place in order to
refactor code—or, for our purposes, dig yourself out of pitfalls. Unit tests
help you to make sure that what is documented in the API of your classes
is actually what you have implemented—which is, of course, valuable if
you want to change the implementation. When the change is complete
(your pitfall is resolved), you can just rerun your unit tests. If the tests are
complete, then you know the clients of your class will not be affected by
your solution. Another benefit of unit tests is that as long as the tests are
run before and after any change, problems will be found right away. With-
out unit tests, it can be quite a while before a bug related to the change sur-
faces, making the bug harder to track down.

Unit testing is also an efficient way to validate design and implementa-
tion assumptions. For example, with a unit test, you can validate your
expectations about the way hashCode and equals work in a Hash Map or
Set. If you have a set of unit tests that assert the contract as it is spelled out
in the documentation, you can be fairly sure that when you put the object
into the set it will act as expected. More tests to make sure that it is acting
the correct way will expose missed requirements, assumptions, and bugs.

Unit testing is especially important in reusable components or frame-
works. If you want your reusable code to be used by others, then you need
to write tests for it. If that code is poorly tested, your teammates will lack
confidence in your code; if it is well tested (and well documented), the code
can be used with confidence. The tests not only will help to make sure that
the code works but will give your users some valuable hints on how to use
the framework. Further, code changes in one part of a system often show up
as bugs in other parts of the system. Unit tests that are run often help prevent
this from happening by isolating change and finding bugs right away.

xviii Introduction

449156 FM.qxd 6/24/03 10:12 AM Page xviii

Testing with JUnit
JUnit and its derivatives make unit testing easy. In fact, for some develop-
ers, testing with JUnit is addictive. It’s a great feeling to have your code go
into the hands of testers knowing that they won’t find any major show-
stopper bugs. And with any test, it’s as simple as overriding setUp, tear-
Down, and the suite method; then you are ready to add test methods.

To prove how easy it is to perform a test with JUnit, here is an example
test that examines the substring method on the String class.

public StringTest extends TestCase {

private String subject = “Monty Python”;

public static void main(String args[]) {

String classes[] = {StringTest.class.getName()};

junit.swingui.TestRunner.main(classes);

}

public static TestSuite suite() {

return new TestSuite(StringTest.class);

}

public void testSimpleSubstring() throws Exception {

assertEquals(“Python”, subject.substring(6));

}

public void testBeginEndSubstring() throws Exception {

assertEquals(“Monty”, subject.substring(0, 4));

}

public void setUp() throws Exception {

// no need to Initialize anything because the subject

// Is already Initialized as ‘Monty Python’

}

}

That is it. In just these few lines, we have all that we need to build and
run a JUnit test. You can visit www.junit.org for more information and
motivation.

Note to the Reader

This book assumes that you are a Java/J2EE developer familiar with the
technologies discussed. This is not a book on how to build Ant files or

Introduction xix

449156 FM.qxd 6/24/03 10:12 AM Page xix

Struts applications. Instead, this book is about how not to build Cactus
tests, how not to do Struts, and how not to use Ant.

We hope both inexperienced and experienced developers enjoy reading
this book as much as we enjoyed writing it. With the experience captured
here, we hope that you will be able to avoid the countless hours we spent
frustrated, trying to work our way out of the pitfalls we had created.

xx Introduction

449156 FM.qxd 6/24/03 10:12 AM Page xx

1

C H A P T E R

1

With the advent of Extreme Programming (XP) and its emphasis on refac-
toring, unit testing has gained in popularity and exposure. In order to
refactor anything, a good set of unit tests must be in place to make sure that
current clients of the implementation will not be affected by the changes
that are made. Many developers, as they embrace the XP approach, are
suddenly “test infected” and writing all kinds of JUnit tests. Many devel-
opers who were doing unit testing with code in the main method of their
Java classes are finding JUnit and Cactus to be a more thorough means to
test their classes. This chapter is about what goes wrong when building a
real-world test set for real-world applications with these tools.

Many pitfalls in unit tests come from the complexity of the components
being tested or the complexity of the tests themselves. Also, the lack of
assertions in the test code can cause problems. Without an assertion, a test
just confirms that no exceptions were thrown. Although it is useful to
know when exceptions are thrown, it is rarely enough. For example, not all
unexpected state changes in a test subject will throw an exception. Devel-
opers shouldn’t simply rely on printouts so that they can visually inspect
the result of calling the tested code. While visual inspection is better than
nothing, it’s not nearly as useful as unit testing can be. This chapter shows
several ways in which a lack of assertions shows up and provides strategies

Testing: Cactus and JUnit

C H A P T E R

b 449156 Ch01.qxd 6/16/03 8:48 AM Page 1

to migrate existing tests (visual or not) to solid unit tests that assert the con-
tract implied in the API being tested.

A quick word about the differences between JUnit and Cactus: JUnit
tests run in the same JVM as the test subject whereas Cactus tests start in
one JVM and are sent to the app server’s JVM to be run. Cactus has a very
clever means to do the sending to the remote machine. Just enough infor-
mation is packaged so that the server side can find and execute the test.
The package is sent via HTTP to one of the redirectors (ServletTestRedirec-
tor, FilterTestRedirector, or the JSPTestRedirector). The redirector then
unpacks the info, finds the test class and method, and performs the test.
Figure 1.1 represents this process.

Figure 1.1 Cactus and test methods.

Client JVM Server JVM

beginXXX()

endXXX()

serializeAndSend() Cactus
TestCase

setUp()

tearDown()

testXXX()Cactus
Redirector

HTTP
Request

2 Chapter 1

MOCK OBJECT VERSUS “IN CONTAINER” TESTING

There are two ways to approach testing your server-side objects. They can be
isolated from the containers in which they are intended to run and tested
separately to ensure that the objects do what is expected of them. The other
way is to build a framework that works with the container to allow your objects
to be tested inside the container.

The first approach, called Mock Object testing (or the Mock Objects Pattern),
is very effective at isolating the test subject. There is significant burden, though,
in building and maintaining the Mock Objects that simulate the configuration
and container objects for the test subject. They have to be built and maintained
in order for the testing to be effective. Even though there is virtually no
complexity to the actual Mock Objects, there is a lot of complexity in
maintaining the large number of Mock Objects required to simulate the
container.

Cactus takes the other approach and facilitates testing inside the container.
Cactus gets between the test cases and the container and builds an
environment for the test subject to be run in that uses the container-provided
objects instead of Mock Objects. Both approaches are helpful in stamping out
bugs.

b 449156 Ch01.qxd 6/16/03 8:48 AM Page 2

Misunderstanding the distributed nature of Cactus can lead to frustra-
tion if you are an old hand at building JUnit tests. Keep this in mind as you
start to build Cactus tests.

Another thing to keep in mind as you build Cactus tests is that the redi-
rector provides access to the container objects only on the server. Because
the container objects are not available until the test is running on the server
side, you cannot use container objects in the methods that are executed on
the client side. For example, the config object in a ServletTest is not avail-
able in the beginXXX and endXXX methods, but you can use it in your
setUp, textXXX, and tearDown methods.

JUnit has become the de facto standard unit testing framework. It is very
simple to get started with it, and it has amazing flexibility. There are prob-
ably dozens, if not a couple of hundred, of extensions to JUnit available on
the Web. This chapter focuses on JUnit (www.junit.org) and Cactus
(www.jakarta.apache.org/cactus). Cactus allows “in container” testing of
J2EE components. As stated earlier, this book assumes some experience
with these tools.

Pitfall 1.1: No assert is the result of developers that do not realize that
calling a method is not the same as testing it.

Pitfall 1.2: Unreasonable assert examines the tendency of developers
new to unit testing to start asserting everything, even things that
won’t happen unless the JVM is not working properly.

Pitfall 1.3: Console-Based Testing addresses the problem of developers
who get into the habit of using “System.out” to validate their appli-
cations. This method of testing is very haphazard and error-prone.

Pitfall 1.4: Unfocused Test Method is common to more experienced
developers who get a little lazy about writing good tests and let the
test become overly complex and hard to maintain.

Pitfall 1.5: Failure to Isolate Each Test is fixed using the setUp and
tearDown methods defined in the JUnit framework. These methods
allow each test to be run in an isolation that contains only the test
subject and the required structure to support it.

Pitfall 1.6: Failure to Isolate Subject is related to the discussion of
Mock Objects in the previous sidebar.

Testing: Cactus and JUnit 3

b 449156 Ch01.qxd 6/16/03 8:48 AM Page 3

Pitfall 1.1: No Assert

This pitfall describes the tendency of developers new to unit testing to for-
get about asserts completely. New developers often assume that invoking
the method is a sufficient test. They assume that if no exceptions are
thrown when the method is called, then everything must be OK. Many
bugs escape this kind of testing.

Here is some code for a simple addStrings method that returns the result
of concatenating the value returned from the toString method of its two
arguments. The current implementation should not be putting a space into
the returned value, but it is. The initial test will not expose this bug because
it is stuck in this pitfall; we will apply the solution to the test, though, and
it will expose the bug.

public String appendTwoStrings(Object one, Object two) {

StringBuffer buf = new StringBuffer(one.toString());

buf.append(“ “);

buf.append(two.toString());

return buf.toString();

}

Here is a sample test that simply invokes the method without really test-
ing anything.

public void testAppendTwoStrings() throws Exception {

myAppender.appendTwoStrings(“one”, “two”);

}

This situation is typical of tests stuck in this pitfall. Even though it looks
as if the appendTwoStrings method is tested, it is not. Users of the
appendTwoStrings method have expectations of what the return value will
be as a result of calling the method. And, in this case, the expectations will
not be met. The API for a class is an implied contract for the users of the
code. Whenever that contract is not met, the users of the code will see that
failure as a bug. Unit tests should make sure that every unit of code per-
forms as expected, that it fulfills the implied contract in the API. Unit tests
that are stuck in this pitfall do not make sure that code is performing as
expected, and they need to be fixed.

4 Chapter 1

b 449156 Ch01.qxd 6/16/03 8:48 AM Page 4

No assert is usually exposed at the point at which the application is
passed over to the testing team, which tests the application by looking at
the state changes that are occurring. As the testing team looks into the data-
base to confirm that what was supposed to change did change, they will
notice that the data is not changing as expected. As a result, many bug
reports will be filed, and the bug fixes will more often than not be made in
code that was tested with few asserts. Bug reports are no fun, especially
when some effort was made to do unit testing. This situation will make it
appear that unit testing added little value.

One of two things, laziness or lack of knowledge and experience, usually
causes this pitfall. Everyone gets lazy from time to time. Developers are no
exception, but it is important that we build good unit tests so that we can
afford to be a little lazy. A good set of unit tests will expose bugs right when
they are introduced, which is when they are easiest to fix. And because the
bugs are easier to fix, we have less work.

Lack of knowledge and experience is fixed only through mentorship and
experience. Over time, developers will begin to see how valuable unit tests
are, especially if they have found, fixed, and prevented anyone else from
seeing bugs in their code. You can encourage and teach good unit testing
by doing periodic peer reviews with junior members. Peer reviews provide
a great mechanism to mentor people, and if the senior people allow junior
people to review their code, junior people will be able to see good exam-
ples on a regular basis.

Testing: Cactus and JUnit 5

INTENT OF THE API

The “intent of the API” is what is documented or expected that the API will do
with the inputs provided. It is also what the API will do to the internal state of
the object on which the method is being called. For example, the append
method on the StringBuffer class is documented to append the argument to its
internal buffer such that the StringBuffer is longer by the length of the
argument that is passed into the method. The internal state of the StringBuffer
has changed, and nothing has happened to the argument. The test suite for
StringBuffer should assert both “intents” of the StringBuffer API.

A test should make sure that the stated intentions of the API are met by
asserting that what is expected to be true actually is. Another way to think of
the intent of the API is that the API is like a contract between the clients that
use the API and the provider of the API. The provider of the API is guaranteeing
that the class will perform certain tasks, and the consumer is expecting those
tasks to be performed. Formal ideas surrounding Design by Contract (DBC) are
helpful in building tests for classes.

b 449156 Ch01.qxd 6/16/03 8:48 AM Page 5

To stay out of this pitfall, you have to assert the intent stated in the API
being tested. The intent of the API is what is expected to happen when the
API is called. The intent is usually captured in the form of JavaDoc and the
exception list that a method throws (sometimes referred to as the contract
for the class). Unit tests should make sure that each piece of the API is
doing what it should. As an example, if a method claims to throw an Ille-
galArgumentException when a null is passed, at least one test should
assert that that exception is thrown when a null is passed.

Example
This example of No assert relies on a test for the contrived class called
StringPair. Instances of StringPair will be used as keys in a map. An object
that will be used as a key in a map must implement two methods: “equals”
and hashCode. The two methods must be consistent, which means that if
true is returned from the two objects involved in an equals comparison
(that is, the receiver of the method call and the argument to the method),
then hashCode must return the same value for both objects.

The StringPair class has two string properties, right and left. These two
values are used in the equals and hashCode methods. To further compli-
cate the subject, let’s say that the StringPair class is used in a performance-
sensitive environment and that it caches the hashCode so that it does not
have to be recomputed each time. The hashCode should be reset to –1
when either the right or left value changes. This resetting behavior is cru-
cial to the functioning of the StringPair class as a signal that the hashCode
should be recomputed. The unit test here makes sure that the important
methods on the StringPair class are called.

A good test for the StringPair class would assert that every intent
described earlier is true (that hashCode and equals are consistent). The

6 Chapter 1

TESTING FIRST

Many people in the JUnit community suggest that tests be written before the
code that they are intended to test. The tests become almost a coded set of
requirements for the test subject. This is a great habit to get into. The next time
you are transitioning from design to development, try writing a few tests for the
new code before implementing. When it comes time to use the code, you will
thank yourself. The great benefit of testing first is that it forces the developer to
focus on providing good APIs to future clients. The tests will expose nuances of
what was expected to be true at design time versus what is really true on the
ground in the code. And besides, if you write the tests first you will have a
concrete gauge of when the class is done (that is, when it passes all the tests, it
is done).

b 449156 Ch01.qxd 6/16/03 8:48 AM Page 6

JUnit test, however, is not good, as the test in Listing 1.1 does not assert
anything in particular; in other words, this test case is trapped in this pit-
fall.

public class StringPairTest extends TestCase {

private StringPair one = new StringPair(“One”, “Two”);

private StringPair oneA = new StringPair(“One”, “Two”);

private StringPair two = new StringPair(“Three”, “Four”);

private StringPair twoA = new StringPair(“Three”, “Four”);

public static Test suite() {

return new TestSuite(StringPairTest.class);

}

public StringPairTest(String name) {

super(name);

}

/**

* Test equals.

*/

public void testEquals() throws Exception {

one.equals(oneA);

oneA.equals(one);

}

/**

* Test not equals.

*/

public void testNotEquals() throws Exception {

one.equals(two);

two.equals(one);

}

/**

* Test hashCode.

*/

public void testHashCode() throws Exception {

one.hashCode();

two.hashCode();

}

/**

* Test setting the values.

*/

public void testSetValues() throws Exception {

one.setRight(“ROne”);

one.setLeft(“LOne”);

Listing 1.1 StringPairTest. (continues)

Testing: Cactus and JUnit 7

b 449156 Ch01.qxd 6/16/03 8:48 AM Page 7

two.setRight(“RTwo”);

two.setLeft(“LTwo”);

}

/**

* Should throw an exception.

*/

public void testNullPointerProtection() throws Exception {

// since this will throw an exception the test will fail

StringPair busted = new StringPair(null, “Four”);

}

}

Listing 1.1 (continued)

There are no asserts in the code for StringPairTest, so it is actually not
testing very much. For example, take a look at the testSetValues method.
All that happens is that the right and left property set methods are called.
No check is made to make sure that the expected state changes happened
on the StringPair instances. All this test is making sure of is that if valid
strings are passed into the set methods (that is, not null) no exceptions are
thrown. A lot of code is written in this way and then called test code. The
StringPairTest test case is a classic example of this pitfall.

In this example, because the StringPair class is so simple, it might seem
like overkill to put tests in place to make sure that equals and hashCode are
performing as they should. Others, however, will be using this class and
will expect it to function as advertised in its API. Which kind of class
would you rather depend on in your code, one that is well tested (even
when the code seems simple) or code that is not tested? A well-tested
StringPair class can be used confidently. A poorly tested StringPair class
that is tested only in integrated tests with the larger process will likely lead
to much harder-to-find bugs. If StringPair is tested only through the Big
Process test cases, then bugs in StringPair will be much harder to find
because it cannot be stated with certainty that the bug is not in StringPair.
The test needs to assert that the intent of the class as laid out in its API is
actually being met, meaning that the hashCode is being reset when a value
changes. If tests are in place that assert the intent of the StringPair API, then
when bugs arise in the Big Process, they can be attributed confidently to
something in the Big Process code.

8 Chapter 1

b 449156 Ch01.qxd 6/16/03 8:48 AM Page 8

