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What Is a Pitfall?

A pitfall is a common, overlooked, unsound way of developing and
designing software. The consequences of pitfalls vary: Some are as mild as
slightly decreased performance, but some have more severe consequences,
like slipping schedules, difficult maintenance, and lack of changeability.
Pitfall-strewn code can also be a major problem for new developers. The
time it takes for a new developer to become effective is directly related to
the cohesiveness of the code. Cohesive code is easy to follow and under-
stand because it flows logically. Code filled with pitfalls is hard to follow
because it does not flow logically.

The need to avoid pitfalls is paramount. Over time, any application that
is being used will have bugs that need to be fixed and new features that
need to be added, and thus it will require maintenance. The fewer pitfalls
that are in the design and code, the easier this maintenance will be to per-
form. To illustrate this principal, imagine a shopping cart application. The
application has browse, add products, checkout, and ship functionality.
Over time, customers might request more functionality, such as the ability
to search the product catalog. If some of the code to implement the search
functionality is in the StrutsAction classes and some of the code is in a busi-
ness tier object such as a JavaBean or an EJB, adding the new search func-
tionality will be more difficult than if the original code is contained solely
in the business tier. 

Oddly, pitfalls rarely keep systems from working. An application can be
riddled with pitfalls and still not have a problem functioning early on, but

Introduction

xiii

449156 FM.qxd  6/24/03  10:12 AM  Page xiii



the consequences of the pitfalls will eventually surface. For example, a
project can be proceeding according to plan for months. Then, the second
iteration begins, and mass chaos ensues. Many projects have failed during
later iterations because the early code was too hard to maintain. 

Also, unlike other development problems, the consequences of pitfalls
don’t make themselves obvious. If we do something like cast an object to
the wrong type, the Java runtime is kind enough to inform us of that fact
with an exception the first time the code is executed. But if our code is
stuck in a pitfall, there is no runtime to tell us; we simply have to wait for
the consequences to manifest themselves. This is why it is important to
study the pitfalls that others have fallen into and to recognize them before
we fall into them ourselves. 

As a result of the delayed nature of the consequences, it is sometimes
hard to justify fixing code stuck in a pitfall. After all, management is rarely
keen on rewriting the whole system just to remove a couple of pitfalls (and
rightly so because there would almost certainly be other pitfalls introduced
as a result). So how do you get buy-in to fix the code? The most important
thing to keep in mind when trying to justify fixing code is the longer-term
payoff of code that is easier to understand and maintain. For example,
copying and pasting the formatting code in one of your Struts forms (Pit-
fall 4.1) is particularly bad for the long-term maintainability of the form. 

It is also important to remind management of the long-term conse-
quences of pitfalls if you hope to ask for the time and resources to address
them. The most important aspect to communicate to management is that
fixing pitfalls does not have to mean rewriting. Instead, inform manage-
ment that the code is changed in a disciplined way to achieve better design
and implementation without starting over. Also emphasize that when fix-
ing pitfalls, the internal structure of the code might change a lot, but the
interface changes only slightly. 

Of course, studying pitfalls before any of these issues occurs will save
both you and management time, energy, and money down the road. But
remember that studying pitfalls is not enough. You also need to find a way
to work out of them when necessary or, better yet, to avoid them alto-
gether. The good news is that every pitfall has at least one solution, and all
of the Jakarta pitfalls discussed in this book come with both solutions and
tips for avoidance.

Pitfalls in Jakarta

Jakarta is part of the Apache open source project, and its emphasis is on
server-side Java solutions. There are many great projects hosted by the
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Jakarta folks, but we focused on these three subprojects because they are
widely used: Ant, Cactus, and Struts.

Ant
Ant has almost entirely replaced make as the build tool for Java developers.
Ant allows developers to declare how their applications should be built
and packaged. The declaration is written in a straightforward XML-based
configuration file that is used to direct Ant from step to step. Ant is also
customizable to allow developers to build their own tasks and use them in
their configuration files. 

Pitfalls in Ant arise typically from a lack of experience. Another area that
gives rise to pitfalls is the perceived similarity between make files and
build files. Many developers making the switch from make to Ant end up
writing make files instead of build files. Chapter 5, “Ant,” deals with these
issues.

Cactus
Cactus is a derivative of JUnit that provides server-side unit testing for
J2EE components. With Cactus, unit tests can be written to perform on the
server side fully integrated with the application server. This setup provides
a great way to ensure that your components will perform as expected in an
actual J2EE runtime environment. Because Cactus runs in the application
server environment, the tests can use the actual server objects instead of
having to try to build mock objects. 

Although unit testing server-side objects with Cactus is far easier than it
would be without Cactus, developers still make mistakes and end up with
code that is hard to understand or maintain. The most common cause for
these mistakes is lack of understanding of how to do unit testing in the first
place. Chapter 1, “Testing: Cactus and JUnit,” explains in depth what goes
wrong and how to fix it. 

Struts
Struts is the Web-based UI framework that has become a de facto standard in
the J2EE community. Struts provides an implementation of the Model-View-
Controller (MVC) framework for building Web applications. The view is
built from a large array of custom tags and JSPs. There are two controllers in
Struts: a central servlet that listens to requests and delegates to application-
specific controllers to perform the task specified in the request, and the
Action that you write. The model is left to the developer to build. The appli-
cation controller classes (that is, Actions) are responsible for converting the
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model-level data into data that Struts is able to understand (that is, Action-
Forms) as well as converting from the ActionForms back to the application-
specific model.

Struts makes building Web-based applications easier than it has ever
been before, but there is a common set of things that developers, especially
new Struts developers, do wrong. Several pitfalls come from not having a
good understanding of the architecture of Struts. Other pitfalls arise from
not building the Struts components (Actions and ActionForms) in a way
that will work well in a three-tier environment. Chapters 2, 3, and 4 capture
these pitfalls as well as their solutions. 

These three tools from Jakarta have proven to be a major force in the J2EE
community. Many projects have been greatly enhanced by using Struts for
their Web-based UI, Ant to build, and Cactus to test the project.

Why This Book?

The kinds of mistakes that are chronicled in this book are real-world expe-
riences we have faced as developers working with these tools—the kinds
of experiences that cause actual delays in schedule, or allow major bugs to
get into the users’ hands, or led to lots of rewrites in maintenance because
the code was so hard to change or understand. 

The Jakarta open source community has exploded over the last couple of
years with insanely popular—and useful—projects, including the ones
covered here: Ant, Cactus, and Struts. Given the relative newness of the
technology, many developers are inexperienced with these tools and are
getting trapped by the same pitfalls over and over. This book is an attempt
to capture some of the most common pitfalls and the means to arrive at
solutions. It is our hope that you will be saved the frustration of being
trapped by the same pitfalls that have trapped us. 

Even if you are an experienced developer, that doesn’t mean that you
can’t get something out of this book. After all, just because everyone uses a
technology does not always mean that they use it correctly. It takes time for
common mindshare to develop around a concept and for common prob-
lems and solutions to become well known. For example, early adoptors of
Ant, Cactus, and Struts suffered from poor documentation. Over time, the
documentation has become very good for all three of these Jakarta projects,
but some developers are still building bad code out of habit. What we pro-
vide here, therefore, is not an introductory Ants, Cactus, or Struts book; it’s
a way to improve code incrementally and to find out about the nooks and
crannies that could make your code hard to maintain or perform poorly. In
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the end, the pitfalls and solutions in this book will help you build better
applications that are easier to maintain and that will perform better.

Organization of the Book

In each chapter, we first give a brief introduction to the chapter topic and
offer lists of pitfalls and their related solutions. Sometimes, a single solu-
tion applies to one or more pitfalls in a chapter. When that happens, we
cover the solution in detail under the first pitfall to which it applies and
refer you to the original solution the next time it is applicable.

Pitfalls
Every pitfall in this book is numbered and named. We describe each pitfall in
detail, and we explain how developers typically become trapped in it. We
also provide information on how a developer can avoid being trapped and
what the common symptoms and consequences of each pitfall are. For exam-
ple, Pitfall 5.1: Business Tier Code in Chapter 5 documents the typical bad
practice of putting code that belongs in the model into the StrutsAction
classes and describes how to clean up the code so that it is better partitioned.

Where applicable, the pitfall descriptions also document the pitfall from
different perspectives. Often a pitfall will manifest in different ways,
depending on a number of factors. The pitfall descriptions in this book
address each of these different manifestations in a way that will help devel-
opers identify the pitfall in their code or design.

To make the discussion more concrete, we also provide an example for
each pitfall. Sometimes, the example is abbreviated in an effort to make it
more clear. It is better to have an example that clearly illustrates the pitfall
than to explain all the details. 

Solutions
After each pitfall’s example, we offer a solution, called Solving Pitfall X.X.
Each solution contains general information, ways the solution can be
applied to all the variations of the pitfall, step-by-step guidance, and a
detailed example. The solutions essentially walk you through taking your
pitfall-riddled code and converting to better, pitfall-free code.

Some solutions will affect the design of the application, but others will
affect only the code. During the discussion of the solutions, however, we
will focus mostly on the code because as the code is changed the design
will be changed as well.

Introduction xvii
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A Note about JUnit Testing

Testing often gets a bad reputation. It is often pushed to the end of a proj-
ect, then dropped because of schedule issues. Then the project goes into the
hands of testers without any developer-based testing, leading to a land-
slide of bugs. A unit test makes sure that small units of functionality on a
particular class are working correctly, so this cycle doesn’t repeat itself.
With enough unit tests in place, the official testers on your project will be
bored, and your application will sail through testing.

Why Unit Test?
First and foremost, it is necessary to have unit tests in place in order to
refactor code—or, for our purposes, dig yourself out of pitfalls. Unit tests
help you to make sure that what is documented in the API of your classes
is actually what you have implemented—which is, of course, valuable if
you want to change the implementation. When the change is complete
(your pitfall is resolved), you can just rerun your unit tests. If the tests are
complete, then you know the clients of your class will not be affected by
your solution. Another benefit of unit tests is that as long as the tests are
run before and after any change, problems will be found right away. With-
out unit tests, it can be quite a while before a bug related to the change sur-
faces, making the bug harder to track down.

Unit testing is also an efficient way to validate design and implementa-
tion assumptions. For example, with a unit test, you can validate your
expectations about the way hashCode and equals work in a Hash Map or
Set. If you have a set of unit tests that assert the contract as it is spelled out
in the documentation, you can be fairly sure that when you put the object
into the set it will act as expected. More tests to make sure that it is acting
the correct way will expose missed requirements, assumptions, and bugs. 

Unit testing is especially important in reusable components or frame-
works. If you want your reusable code to be used by others, then you need
to write tests for it. If that code is poorly tested, your teammates will lack
confidence in your code; if it is well tested (and well documented), the code
can be used with confidence. The tests not only will help to make sure that
the code works but will give your users some valuable hints on how to use
the framework. Further, code changes in one part of a system often show up
as bugs in other parts of the system. Unit tests that are run often help prevent
this from happening by isolating change and finding bugs right away. 

xviii Introduction
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Testing with JUnit
JUnit and its derivatives make unit testing easy. In fact, for some develop-
ers, testing with JUnit is addictive. It’s a great feeling to have your code go
into the hands of testers knowing that they won’t find any major show-
stopper bugs. And with any test, it’s as simple as overriding setUp, tear-
Down, and the suite method; then you are ready to add test methods. 

To prove how easy it is to perform a test with JUnit, here is an example
test that examines the substring method on the String class.

public StringTest extends TestCase {

private String subject = “Monty Python”;

public static void main(String args[]) {

String classes[] = {StringTest.class.getName()};

junit.swingui.TestRunner.main(classes);

}

public static TestSuite suite() {

return new TestSuite(StringTest.class);

}

public void testSimpleSubstring() throws Exception {

assertEquals(“Python”, subject.substring(6));

}

public void testBeginEndSubstring() throws Exception {

assertEquals(“Monty”, subject.substring(0, 4));

}

public void setUp() throws Exception {

// no need to Initialize anything because the subject

// Is already Initialized as ‘Monty Python’

}

}

That is it. In just these few lines, we have all that we need to build and
run a JUnit test. You can visit www.junit.org for more information and
motivation. 

Note to the Reader

This book assumes that you are a Java/J2EE developer familiar with the
technologies discussed. This is not a book on how to build Ant files or
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Struts applications. Instead, this book is about how not to build Cactus
tests, how not to do Struts, and how not to use Ant. 

We hope both inexperienced and experienced developers enjoy reading
this book as much as we enjoyed writing it. With the experience captured
here, we hope that you will be able to avoid the countless hours we spent
frustrated, trying to work our way out of the pitfalls we had created.

xx Introduction
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1

C H A P T E R

1

With the advent of Extreme Programming (XP) and its emphasis on refac-
toring, unit testing has gained in popularity and exposure. In order to
refactor anything, a good set of unit tests must be in place to make sure that
current clients of the implementation will not be affected by the changes
that are made. Many developers, as they embrace the XP approach, are
suddenly “test infected” and writing all kinds of JUnit tests. Many devel-
opers who were doing unit testing with code in the main method of their
Java classes are finding JUnit and Cactus to be a more thorough means to
test their classes. This chapter is about what goes wrong when building a
real-world test set for real-world applications with these tools.

Many pitfalls in unit tests come from the complexity of the components
being tested or the complexity of the tests themselves. Also, the lack of
assertions in the test code can cause problems. Without an assertion, a test
just confirms that no exceptions were thrown. Although it is useful to
know when exceptions are thrown, it is rarely enough. For example, not all
unexpected state changes in a test subject will throw an exception. Devel-
opers shouldn’t simply rely on printouts so that they can visually inspect
the result of calling the tested code. While visual inspection is better than
nothing, it’s not nearly as useful as unit testing can be. This chapter shows
several ways in which a lack of assertions shows up and provides strategies

Testing: Cactus and JUnit 

C H A P T E R
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to migrate existing tests (visual or not) to solid unit tests that assert the con-
tract implied in the API being tested.

A quick word about the differences between JUnit and Cactus: JUnit
tests run in the same JVM as the test subject whereas Cactus tests start in
one JVM and are sent to the app server’s JVM to be run. Cactus has a very
clever means to do the sending to the remote machine. Just enough infor-
mation is packaged so that the server side can find and execute the test.
The package is sent via HTTP to one of the redirectors (ServletTestRedirec-
tor, FilterTestRedirector, or the JSPTestRedirector). The redirector then
unpacks the info, finds the test class and method, and performs the test.
Figure 1.1 represents this process.

Figure 1.1 Cactus and test methods.

Client JVM Server JVM

beginXXX()

endXXX()

serializeAndSend() Cactus
TestCase

setUp()

tearDown()

testXXX()Cactus
Redirector

HTTP
Request

2 Chapter 1

MOCK OBJECT VERSUS “IN CONTAINER” TESTING

There are two ways to approach testing your server-side objects. They can be
isolated from the containers in which they are intended to run and tested
separately to ensure that the objects do what is expected of them. The other
way is to build a framework that works with the container to allow your objects
to be tested inside the container. 

The first approach, called Mock Object testing (or the Mock Objects Pattern),
is very effective at isolating the test subject. There is significant burden, though,
in building and maintaining the Mock Objects that simulate the configuration
and container objects for the test subject. They have to be built and maintained
in order for the testing to be effective. Even though there is virtually no
complexity to the actual Mock Objects, there is a lot of complexity in
maintaining the large number of Mock Objects required to simulate the
container. 

Cactus takes the other approach and facilitates testing inside the container.
Cactus gets between the test cases and the container and builds an
environment for the test subject to be run in that uses the container-provided
objects instead of Mock Objects. Both approaches are helpful in stamping out
bugs.
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Misunderstanding the distributed nature of Cactus can lead to frustra-
tion if you are an old hand at building JUnit tests. Keep this in mind as you
start to build Cactus tests. 

Another thing to keep in mind as you build Cactus tests is that the redi-
rector provides access to the container objects only on the server. Because
the container objects are not available until the test is running on the server
side, you cannot use container objects in the methods that are executed on
the client side. For example, the config object in a ServletTest is not avail-
able in the beginXXX and endXXX methods, but you can use it in your
setUp, textXXX, and tearDown methods. 

JUnit has become the de facto standard unit testing framework. It is very
simple to get started with it, and it has amazing flexibility. There are prob-
ably dozens, if not a couple of hundred, of extensions to JUnit available on
the Web. This chapter focuses on JUnit (www.junit.org) and Cactus
(www.jakarta.apache.org/cactus). Cactus allows “in container” testing of
J2EE components. As stated earlier, this book assumes some experience
with these tools.

Pitfall 1.1: No assert is the result of developers that do not realize that
calling a method is not the same as testing it.

Pitfall 1.2: Unreasonable assert examines the tendency of developers
new to unit testing to start asserting everything, even things that
won’t happen unless the JVM is not working properly.

Pitfall 1.3: Console-Based Testing addresses the problem of developers
who get into the habit of using “System.out” to validate their appli-
cations. This method of testing is very haphazard and error-prone.

Pitfall 1.4: Unfocused Test Method is common to more experienced
developers who get a little lazy about writing good tests and let the
test become overly complex and hard to maintain.

Pitfall 1.5: Failure to Isolate Each Test is fixed using the setUp and
tearDown methods defined in the JUnit framework. These methods
allow each test to be run in an isolation that contains only the test
subject and the required structure to support it.

Pitfall 1.6: Failure to Isolate Subject is related to the discussion of
Mock Objects in the previous sidebar. 

Testing: Cactus and JUnit 3
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Pitfall 1.1: No Assert

This pitfall describes the tendency of developers new to unit testing to for-
get about asserts completely. New developers often assume that invoking
the method is a sufficient test. They assume that if no exceptions are
thrown when the method is called, then everything must be OK. Many
bugs escape this kind of testing. 

Here is some code for a simple addStrings method that returns the result
of concatenating the value returned from the toString method of its two
arguments. The current implementation should not be putting a space into
the returned value, but it is. The initial test will not expose this bug because
it is stuck in this pitfall; we will apply the solution to the test, though, and
it will expose the bug. 

public String appendTwoStrings(Object one, Object two) {

StringBuffer buf = new StringBuffer(one.toString());

buf.append(“ “);    

buf.append(two.toString());

return buf.toString();

}

Here is a sample test that simply invokes the method without really test-
ing anything.

public void testAppendTwoStrings() throws Exception {

myAppender.appendTwoStrings(“one”, “two”);

}

This situation is typical of tests stuck in this pitfall. Even though it looks
as if the appendTwoStrings method is tested, it is not. Users of the
appendTwoStrings method have expectations of what the return value will
be as a result of calling the method. And, in this case, the expectations will
not be met. The API for a class is an implied contract for the users of the
code. Whenever that contract is not met, the users of the code will see that
failure as a bug. Unit tests should make sure that every unit of code per-
forms as expected, that it fulfills the implied contract in the API. Unit tests
that are stuck in this pitfall do not make sure that code is performing as
expected, and they need to be fixed. 

4 Chapter 1
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No assert is usually exposed at the point at which the application is
passed over to the testing team, which tests the application by looking at
the state changes that are occurring. As the testing team looks into the data-
base to confirm that what was supposed to change did change, they will
notice that the data is not changing as expected. As a result, many bug
reports will be filed, and the bug fixes will more often than not be made in
code that was tested with few asserts. Bug reports are no fun, especially
when some effort was made to do unit testing. This situation will make it
appear that unit testing added little value. 

One of two things, laziness or lack of knowledge and experience, usually
causes this pitfall. Everyone gets lazy from time to time. Developers are no
exception, but it is important that we build good unit tests so that we can
afford to be a little lazy. A good set of unit tests will expose bugs right when
they are introduced, which is when they are easiest to fix. And because the
bugs are easier to fix, we have less work. 

Lack of knowledge and experience is fixed only through mentorship and
experience. Over time, developers will begin to see how valuable unit tests
are, especially if they have found, fixed, and prevented anyone else from
seeing bugs in their code. You can encourage and teach good unit testing
by doing periodic peer reviews with junior members. Peer reviews provide
a great mechanism to mentor people, and if the senior people allow junior
people to review their code, junior people will be able to see good exam-
ples on a regular basis. 

Testing: Cactus and JUnit 5

INTENT OF THE API

The “intent of the API” is what is documented or expected that the API will do
with the inputs provided. It is also what the API will do to the internal state of
the object on which the method is being called. For example, the append
method on the StringBuffer class is documented to append the argument to its
internal buffer such that the StringBuffer is longer by the length of the
argument that is passed into the method. The internal state of the StringBuffer
has changed, and nothing has happened to the argument. The test suite for
StringBuffer should assert both “intents” of the StringBuffer API. 

A test should make sure that the stated intentions of the API are met by
asserting that what is expected to be true actually is. Another way to think of
the intent of the API is that the API is like a contract between the clients that
use the API and the provider of the API. The provider of the API is guaranteeing
that the class will perform certain tasks, and the consumer is expecting those
tasks to be performed. Formal ideas surrounding Design by Contract (DBC) are
helpful in building tests for classes.
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To stay out of this pitfall, you have to assert the intent stated in the API
being tested. The intent of the API is what is expected to happen when the
API is called. The intent is usually captured in the form of JavaDoc and the
exception list that a method throws (sometimes referred to as the contract
for the class). Unit tests should make sure that each piece of the API is
doing what it should. As an example, if a method claims to throw an Ille-
galArgumentException when a null is passed, at least one test should
assert that that exception is thrown when a null is passed.

Example
This example of No assert relies on a test for the contrived class called
StringPair. Instances of StringPair will be used as keys in a map. An object
that will be used as a key in a map must implement two methods: “equals”
and hashCode. The two methods must be consistent, which means that if
true is returned from the two objects involved in an equals comparison
(that is, the receiver of the method call and the argument to the method),
then hashCode must return the same value for both objects. 

The StringPair class has two string properties, right and left. These two
values are used in the equals and hashCode methods. To further compli-
cate the subject, let’s say that the StringPair class is used in a performance-
sensitive environment and that it caches the hashCode so that it does not
have to be recomputed each time. The hashCode should be reset to –1
when either the right or left value changes. This resetting behavior is cru-
cial to the functioning of the StringPair class as a signal that the hashCode
should be recomputed. The unit test here makes sure that the important
methods on the StringPair class are called. 

A good test for the StringPair class would assert that every intent
described earlier is true (that hashCode and equals are consistent). The

6 Chapter 1

TESTING FIRST

Many people in the JUnit community suggest that tests be written before the
code that they are intended to test. The tests become almost a coded set of
requirements for the test subject. This is a great habit to get into. The next time
you are transitioning from design to development, try writing a few tests for the
new code before implementing. When it comes time to use the code, you will
thank yourself. The great benefit of testing first is that it forces the developer to
focus on providing good APIs to future clients. The tests will expose nuances of
what was expected to be true at design time versus what is really true on the
ground in the code. And besides, if you write the tests first you will have a
concrete gauge of when the class is done (that is, when it passes all the tests, it
is done). 
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JUnit test, however, is not good, as the test in Listing 1.1 does not assert
anything in particular; in other words, this test case is trapped in this pit-
fall.

public class StringPairTest extends TestCase {

private StringPair one = new StringPair(“One”, “Two”);

private StringPair oneA = new StringPair(“One”, “Two”);

private StringPair two = new StringPair(“Three”, “Four”);

private StringPair twoA = new StringPair(“Three”, “Four”);

public static Test suite() {

return new TestSuite(StringPairTest.class);

}

public StringPairTest(String name) {

super(name);

}

/**

*  Test equals.

*/

public void testEquals() throws Exception {

one.equals(oneA);

oneA.equals(one);

}

/**

*  Test not equals.

*/

public void testNotEquals() throws Exception {

one.equals(two);

two.equals(one);

}

/**

*  Test hashCode.

*/

public void testHashCode() throws Exception {

one.hashCode();

two.hashCode();

}

/**

*  Test setting the values.

*/

public void testSetValues() throws Exception {

one.setRight(“ROne”);

one.setLeft(“LOne”);

Listing 1.1 StringPairTest. (continues)

Testing: Cactus and JUnit 7
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two.setRight(“RTwo”);

two.setLeft(“LTwo”);

}

/**

*  Should throw an exception.

*/

public void testNullPointerProtection() throws Exception {

// since this will throw an exception the test will fail

StringPair busted = new StringPair(null, “Four”);

}

}

Listing 1.1 (continued)

There are no asserts in the code for StringPairTest, so it is actually not
testing very much. For example, take a look at the testSetValues method.
All that happens is that the right and left property set methods are called.
No check is made to make sure that the expected state changes happened
on the StringPair instances. All this test is making sure of is that if valid
strings are passed into the set methods (that is, not null) no exceptions are
thrown. A lot of code is written in this way and then called test code. The
StringPairTest test case is a classic example of this pitfall. 

In this example, because the StringPair class is so simple, it might seem
like overkill to put tests in place to make sure that equals and hashCode are
performing as they should. Others, however, will be using this class and
will expect it to function as advertised in its API. Which kind of class
would you rather depend on in your code, one that is well tested (even
when the code seems simple) or code that is not tested? A well-tested
StringPair class can be used confidently. A poorly tested StringPair class
that is tested only in integrated tests with the larger process will likely lead
to much harder-to-find bugs. If StringPair is tested only through the Big
Process test cases, then bugs in StringPair will be much harder to find
because it cannot be stated with certainty that the bug is not in StringPair.
The test needs to assert that the intent of the class as laid out in its API is
actually being met, meaning that the hashCode is being reset when a value
changes. If tests are in place that assert the intent of the StringPair API, then
when bugs arise in the Big Process, they can be attributed confidently to
something in the Big Process code.

8 Chapter 1
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