
Feedback Control
of Computing Systems

Joseph L. Hellerstein
Yixin Diao

Sujay Parekh
Dawn M. Tilbury

IEEE PRESS

A JOHN WILEY & SONS, INC., PUBLICATION


PR




Innodata
0471668818.jpg





Feedback Control
of Computing Systems





Feedback Control
of Computing Systems

Joseph L. Hellerstein
Yixin Diao

Sujay Parekh
Dawn M. Tilbury

IEEE PRESS

A JOHN WILEY & SONS, INC., PUBLICATION



Copyright c© 2004 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, 978-750-8400, fax 978-646-8600, or on the web at www.copyright.com. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or
fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Feedback control of computing systems / Joseph L. Hellerstein . . . [et al.].
p. cm.

“A Wiley-Interscience publication.”
Includes bibliographical references and index.
ISBN 0-471-26637-X (cloth)
1. Feedback control systems. 2. Control theory. 3. Electronic data processing. I.

Hellerstein, Joseph, 1952-

TJ216.F44 2004
629.8′3–dc22

2004040490

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com


To Our Families





Contents

PREFACE xv

PART I BACKGROUND 1

1 Introduction and Overview 3
1.1 The Nature of Feedback Control / 3
1.2 Control Objectives / 6
1.3 Properties of Feedback Control Systems / 7
1.4 Open-Loop versus Closed-Loop Control / 10
1.5 Summary of Applications of Control Theory to Computing

Systems / 11
1.6 Computer Examples of Feedback Control Systems / 13

1.6.1 IBM Lotus Domino Server / 13
1.6.2 Queueing Systems / 15
1.6.3 Apache HTTP Server / 16
1.6.4 Random Early Detection of Router Overloads / 19
1.6.5 Load Balancing / 20
1.6.6 Streaming Media / 21
1.6.7 Caching with Differentiated Service / 22

1.7 Challenges in Applying Control Theory to Computing
Systems / 24

1.8 Summary / 26
1.9 Exercises / 27

vii



viii CONTENTS

PART II SYSTEM MODELING 29

2 Model Construction 31

2.1 Basics of Queueing Theory / 31
2.2 Modeling Dynamic Behavior / 35

2.2.1 Model Variables / 35
2.2.2 Signals / 35
2.2.3 Linear, Time-Invariant Difference Equations / 38
2.2.4 Nonlinearities / 40

2.3 First-Principles Models / 42
2.4 Black-Box Models / 44

2.4.1 Model Scope / 45
2.4.2 Experimental Design / 47
2.4.3 Parameter Estimation / 49
2.4.4 Model Evaluation / 53

2.5 Summary / 56
2.6 Extended Examples / 56

2.6.1 IBM Lotus Domino Server / 56
2.6.2 Apache HTTP Server / 57
2.6.3 M/M/1/K Comparisons / 58

*2.7 Parameter Estimation Using MATLAB / 59
2.8 Exercises / 62

3 Z-Transforms and Transfer Functions 65

3.1 Z-Transform Basics / 65
3.1.1 Z-Transform Definition / 66
3.1.2 Z-Transforms of Common Signals / 68
3.1.3 Properties of Z-Transforms / 71
3.1.4 Inverse Z-Transforms / 74
3.1.5 Using Z-Transforms to Solve Difference Equations / 75

3.2 Characteristics Inferred from Z-Transforms / 81
3.2.1 Review of Complex Variables / 81
3.2.2 Poles and Zeros of a Z-Transform / 83
3.2.3 Steady-State Analysis / 86
3.2.4 Time Domain versus Z-Domain / 88

3.3 Transfer Functions / 89
3.3.1 Stability / 92
3.3.2 Steady-State Gain / 95
3.3.3 System Order / 96



CONTENTS ix

3.3.4 Dominant Poles and Model Simplification / 96
3.3.5 Simulating Transfer Functions / 100

3.4 Summary / 102
3.5 Extended Examples / 103

3.5.1 M/M/1/K from System Identification / 103
3.5.2 IBM Lotus Domino Server: Sensor Delay / 103
3.5.3 Apache HTTP Server: Combining Control Inputs / 104

*3.6 Z-Transforms and MATLAB / 105
3.7 Exercises / 107

4 System Modeling with Block Diagrams 111

4.1 Block Diagrams Basics / 111
4.2 Transforming Block Diagrams / 115

4.2.1 Special Aggregations of Blocks / 115
4.3 Transfer Functions for Control Analysis / 116
4.4 Block Diagram Restructuring / 119
4.5 Summary / 120
4.6 Extended Examples / 121

4.6.1 IBM Lotus Domino Server / 121
4.6.2 Apache HTTP Server with Control Loops / 123
4.6.3 Streaming / 124

*4.7 Composing Transfer Functions in MATLAB / 126
4.8 Exercises / 128

5 First-Order Systems 129

5.1 First-Order Model / 129
5.2 System Response / 131

5.2.1 Steady-State and Transient Responses / 131
5.2.2 Input Signal Model / 133
5.2.3 Time-Domain Solution / 133

5.3 Initial Condition Response / 135
5.4 Impulse Response / 136
5.5 Step Response / 141

5.5.1 Numerical Example / 141
5.5.2 Time-Domain Solution / 141
5.5.3 Steady-State Response / 143
5.5.4 Transient Response / 144

5.6 Transient Response to Other Signals / 147
5.6.1 Ramp Response / 147
5.6.2 Frequency Response / 150



x CONTENTS

5.7 Effect of Stochastics / 152
5.8 Summary / 154
5.9 Extended Examples / 156

5.9.1 Estimating Operating Region of the Apache
HTTP Server / 156

5.9.2 IBM Lotus Domino Server with a Disturbance / 157
5.9.3 Feedback Control of the IBM Lotus Domino

Server / 159
*5.10 Analyzing Transient Response with MATLAB / 161
5.11 Exercises / 162

6 Higher-Order Systems 165

6.1 Motivation and Definitions / 165
6.2 Real Poles / 168

6.2.1 Initial Condition Response / 168
6.2.2 Impulse Response / 171
6.2.3 Step Response / 174
6.2.4 Other Signals / 176
6.2.5 Effect of Zeros / 177

6.3 Complex Poles / 179
6.3.1 Second-Order System / 179
6.3.2 Impulse Response / 181
6.3.3 Step Response / 183

6.4 Summary / 185
6.5 Extended Examples / 186

6.5.1 Apache HTTP Server with a Filter / 186
6.5.2 Apache HTTP Server with a Filter and Controller / 189
6.5.3 IBM Lotus Domino Server with a Filter

and Controller / 191
6.5.4 M/M/1/K with a Filter and Controller / 192

*6.6 Analyzing Transient Response with MATLAB / 196
6.7 Exercises / 197

7 State-Space Models 201

7.1 State Variables / 201
7.2 State-Space Models / 204
7.3 Solving Difference Equations in State Space / 207
7.4 Converting Between Transfer Function Models and State-Space

Models / 211



CONTENTS xi

7.5 Analysis of State-Space Models / 216
7.5.1 Stability Analysis of State-Space Models / 216
7.5.2 Steady-State Analysis of State-Space Models / 218
7.5.3 Transient Analysis of State-Space Models / 220

7.6 Special Considerations in State-Space Models / 221
7.6.1 Equivalence of State Variables / 221
7.6.2 Controllability / 222
7.6.3 Observability / 225

7.7 Summary / 228
7.8 Extended Examples / 229

7.8.1 MIMO System Identification of the Apache HTTP
Server / 229

7.8.2 State-Space Model of the IBM Lotus Domino Server
with Sensor Delay / 234

*7.9 Constructing State-Space Models in MATLAB / 237
7.10 Exercises / 239

PART III CONTROL ANALYSIS AND DESIGN 243

8 Proportional Control 245

8.1 Control Laws and Controller Operation / 245
8.2 Desirable Properties of Controllers / 252
8.3 Framework for Analyzing Proportional Control / 254

8.3.1 Closed-Loop Transfer Functions / 255
8.3.2 Stability / 257
8.3.3 Accuracy / 258
8.3.4 Settling Time / 260
8.3.5 Maximum Overshoot / 260

8.4 P-Control: Robustness, Delays, and Filters / 261
8.4.1 First-Order Target System / 261
8.4.2 Measurement Delay / 266
8.4.3 Moving-Average Filter / 268

8.5 Design of Proportional Controllers / 271
8.6 Summary / 275
8.7 Extended Examples / 276

8.7.1 IBM Lotus Domino Server with a Moving-Average
Filter / 276

8.7.2 Apache with Precompensation / 278
8.7.3 Apache with Disturbance Rejection / 282



xii CONTENTS

8.7.4 Effect of Operating Region on M/M/1/K

Control / 282
*8.8 Designing P-Controllers in MATLAB / 286
8.9 Exercises / 289

9 PID Controllers 293

9.1 Integral Control / 293
9.1.1 Steady-State Error with Integral Control / 294
9.1.2 Transient Response with Integral Control / 296

9.2 Proportional–Integral Control / 301
9.2.1 Steady-State Error with PI Control / 303
9.2.2 PI Control Design by Pole Placement / 303
9.2.3 PI Control Design Using Root Locus / 307
9.2.4 PI Control Design Using Empirical Methods / 309

9.3 Proportional–Derivative Control / 315
9.4 PID Control / 320
9.5 Summary / 324
9.6 Extended Examples / 325

9.6.1 PI Control of the Apache HTTP Server Using Empirical
Methods / 325

9.6.2 Designing a PI Controller for the Apache HTTP Server
Using Pole Placement Design / 327

9.6.3 IBM Lotus Domino Server with a Sensor Delay / 328
9.6.4 Caching with Feedback Control / 330

*9.7 Designing PI Controllers in MATLAB / 332
9.8 Exercises / 333

10 State-Space Feedback Control 337

10.1 State-Space Analysis / 337
10.2 State Feedback Control Systems / 339

10.2.1 Static State Feedback / 340
10.2.2 Precompensated Static State Feedback / 342
10.2.3 Dynamic State Feedback / 346
10.2.4 Comparison of Control Architectures / 351

10.3 Design Techniques / 353
10.3.1 Pole Placement Design / 353
10.3.2 LQR Optimal Control Design / 358

10.4 Summary / 362
10.5 Extended Examples / 364



CONTENTS xiii

10.5.1 MIMO Control of the Apache HTTP Server / 364
10.5.2 Effect of the LQR Design Parameters in a Dynamic

State Feedback System / 370
*10.6 Designing State-Space Controllers Using MATLAB / 372
10.7 Exercises / 373

11 Advanced Topics 375

11.1 Motivating Example / 376
11.2 Gain Scheduling / 378
11.3 Self-Tuning Regulators / 381
11.4 Minimum-Variance Control / 384
11.5 Fluid Flow Analysis / 386
11.6 Fuzzy Control / 389
11.7 Summary / 393
11.8 Exercises / 395

APPENDIX A MATHEMATICAL NOTATION 397

APPENDIX B ACRONYMS 401

APPENDIX C KEY RESULTS 403
C.1 Modeling / 403

C.1.1 Dominant Pole Approximation / 403
C.1.2 Closed-Loop Transfer Functions / 403

C.2 Analysis / 404
C.2.1 Stability / 404
C.2.2 Settling Time / 405
C.2.3 Maximum Overshoot / 405
C.2.4 Steady-State Gain / 405

C.3 Controller Design / 405
C.3.1 Control Laws / 405
C.3.2 Pole Placement Design / 406
C.3.3 LQR Design / 407

APPENDIX D ESSENTIALS OF LINEAR ALGEBRA 409
D.1 Matrix Inverse, Singularity / 409
D.2 Matrix Minor, Determinant, and Adjoint / 409
D.3 Vector Spaces / 410
D.4 Matrix Rank / 411
D.5 Eigenvalues / 411



xiv CONTENTS

APPENDIX E MATLAB BASICS 413
E.1 Variables and Values / 413

E.1.1 Vectors / 414
E.1.2 Matrices / 415

E.2 Functions / 416
E.3 Plotting / 417
E.4 M-files / 418
E.5 Summary of MATLAB Functions and Commands / 420

REFERENCES 421

INDEX 427



Preface

This book is intended primarily for practitioners engaged in the analysis and
design of computing systems. Analysts and designers are extremely interested in
the performance characteristics of computing systems, especially response times,
throughputs, queue lengths, and utilizations. Although steady-state characteristics
can be well understood using queueing theory (e.g., as is done with capacity plan-
ning), practitioners lack the conceptual tools to address the dynamics of resource
management, especially changes in workloads and configuration. The focus of
this book is to distill and make accessible the essentials of control theory needed
by computing practitioners to address these dynamics.

The dynamics of computing systems are important considerations in ensuring
the profitability and availability of many businesses. For example, e-commerce
sites frequently contend with workloads that change so rapidly that service
degradations and failures result. Experienced designers know that leaving the
management of dynamics to operators is not acceptable because many changes
occur too rapidly for humans to be able to respond in a timely manner. As a result,
ad hoc automation is frequently deployed with surprising results, such as wild
oscillations or very slow responses to changes in workloads. Our belief is that by
understanding the essential elements of control theory, computing practitioners
can design systems that adapt in a more reliable manner.

A second audience for this book comprises researchers in the fields of com-
puter science and controls. Today, very few computer science researchers have
familiarity with control theory. As a result, many resource management schemes
fail to address concepts that are well understood in control, such as the effect of
measurement and system delays on stability and other aspects of control perfor-
mance. Similarly, researchers in control fields rarely appreciate the issues partic-
ular to computing systems, such as considerations for policy-based management,

xv



xvi PREFACE

service-level agreements, and the implications of modifying computing systems
to provide sensors and actuators that are appropriate for control purposes. To
address this second audience, we show through numerous examples how control
theoretic techniques can be applied to computer systems, and describe the many
challenges that remain.

Much effort has been devoted to making this book accessible to computer
scientists. First, the examples focus on computer systems and their components,
such as Web servers, caching, and load balancing. Second, our approach to mod-
eling draws heavily on insights from queueing systems and their dynamics (as
opposed to Newton’s laws). Third, we focus almost entirely on discrete-time
systems rather than continuous-time systems (as is traditional in controls books).
There are two reasons for this: (1) performance measurements of computer sys-
tems are solicited on a sampled basis, which is best described by a discrete-time
model; and (2) computer scientists are quite comfortable thinking in terms of
difference equations, and much less comfortable thinking in terms of differential
equations.

Prerequisites

The book assumes background in series and their convergence, all of which
is common in an undergraduate engineering and mathematics curriculum. Some
prior exposure to Z-transforms (or Laplace transforms) is also of benefit, although
not required. Also helpful is experience with developing statistical models, espe-
cially using linear regression.

Having appropriate software tools is immensely helpful in developing statis-
tical models as well as for control analysis and design. Throughout the book,
we use MATLAB r©, a very powerful analysis environment that is arguably the
standard for control engineers1. In Appendix E we provide an introduction to
MATLAB (including the Control System Toolbox). However, access to MATLAB is
not required for the vast majority of the book, only the optional section (indicated
by ∗) at the end of each chapter.

Outline of the Book

The book is divided into three parts. Part I, Background, consists of one chapter
introducing the control problem and giving an overview of the area. Part II,
Modeling, contains six chapters and covers modeling of dynamic systems in
discrete time using difference equations, Z-transforms, block diagrams, trans-
fer functions, and transient analysis. The focus is on single-input, single-output
first- and second-order systems, although Chapter 7 is devoted to multiple-input,
multiple-output (MIMO) systems. Part III, Control, has four chapters. In the
first chapter we describe proportional control and pole placement design. In the
next chapter we consider integral and differential control as well, including PID

1MATLAB is a registered trademark of The MathWorks, Inc.



PREFACE xvii

(proportional–integral–differential) control tuning techniques. In the third chapter
we address state-space feedback control, including the application of pole place-
ment to MIMO systems and design using linear quadratic regulators. In the last
chapter we discuss a variety of advanced topics, such as adaptive control, gain
scheduling, minimum-variance control, and fuzzy control. In all three parts,
examples are used extensively to illustrate the problems addressed, the techniques
employed, and the value provided by the techniques.

Several appendixes are provided to make the book more useful as a refer-
ence and more self-contained. Appendix A summarizes the mathematical notation
used, Appendix B lists key acronyms, and Appendix C contains key results
developed in the book. Anothertwo appendixes contain supplemental material.
Appendix D describes results from linear algebra that are used in Chapters 7 and
10. In Appendix E we provide an overview of the facilities in MATLAB for doing
control analysis and design along with a brief MATLAB tutorial.

Considerable thought was given to the choice of examples. We sought examples
that both aid in communicating key concepts and provide a basis for modeling
systems encountered in practice (especially based on our experience at IBM and
that of colleagues elsewhere in industry and academia). Our most basic example is
a single-server queueing system with exponential interarrival and service times and
a finite-size buffer (M/M/1/K), which provides a means to study the dynamics
of admission control and proportional scheduling. The e-mail example based on
the IBM Lotus r© DominoTM Server2 provides insight into challenges faced in
system identification. The Apache HTTP Server3 example serves as a vehicle for
studying MIMO control. Additional examples include caching with differentiated
service and load balancing.

Roadmaps of the Book

The book may be approached in many ways depending on the interests of the
reader. As depicted in Figure P.1, computer scientists interested in the basics
of control theory should read Chapters 1 and 4 in detail. Chapters 2, 3, and 5
should be skimmed to gain insight into the nature of control system modeling,
and Chapter 8 can be read in modest detail to understand the essence of control
system design. Chapter 11 will also be of interest since it discusses other areas
of control theory that are potentially applicable to computing systems.

Designers of computing systems who want to apply control theory in practice
should proceed as shown in Figure P.2 by readying Chapters 1 through 6 and
Chapters 8 and 9. State-space techniques, which are described in Chapters 7 and
10, should be approached only after there is a solid understanding of the other
chapters. Considerable effort has been made to include worked examples that can
be the basis for more extensive analysis and design studies. Also, all of these
chapters include a section of extended examples that should stimulate ideas about
the range of applications of control theory to computing systems.

2IBM Lotus Domino is a registered trademark of IBM Corporation.
3Apache is a trademark of The Apache Software Foundation and is used with permission.



xviii PREFACE

4: System Modeling and Block Diagrams

3: Z-Transforms and Transfer Functions

5: First-Order Systems

8: Proportional Control

11: Advanced Topics

2: Model Construction

1: Introduction and Overview

Fig. P.1 Roadmap for computer scientists interested in the basics of control theory. Dashed
boxes indicate chapters that should be skimmed.

4: System Modeling with Block Diagrams

3: Z-Transforms and Transfer Functions

5: First-Order Systems

8: Proportional Control

9: PID Controllers

2: Model Construction

1: Introduction and Overview

6: Higher-Order Systems

7: State-Space Models

10: State-Space Feedback Control

11: Advanced Topics

Fig. P.2 Roadmap for computer scientists interested in applying control theory. Dashed boxes
indicate chapters that should be skimmed.



PREFACE xix

4: System Modeling and Block Diagrams (Examples)

5: First-Order Systems (Examples)

8: Proportional Control (Examples)

9: PID Controllers (Examples)

1: Introduction and Overview

6: Higher-Order Systems (Examples)

7: State-Space Models (Examples)

10: State-Space Feedback Control (Examples)

11: Advanced Topics (Examples)

Fig. P.3 Roadmap for control theorists interested in applications to computing systems. The
focus should be on the examples, both the short in-chapter examples and the extended
examples at the end of each chapter.

Control theorists interested in computing system applications should proceed
as depicted in Figure P.3. Desirable properties of controllers in computing sys-
tems and many examples of computing systems are described in Chapter 1.
Chapters 4 through 11 contain a rich set of control problems based on these
examples, especially the extended examples at the end of chapters.

Errata and Additions

We intend to post errata and various additions to the book on the Web site http://
www.research.ibm.com/fbcs/. For example, several of us are currently teaching a
class based on the book at Columbia University. This has resulted in a number of
new ideas about how to present the material.

Acknowledgments

We wish to acknowledge the many colleagues who have helped with this book
in various ways. Xichu Chen at the University of Michigan, Freeman Rawson
at IBM Research in Austin, Texas, and Jose Renato Santos at Hewlett-Packard



xx PREFACE

Laboratory provided detailed comments on the text. David Patterson at the Uni-
versity of California–Berkeley and Armando Fox at Stanford aided us in better
focusing the book for a computer science audience. Nagui Halim at IBM Research
in Hawthorne, New York, gave strong support for this project from the start and
provided constant enthusiasm throughout.

J.L. HELLERSTEIN

IBM Thomas J. Watson Research Center
Hawthorne, New York

Y. DIAO

IBM Thomas J. Watson Research Center
Hawthorne, New York

S. PAREKH

IBM Thomas J. Watson Research Center
Hawthorne, New York

D.M. TILBURY

Mechanical Engineering Department
University of Michigan

Ann Arbor, Michigan



Part I

Background

1





1
Introduction and Overview

This book is about feedback control of computing systems. The main idea of
feedback control is to use measurements of a system’s outputs, such as response
times, throughputs, and utilizations, to achieve externally specified goals. This is
done by adjusting the system control inputs, such as parameters that affect buffer
sizes, scheduling policies, and concurrency levels. Since the measured outputs
are used to determine the control inputs, and the inputs then affect the outputs,
the architecture is called feedback or closed loop. Almost any system that is
considered automatic has some element of feedback control. In this book we
focus on the closed-loop control of computing systems and methods for their
analysis and design.

1.1 THE NATURE OF FEEDBACK CONTROL

Feedback control is about regulating the characteristics of a system. We begin
with some key concepts: the measured output, which is the characteristic to be
regulated to a desired value; the control input, which is what influences the
measured output; and a disturbance, which affects the way in which the input
affects the output. These are illustrated in a later section.

The reader may be familiar with everyday feedback control systems, such as
cruise control in an automobile, a thermostat in a house, or the human sensorimo-
tor system. A cruise control system achieves the desired speed by adjusting the
accelerator pedal based on a velocity measurement from the speedometer. Here,

Feedback Control of Computing Systems, by Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury
ISBN 0-471-26637-X Copyright c© 2004 John Wiley & Sons, Inc.

3



4 INTRODUCTION AND OVERVIEW

the accelerator pedal adjustments are the control input that provides a means to
regulate speed, the measured output. The desired speed is maintained even when
the car goes up or down hills or encounters head or tail winds, all of which are
examples of disturbances that affect the relationship between the control input
and the measured output. A thermostat achieves the desired temperature (output)
by adjusting the furnace cycle and fan (input). The desired temperature is main-
tained even when the outside temperature increases or decreases (disturbance).
The sensorimotor system achieves the desired hand position (output) to pick up
an object by adjusting the muscle tensions (inputs) based on the current position
sensed by the eyes and touch.

These concepts of feedback control apply to computing systems as well. Con-
sider a computing system with a desired output characteristic. For example,
operators of computing systems, or administrators , may want each of three
Apache HTTP Servers [24] to run at no greater than 66% utilization, so that
if any one of them fails, the other two can immediately absorb the entire load.
Here, the measured output is CPU utilization. In computing systems, the mea-
sured output typically depends on the nature of the requests being served, or
workload . Workload is often characterized in terms of the arrival process (e.g.,
Poisson, self-similar), and the distribution of service times for the resources used
(e.g., CPU, memory, and database locks) [20]. In our studies of the Apache
HTTP Server, CPU utilization depends on the workload and the control input.
The workload is characterized by the request rate and whether the requests are for
static or dynamic hypertext pages. The control input is the maximum number of
connections that the server permits as specified by the MaxClients parameter.
The workload is uncontrolled and so can be viewed as a disturbance. The control
input MaxClients can be manipulated by an administrator or an automatic
controller to affect CPU utilization.

Much of feedback control deals with understanding how the control input and
disturbance affect the measured output. Continuing with the Apache HTTP Server
example, as MaxClients increases, the CPU utilization increases. However,
the effect is not instantaneous. A larger MaxClients only allows more users
to connect; the system must wait some time for the users to arrive. Similarly,
when MaxClients is decreased, current users are not disconnected until their
sessions have timed out. Further, the value of MaxClients that results in a
66% utilization depends on the current workload, which may be unknown a
priori and/or may change over time. Feedback control provides a method for
setting MaxClients automatically to achieve the desired utilization that takes
into account these dynamics and the effects of disturbances.

With this context we can describe feedback control in more detail. How-
ever, before doing so, a change in perspective is required. In computing systems
we think in terms of the flow of work units or data through a system. Thus,
input–output relationships reflect how work is done and/or data are transformed.
Control theory also relies heavily on input–output relationships. However, the
semantics are different. In control analysis, the inputs and outputs are metric
values (e.g., CPU utilization) and/or control settings (e.g., MaxClients).



THE NATURE OF FEEDBACK CONTROL 5

Target
SystemController

Control
Input

Reference
Input

Measured
Output

Transduced
Output

Transducer

Disturbance
Input

+
−

Control
Error

Noise
Input

Fig. 1.1 Block diagram of a feedback control system. The reference input is the desired value
of the system’s measured output. The controller adjusts the setting of control input to the target
system so that its measured output is equal to the reference input. The transducer represents
effects such as unit conversions and delays.

Figure 1.1 is an example of a single-input, single-output SISO control system,
a control system that has a single control input (i.e., MaxClients) and a single
measured output (i.e., CPU utilization). More commonly in computing we deal
with MIMO systems, which have multiple control inputs (e.g., settings of con-
figuration parameters) and multiple measured outputs (e.g., response times and
throughputs by service class). For pedagogical purposes, the sequel focuses on
SISO systems, although MIMO considerations are addressed in passing.

The essential elements of feedback control system are depicted in Figure 1.1.
These elements are:

• Control error , which is the difference between the reference input and the
measured output.

• Control input , which is a parameter that affects the behavior of the tar-
get system and can be adjusted dynamically (such as the MaxClients
parameter in the Apache HTTP Server).

• Controller , which determines the setting of the control input needed to
achieve the reference input. The controller computes values of the control
input based on current and past values of control error.

• Disturbance input , which is any change that affects the way in which the
control input influences the measured output.

• Measured output , which is a measurable characteristic of the target system,
such as CPU utilization and response time.

• Noise input , which is any effect that changes the measured output produced
by the target system. This is also called sensor noise or measurement noise.

• Reference input , which is the desired value of the measured outputs (or
transformations of them), such as CPU utilization, should be 66%. Some-
times, the reference input is referred to as desired output or the setpoint .

• Target system , which is the computing system to be controlled (see the
examples of target systems in Section 1.6).



6 INTRODUCTION AND OVERVIEW

• Transducer , which transforms the measured output so that it can be com-
pared with the reference input.

The circular flow of information in Figure 1.1 motivates our use of the term
closed-loop system to refer to a feedback control system. We will use these terms
interchangeably.

An appeal of feedback control is that administrators can achieve the desired
output in a direct way by specifying the reference input instead of indirectly by
manipulating the control input (an approach that is time consuming and requires
considerable skill). The focus of this book is on designing feedback controllers
to achieve a desired output.

The disturbance inputs are factors that affect the measured output but for
which there is no governing control input. The disturbance input is depicted as
a second input to the target system in Figure 1.1. An example of a disturbance
input in the Apache HTTP Server is the executions of tasks such as backups
and virus scans (collectively referred to as administrative tasks) that affect the
relationship between the control input MaxClients and the measured output
CPU utilizations and response times. One reason that feedback control is so
powerful and so widely used is that it can ensure that the measured output is
very close to the reference input even in the presence of disturbances.

The transducer transforms the measured output into the values used by the
controller. An example of a transducer is a moving-average filter that smooths
the stochastics of computer system measurements. Another example is a mea-
surement sensor, especially if the sensor introduces time delays because of the
manner in which measurements are collected. A third example is unit conver-
sions, such as converting from queue lengths into response times using formulas
such as Little’s result [35] in systems that do not measure response times directly.
Not all feedback systems contain a transducer. However, in other systems, the
transducer is a complicated element that performs multiple functions.

Before closing this section, we note that systematic construction of controllers
requires a model of the input–output relationships of the target system. We refer
to this as the system model . Because of the central role that the system model
plays in controller design, a significant fraction of the book is devoted to modeling
techniques (especially based on linear system theory) and their application to
computing systems.

1.2 CONTROL OBJECTIVES

Controllers are designed for some intended purpose. We refer to this purpose as
the control objective. The most common objectives are:

• Regulatory control. Ensure that the measured output is equal to (or near)
the reference input. For example, the utilization of a Web server should be
maintained at 66%. The focus here is on changes in the reference input,



PROPERTIES OF FEEDBACK CONTROL SYSTEMS 7

such as changing the target utilization from 66% to 75% if a fourth server
becomes available. The term tracking control is used if the reference input
changes frequently.

• Disturbance rejection. Ensure that disturbances acting on the system do
not significantly affect the measured output. For example, when a backup
or virus scan is run on a Web server, the overall utilization of the system
is maintained at 66%. This differs from regulatory control in that we focus
on changes in the disturbance input, not in the reference input.

• Optimization. Obtain the “best” value of the measured output. For example,
in Chapter 11 we describe a fuzzy controller that adjusts MaxClients in
the Apache HTTP Server so as to minimize response times.

Much of the book is about regulatory control with disturbance rejection. The
need for regulatory control arises in three ways in computing systems. First, as
already noted, regulation arises when there is a need to maintain reserve capac-
ity (sometimes referred to as head room). Second, regulatory control is used
for a kind of constrained optimization, such as “maximize throughput subject to
response time being no greater than 1 second.” A common heuristic for such
an objective is to accept as many requests as possible without exceeding the
response-time constraint (e.g., regulate response time to be 1 second). Third,
regulation is important in the enforcement of service-level agreements. Distur-
bance rejection addresses the fact that the foregoing must be done in the presence
of time-varying loads and changes in hardware and software configurations.

To elaborate on the last point, service-level agreements (or SLAs) are a con-
tract between a service provider and its customers. Such agreements consist
of one or more service-level objectives (SLOs). Examples of service providers
include Internet service providers, application service providers, and internal IT
organizations. An example of an SLO is: “Gold customer response times should
be no greater than 2 seconds.” There are three parts to an SLO: the metric (e.g.,
response time), the bound (e.g., 2 seconds), and a relational operator (e.g., less
than). Intuitively, service providers want to have sufficient resources to meet their
SLOs. But they do not want to have more resources than required since doing
so imposes unnecessary costs. As a result, SLO enforcement often becomes a
regulation problem. In terms of the architecture in Figure 1.1, the SLO metric is
the measured output, and the SLO bound is the reference input.

The choice of control objective typically depends on the application. Indeed,
with multiuse target systems, the same target system may have multiple con-
trollers with different SLOs.

1.3 PROPERTIES OF FEEDBACK CONTROL SYSTEMS

There are several properties of feedback control systems that should be considered
when comparing controllers for computing systems. Our choice of metrics is
drawn from experience with the commercial information technology systems.



8 INTRODUCTION AND OVERVIEW

Other properties may be of interest in different settings. For example, [43] discuss
properties of interest for control of real-time systems.

Below, we motivate and present the main ideas of the properties considered.
More formal definitions are given later in the book.

• A system is said to be stable if for any bounded input, the output is also
bounded. (We discuss stability in detail in Chapter 3 .) Stability is typically
the first property considered in designing control systems since unstable
systems cannot be used for mission-critical work.

• The control system is accurate if the measured output converges (or becomes
sufficiently close) to the reference input. Accurate systems are essential to
ensuring that control objectives are met, such as differentiating between gold
and silver classes of service and ensuring that throughput is maximized
without exceeding response-time constraints. Typically, we do not quan-
tify accuracy. Rather, we measure inaccuracy. For a system in steady state,
its inaccuracy, or steady-state error , is the steady-state value of the control
error.

• The system has short settling times if it converges quickly to its steady-
state value. Short settling times are particularly important for disturbance
rejection in the presence of time-varying workloads so that convergence is
obtained before the workload changes.

• The system should achieve its objectives in a manner that does not over-
shoot. Consider a system in which the objective is to maximize throughput
subject to the constraint that response time is less than 1 second, which is
often achieved by a regulator that keeps response times at their upper limit
so that throughput is maximized. Suppose that incoming requests change
so that they are less CPU intensive and hence response times decrease to
0.5 second. Then, by avoiding overshoot, we mean that as the controller
changes the control input that causes throughput to increase (and hence
response time to increase), response times should not exceed 1 second.

Much of the focus of the book is on these SASO properties: stability, accuracy,
settling time, and overshoot.

We begin with what constitutes a stable system. For computing systems we
want the output of feedback control to converge, although it may not be constant
due to the stochastic nature of the system. To refine this further, computing
systems have operating regions (i.e., combinations of workloads and configuration
settings) in which they perform acceptably and other operating regions in which
they do not. Thus, in general, we refer to the stability of a system within an
operating region. Clearly, if a system is not stable, its utility is severely limited.
In particular, the system’s response times will be large and highly variable, a
situation that can make the system unusable.

Figure 1.2 displays an instability in the Apache HTTP Server that employs
an improperly designed controller. The horizontal axis is time, and the vertical
axis is CPU utilization (which ranges between 0 and 1). The solid line is the


