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PREFACE

When we agreed to edit this book for a second edition, we looked forward to
a bit of updating and including some of our latest research results. However,
the effort grew rapidly beyond our original vision. The use of genetic algo-
rithms (GAs) is a quickly evolving field of research, and there is much new to
recommend. Practitioners are constantly dreaming up new ways to improve
and use GAs. Therefore this book differs greatly from the first edition.

We continue to emphasize the “Practical” part of the title. This book was
written for the practicing scientist, engineer, economist, artist, and whoever
might possibly become interested in learning the basics of GAs. We make no
claims of including the latest research on convergence theory: instead, we refer
the reader to references that do. We do, however, give the reader a flavor 
for how GAs are being used and how to fiddle with them to get the best 
performance.

The biggest addition is including code—both MATLAB and a bit of High-
Performance Fortran. We hope the readers find these a useful start to their
own applications. There has also been a good bit of updating and expanding.
Chapter 1 has been rewritten to give a more complete picture of traditional
optimization. Chapters 2 and 3 remain dedicated to introducing the mechan-
ics of the binary and continuous GA. The examples in those chapters, as well
as throughout the book, now reflect our more recent research on choosing GA
parameters. Examples have been added to Chapters 4 and 6 that broaden the
view of problems being solved. Chapter 5 has greatly expanded its recom-
mendations of methods to improve GA performance. Sections have been
added on hybrid GAs, parallel GAs, and messy GAs. Discussions of parame-
ter selection reflect new research. Chapter 7 is new. Its purpose is to give the
reader a flavor for other artificial intelligence methods of optimization, like
simulated annealing, ant colony optimization, and evolutionary strategies. We
hope this will help put GAs in context with other modern developments. We
included code listings and test functions in the appendixes. Exercises appear
at the end of each chapter. There is no solution manual because the exercises
are open-ended. These should be helpful to anyone wishing to use this book
as a text.

In addition to the people thanked in the first edition, we want to recognize
the students and colleagues whose insight has contributed to this effort. Bonny
Haupt did the work included in Section 4.6 on horse evolution. Jaymon Knight
translated our GA to High-Performance Fortran. David Omer and Jesse

xi



xii PREFACE

Warrick each had a hand in the air pollution problem of Section 6.8. We’ve
discussed our applications with numerous colleagues and appreciate their
feedback.

We wish the readers well in their own forays into using GAs. We look
forward to seeing their interesting applications in the future.

Randy L. Haupt
State College, Pennsylvania Sue Ellen Haupt
February 2004



PREFACE TO FIRST EDITION

The book has been organized to take the genetic algorithm in stages. Chapter
1 lays the foundation for the genetic algorithm by discussing numerical opti-
mization and introducing some of the traditional minimum seeking algorithms.
Next, the idea of modeling natural processes on the computer is introduced
through a discussion of annealing and the genetic algorithm. A brief genetics
background is supplied to help the reader understand the terminology and
rationale for the genetic operators.The genetic algorithm comes in two flavors:
binary parameter and real parameter. Chapter 2 provides an introduction to
the binary genetic algorithm, which is the most common form of the algorithm.
Parameters are quantized, so there are a finite number of combinations. This
form of the algorithm is ideal for dealing with parameters that can assume
only a finite number of values. Chapter 3 introduces the continuous parame-
ter genetic algorithm.This algorithm allows the parameters to assume any real
value within certain constraints. Chapter 4 uses the algorithms developed in
the previous chapters to solve some problems of interest to engineers and sci-
entists. Chapter 5 returns to building a good genetic algorithm, extending and
expanding upon some of the components of the genetic algorithm. Chapter 6
attacks more difficult technical problems. Finally, Chapter 7 surveys some of
the current extensions to genetic algorithms and applications, and gives advice
on where to get more information on genetic algorithms. Some aids are sup-
plied to further help the budding genetic algorithmist. Appendix I lists some
genetic algorithm routines in pseudocode.A glossary and a list of symbols used
in this book are also included.

We are indebted to several friends and colleagues for their help. First, our
thanks goes to Dr. Christopher McCormack of Rome Laboratory for intro-
ducing us to genetic algorithms several years ago. The idea for writing this
book and the encouragement to write it, we owe to Professor Jianming Jin of
the University of Illinois. Finally, the excellent reviews by Professor Daniel
Pack, Major Cameron Wright, and Captain Gregory Toussaint of the United
States Air Force Academy were invaluable in the writing of this manuscript.

Randy L. Haupt
Sue Ellen Haupt

Reno, Nevada
September 1997
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CHAPTER 1

Introduction to Optimization

1

Optimization is the process of making something better. An engineer or sci-
entist conjures up a new idea and optimization improves on that idea. Opti-
mization consists in trying variations on an initial concept and using the
information gained to improve on the idea. A computer is the perfect tool for
optimization as long as the idea or variable influencing the idea can be input
in electronic format. Feed the computer some data and out comes the solu-
tion. Is this the only solution? Often times not. Is it the best solution? That’s
a tough question. Optimization is the math tool that we rely on to get these
answers.

This chapter begins with an elementary explanation of optimization, then
moves on to a historical development of minimum-seeking algorithms. A
seemingly simple example reveals many shortfalls of the typical minimum
seekers. Since the local optimizers of the past are limited, people have turned
to more global methods based upon biological processes. The chapter ends
with some background on biological genetics and a brief introduction to the
genetic algorithm (GA).

1.1 FINDING THE BEST SOLUTION

The terminology “best” solution implies that there is more than one solution
and the solutions are not of equal value. The definition of best is relative to
the problem at hand, its method of solution, and the tolerances allowed. Thus
the optimal solution depends on the person formulating the problem. Educa-
tion, opinions, bribes, and amount of sleep are factors influencing the defini-
tion of best. Some problems have exact answers or roots, and best has a specific
definition. Examples include best home run hitter in baseball and a solution
to a linear first-order differential equation. Other problems have various
minimum or maximum solutions known as optimal points or extrema, and best
may be a relative definition. Examples include best piece of artwork or best
musical composition.

Practical Genetic Algorithms, Second Edition, by Randy L. Haupt and Sue Ellen Haupt.
ISBN 0-471-45565-2 Copyright © 2004 John Wiley & Sons, Inc.



1.1.1 What Is Optimization?

Our lives confront us with many opportunities for optimization. What time do
we get up in the morning so that we maximize the amount of sleep yet still
make it to work on time? What is the best route to work? Which project do
we tackle first? When designing something, we shorten the length of this or
reduce the weight of that, as we want to minimize the cost or maximize 
the appeal of a product. Optimization is the process of adjusting the inputs to
or characteristics of a device, mathematical process, or experiment to find 
the minimum or maximum output or result (Figure 1.1). The input consists of
variables; the process or function is known as the cost function, objective 
function, or fitness function; and the output is the cost or fitness. If the 
process is an experiment, then the variables are physical inputs to the 
experiment.

For most of the examples in this book, we define the output from the
process or function as the cost. Since cost is something to be minimized, opti-
mization becomes minimization. Sometimes maximizing a function makes
more sense. To maximize a function, just slap a minus sign on the front of the
output and minimize. As an example, maximizing 1 - x2 over -1 £ x £ 1 is the
same as minimizing x2 - 1 over the same interval. Consequently in this book
we address the maximization of some function as a minimization problem.

Life is interesting due to the many decisions and seemingly random events
that take place. Quantum theory suggests there are an infinite number of
dimensions, and each dimension corresponds to a decision made. Life is 
also highly nonlinear, so chaos plays an important role too. A small perturba-
tion in the initial condition may result in a very different and unpre-
dictable solution. These theories suggest a high degree of complexity 
encountered when studying nature or designing products. Science developed
simple models to represent certain limited aspects of nature. Most of 
these simple (and usually linear) models have been optimized. In the 
future, scientists and engineers must tackle the unsolvable problems of 
the past, and optimization is a primary tool needed in the intellectual 
toolbox.

2 INTRODUCTION TO OPTIMIZATION

Figure 1.1 Diagram of a function or process that is to be optimized. Optimization
varies the input to achieve a desired output.



1.1.2 Root Finding versus Optimization

Approaches to optimization are akin to root or zero finding methods, only
harder. Bracketing the root or optimum is a major step in hunting it down.
For the one-variable case, finding one positive point and one negative point
brackets the zero. On the other hand, bracketing a minimum requires three
points, with the middle point having a lower value than either end point. In
the mathematical approach, root finding searches for zeros of a function, while
optimization finds zeros of the function derivative. Finding the function deriv-
ative adds one more step to the optimization process. Many times the deriva-
tive does not exist or is very difficult to find. We like the simplicity of root
finding problems, so we teach root finding techniques to students of engi-
neering, math, and science courses. Many technical problems are formulated
to find roots when they might be more naturally posed as optimization 
problems; except the toolbox containing the optimization tools is small and
inadequate.

Another difficulty with optimization is determining if a given minimum is
the best (global) minimum or a suboptimal (local) minimum. Root finding
doesn’t have this difficulty. One root is as good as another, since all roots force
the function to zero.

Finding the minimum of a nonlinear function is especially difficult. Typical
approaches to highly nonlinear problems involve either linearizing the
problem in a very confined region or restricting the optimization to a small
region. In short, we cheat.

1.1.3 Categories of Optimization

Figure 1.2 divides optimization algorithms into six categories. None of 
these six views or their branches are necessarily mutually exclusive. For
instance, a dynamic optimization problem could be either constrained or

FINDING THE BEST SOLUTION 3

Figure 1.2 Six categories of optimization algorithms.



unconstrained. In addition some of the variables may be discrete and others
continuous. Let’s begin at the top left of Figure 1.2 and work our way around
clockwise.

1. Trial-and-error optimization refers to the process of adjusting variables
that affect the output without knowing much about the process that produces
the output. A simple example is adjusting the rabbit ears on a TV to get the
best picture and audio reception. An antenna engineer can only guess at why
certain contortions of the rabbit ears result in a better picture than other con-
tortions. Experimentalists prefer this approach. Many great discoveries, like
the discovery and refinement of penicillin as an antibiotic, resulted from the
trial-and-error approach to optimization. In contrast, a mathematical formula
describes the objective function in function optimization. Various mathemat-
ical manipulations of the function lead to the optimal solution. Theoreticians
love this theoretical approach.

2. If there is only one variable, the optimization is one-dimensional. A
problem having more than one variable requires multidimensional optimiza-
tion. Optimization becomes increasingly difficult as the number of dimensions
increases. Many multidimensional optimization approaches generalize to a
series of one-dimensional approaches.

3. Dynamic optimization means that the output is a function of time, while
static means that the output is independent of time.When living in the suburbs
of Boston, there were several ways to drive back and forth to work. What was
the best route? From a distance point of view, the problem is static, and the
solution can be found using a map or the odometer of a car. In practice, this
problem is not simple because of the myriad of variations in the routes. The
shortest route isn’t necessarily the fastest route. Finding the fastest route is a
dynamic problem whose solution depends on the time of day, the weather,
accidents, and so on. The static problem is difficult to solve for the best solu-
tion, but the added dimension of time increases the challenge of solving the
dynamic problem.

4. Optimization can also be distinguished by either discrete or continuous
variables. Discrete variables have only a finite number of possible values,
whereas continuous variables have an infinite number of possible values. If we
are deciding in what order to attack a series of tasks on a list, discrete opti-
mization is employed. Discrete variable optimization is also known as com-
binatorial optimization, because the optimum solution consists of a certain
combination of variables from the finite pool of all possible variables.
However, if we are trying to find the minimum value of f(x) on a number line,
it is more appropriate to view the problem as continuous.

5. Variables often have limits or constraints. Constrained optimization
incorporates variable equalities and inequalities into the cost function. Uncon-
strained optimization allows the variables to take any value. A constrained
variable often converts into an unconstrained variable through a transforma-

4 INTRODUCTION TO OPTIMIZATION



tion of variables. Most numerical optimization routines work best with uncon-
strained variables. Consider the simple constrained example of minimizing 
f(x) over the interval -1 £ x £ 1. The variable converts x into an unconstrained
variable u by letting x = sin(u) and minimizing f(sin(u)) for any value of u.
When constrained optimization formulates variables in terms of linear 
equations and linear constraints, it is called a linear program. When the cost
equations or constraints are nonlinear, the problem becomes a nonlinear 
programming problem.

6. Some algorithms try to minimize the cost by starting from an initial 
set of variable values. These minimum seekers easily get stuck in local minima
but tend to be fast. They are the traditional optimization algorithms and are
generally based on calculus methods. Moving from one variable set to another
is based on some determinant sequence of steps. On the other hand, random
methods use some probabilistic calculations to find variable sets. They tend to
be slower but have greater success at finding the global minimum.

1.2 MINIMUM-SEEKING ALGORITHMS

Searching the cost surface (all possible function values) for the minimum cost
lies at the heart of all optimization routines. Usually a cost surface has many
peaks, valleys, and ridges. An optimization algorithm works much like a hiker
trying to find the minimum altitude in Rocky Mountain National Park. Start-
ing at some random location within the park, the goal is to intelligently
proceed to find the minimum altitude. There are many ways to hike or glis-
sade to the bottom from a single random point. Once the bottom is found,
however, there is no guarantee that an even lower point doesn’t lie over the
next ridge. Certain constraints, such as cliffs and bears, influence the path of
the search as well. Pure downhill approaches usually fail to find the global
optimum unless the cost surface is quadratic (bowl-shaped).

There are many good texts that describe optimization methods (e.g.,
Press et al., 1992; Cuthbert, 1987). A history is given by Boyer and Merzbach
(1991). Here we give a very brief review of the development of optimization
strategies.

1.2.1 Exhaustive Search

The brute force approach to optimization looks at a sufficiently fine sam-
pling of the cost function to find the global minimum. It is equivalent to spend-
ing the time, effort, and resources to thoroughly survey Rocky Mountain
National Park. In effect a topographical map can be generated by connecting
lines of equal elevation from an interpolation of the sampled points.
This exhaustive search requires an extremely large number of cost function
evaluations to find the optimum. For example, consider solving the two-
dimensional problem

MINIMUM-SEEKING ALGORITHMS 5



(1.1)

(1.2)

Figure 1.3 shows a three-dimensional plot of (1.1) in which x and y are sampled
at intervals of 0.1, requiring a total of 1012 function evaluations. This same
graph is shown as a contour plot with the global minimum of -18.5547 at (x,y)
= (0.9039, 0.8668) marked by a large black dot in Figure 1.4. In this case the
global minimum is easy to see. Graphs have aesthetic appeal but are only prac-
tical for one- and two-dimensional cost functions. Usually a list of function
values is generated over the sampled variables, and then the list is searched
for the minimum value. The exhaustive search does the surveying necessary
to produce an accurate topographic map. This approach requires checking an
extremely large but finite solution space with the number of combinations of
different variable values given by

(1.3)

where

V = number of different variable combinations
Nvar = total number of different variables
Qi = number of different values that variable i can attain

V Qi
i

Nvar

=
=

’
1

Subject to: and0 10 0 10£ £ £ £x y

Find the minimum of: f x y x x y y, sin . sin( ) = ( ) + ( )4 1 1 2
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Figure 1.3 Three-dimensional plot of (1.1) in which x and y are sampled at intervals
of 0.1.



With fine enough sampling, exhaustive searches don’t get stuck in local
minima and work for either continuous or discontinuous variables. However,
they take an extremely long time to find the global minimum. Another short-
fall of this approach is that the global minimum may be missed due to under-
sampling. It is easy to undersample when the cost function takes a long time
to calculate. Hence exhaustive searches are only practical for a small number
of variables in a limited search space.

A possible refinement to the exhaustive search includes first searching a
coarse sampling of the fitness function, then progressively narrowing the
search to promising regions with a finer toothed comb.This approach is similar
to first examining the terrain from a helicopter view, and then surveying the
valleys but not the peaks and ridges. It speeds convergence and increases the
number of variables that can be searched but also increases the odds of missing
the global minimum. Most optimization algorithms employ a variation of this
approach and start exploring a relatively large region of the cost surface (take
big steps); then they contract the search around the best solutions (take
smaller and smaller steps).

1.2.2 Analytical Optimization

Calculus provides the tools and elegance for finding the minimum of many
cost functions. The thought process can be simplified to a single variable for a
moment, and then an extremum is found by setting the first derivative of a
cost function to zero and solving for the variable value. If the second deriva-
tive is greater than zero, the extremum is a minimum, and conversely, if the

MINIMUM-SEEKING ALGORITHMS 7

Figure 1.4 Contour plot of (1.1).



second derivative is less than zero, the extremum is a maximum. One way to
find the extrema of a function of two or more variables is to take the gradi-
ent of the function and set it equal to zero, �f(x, y) = 0. For example, taking
the gradient of equation (1.1) results in

(1.4a)

and

(1.4b)

Next these equations are solved for their roots, xm and ym, which is a family of
lines. Extrema occur at the intersection of these lines. Note that these tran-
scendental equations may not always be separable, making it very difficult to
find the roots. Finally, the Laplacian of the function is calculated.

(1.5a)

and

(1.5b)

The roots are minima when �2f(xm, ym) > 0. Unfortunately, this process doesn’t
give a clue as to which of the minima is a global minimum. Searching the list
of minima for the global minimum makes the second step of finding �2f(xm,
ym) redundant. Instead, f(xm, ym) is evaluated at all the extrema; then the list
of extrema is searched for the global minimum. This approach is mathemati-
cally elegant compared to the exhaustive or random searches. It quickly finds
a single minimum but requires a search scheme to find the global minimum.
Continuous functions with analytical derivatives are necessary (unless deriv-
atives are taken numerically, which results in even more function evaluations
plus a loss of accuracy). If there are too many variables, then it is difficult to
find all the extrema. The gradient of the cost function serves as the com-
pass heading pointing to the steepest downhill path. It works well when the
minimum is nearby, but cannot deal well with cliffs or boundaries, where the
gradient can’t be calculated.

In the eighteenth century, Lagrange introduced a technique for incorpo-
rating the equality constraints into the cost function. The method, now known
as Lagrange multipliers, finds the extrema of a function f(x, y, . . .) with con-
straints gm(x, y, . . .) = 0, by finding the extrema of the new function F(x, y,
. . . , k1, k2, . . .) = f(x, y, . . .) + SM

m=1kmgm(x, y, . . .) (Borowski and Borwein, 1991).
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