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Foreword

Part of the charm of synthetic organic chemistry derives from the vastness of the
intellectual landscape along several dimensions. First, there is the almost infinite variety
and number of possible target structures that lurk in the darkness, waiting to be made.
Then, there is the vast body of organic reactions that serve to transform one substance
into another, now so large in number as to be beyond credibility to a non-chemist.
Further, there is the staggering range of reagents, reaction conditions, catalysts, elements
and techniques that must be mobilized in order to tame these reactions for synthetic
purposes. Finally, it seems that new information is being added to the science at a rate
that outstripped our ability to keep up with it. In such a troubled setting any author, or
group of authors, must be regarded as heroic if, through their efforts, the task of the
synthetic chemist is eased.

The field of heterocylic chemistry has long presented a special problem for
chemists. Because of its enormous information content and variety, it is not well taught
to chemistry undergraduate or graduate students, even in simplified form. There is
simply too much material for the time available. And yet, the chemistry of heterocyclic
compounds and methods for their synthesis form the bedrock of modern medicinal
chemical and pharmaceutical research. It is important for medicinal chemists to be
broadly knowledgeable across a wide swath of heterocyclic chemistry. Those who
specialize narrowly do so at their own peril. If you grant me the accuracy of all of the
above, you likely will share my conviction that there is a need for high-quality, up-to-
date, and authoritative books on heterocyclic synthesis that are helpful for the
professional research chemist and also the advanced student. This volume, Name
Reactions in Heterocyclic Chemistry is a model of what such books should be. Written
concisely and with great skill and care by Dr. Jie Jack Li and a distinguished group of
experts in the field of heterocyclic chemistry, this is a book that will be tremendously
useful and helpful to synthetic and medicinal chemists, on whose shelves it will surely
find a place. On behalf of these users, myself included, I send thanks and

congratulations.

E. J. Corey
May 1, 2004
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Preface

Since the infancy of organic chemistry, the practitioners in the field have often associated
reactions with the chemists who discovered it. Even with the advent of IUPAC
nomenclature, name reactions are still intimately intertwined with our profession,
becoming a part of our daily language. Therefore, getting acclimated with this jargon is
an integral part of the training to earn proficiency in organic chemistry.

On the other hand, heterocycles are of paramount importance to medicinal and
agricultural chemists. This comprehensive and authoritative treatise provides a one-stop
repository for name reactions in heterocyclic chemistry. Each name reaction is
summarized in seven sections:

1. Description;

2. Historical Perspective;

3. Mechanism,;

4. Variations and Improvements;

5. Synthetic Utility;

6. Experimental; and

7. References.

I also have introduced a symbol [R] to highlight review articles, book chapters and books
dedicated to the respective name reactions.

I have incurred many debts of gratitude to Prof. E. J. Corey of Harvard
University, who envisioned this project in the summer of 2002. What he once told me:—
“The desire to learn is the greatest gift from God —has been a true inspiration.
Furthermore, it has been my greatest privilege as well as a pleasure to work with a stellar
collection of contributing authors from both academia and industry. Some of them are
world-renowned scholars in the field; some of them have worked intimately with the
name reactions that they have written; some of them even took part in the discovery of
the name reactions that they authored in this manuscript. As a consequence, this book
truly represents the state-of-the-art for Name Reactions in Heterocyclic Chemistry. We
will follow up with the second volume to complete the series on heterocyclic chemistry.

Jack Li
April 24, 2004
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2 Name Reactions in Heterocyclic Chemistry

1.1 Corey—Chaykovsky Reaction

1.1.1 Description

The Corey—Chaykovsky reaction entails the reaction of a sulfur ylide, either
dimethylsulfoxonium methylide (1, Corey’s ylide, sometimes known as DMSY) or
dimethylsulfonium methylide (2), with electrophile 3 such as carbonyl, olefin, imine, or
thiocarbonyl, to offer 4 as the corresponding epoxide, cyclopropane, aziridine, or
thiirane."”

CH, X X
1 CH,

Ho 550 g R)LR1 _tor2 R)gpp X = O, CH,, NRZ, S, CHCOR?,
CHy  HgC~ "CHg . 4 CHCO,R®, CHCONR,, CHCN
1 2

For an o,pB-unsaturated carbonyl compound, 1 adds preferentially to the olefin to
furnish the cyclopropane derivative, whereas the more reactive 2 generally undergoes the
methylene transfer to the carbonyl, leading to the corresponding epoxide. Also due to the
difference of reactivities, reactions using 1 require slightly elevated temperature,
normally around 50-60°C, whereas reactions using the more reactive 2 can be carried out
at colder temperature ranging from —15°C to room temperature. Moreover, while it is
preferable to freshly prepare both ylides in situ, 2 is not as stable as 1, which can be
stored at room temperature for several days.

1.1.2 Historical Perspective

In 1962, Corey and Chaykovsky described the generation and synthetic utility of
dimethylsulfoxonium methylide (1) and dimethylsulfonium methylide (2).8'12 Upon
treatment of DMSO with NaH, the resulting methylsulfinyl carbanion reacted with
trimethylsulfoxonium iodide (5) to produce dimethylsulfoxonium methylide (1). The
subsequent reaction between 1 and cycloheptanone rendered epoxide 6. Similar results
were observed for other ketones and aldehydes as well, with a limitation where treatment
of certain ketones (e.g. desoxybenzoin and A*-cholestenone) with 1 failed to deliver the
epoxides possibly due to their ease to form the enolate ions by proton transfer to 1.
Interestingly, Michael receptor 7 reacted with 1 to provide access to the “methylene
insertion” product, cyclopropane 8. Meanwhile, thiiranes were isolated in good yields
from the reaction of thiocarbonyls and 1, and methylene transfer from 1 to imines took
place to afford aziridines.

0

O
8 — S0

PartS H,CT T
HC 5 CHs  pmso ™% GH, DMsSO, 50°C, 71%

5 1 6
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O 1 o)
Ph/\)L Ph o559 Ph/<])1\ Ph
7 8

1.1.3 Mechanism
Similar to phosphur ylides, sulfur ylides 1 and 2 possess the nucleophilic site at the
carbon atom and the pendant leaving group at the heteroatom (sulfur). Different from the
Wittig reaction, the Corey—Chaykovsky reaction does not lead to olefins.

The mechanism of epoxide formation using sulfur ylides'? is analogous to that of
the Darzens condensation. In the Darzens condensation, enolate 9 adds to ketone 10,
forming alkoxide 11, which undergoes an internal Sn2 to give epoxide 12. In a parallel
fashion, addition of dimethylsulfoxonium methylide (1) to ketone 13, led to betaine 14,
which also undergoes an internal Sy2 to secure epoxide 15. On the other hand, Michael
addition of 1 to enone 16 gives betaine 17, which subsequently undergoes an internal Sy2
to deliver cyclopropyl ketone 18."

Darzens condensation:

0 10

1/”\ 2 R! O) intramolecular 0
XR/‘ R — R LR R
)\rOEt ] CO,Et S\2 R COEt

R
© o 11 12

Corey—-Chaykovsky reaction:

-— H ~
HsC/i;ICHZ 16 HaC R\/ O sC
;0 17 18

1.1.4 Variations and Improvements

Sulfur ylides 1 and 2 are usually prepared by treatment of either trimethylsulfoxonium
iodide (5) or trimethylsulfonium iodide, respectively, with NaH or n-BuLi.'> An
improvement using KOrBu'*'" is safer than NaH and n-BuLi for large-scale operations.
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In addition, NaOMe, and NaNH;, have also been employed. Application of phase-
transfer conditions with tetra-n-butylammonium iodide showed marked improvement for
the epoxide formation.'® Furthermore, many complex substituted suifur ylides have been
synthesized and utilized. For instance, stabilized ylide 20 was prepared and treated with
o-D-allo-pyranoside 19 to furnish a-D-cyclopropanyl-pyranoside 21." Other examples
of substituted sulfur ylides include 22-25, among which aminosulfoxonium ylide 25,
sometimes known as Johnson’s ylide, belongs to another category.”®  The
aminosulfoxonium ylides possess the configurational stability and thermal stability not
enjoyed by the sulfonium and sulfoxonium ylides, thereby are more suitable for
asymmetric synthesis. :

OAc-
OAc .=
F Me,S” “COEt 20 g
o 8 OEt 21
PhH, t, 8 h, 62%
OEt v
19 CO,Et
T+
- + = _ HZC_§_A|'
+ - +
Me,S7 >CO, Me,S”~ “CONMe, Ph,S NMe,
22 23 24 25

1.1.5 Synthetic Utility

1.1.5.1 Epoxidation

Epoxidation of aldehydes and ketones is the most profound utility of the
Corey—Chaykovsky reaction. As noted in section 1.1.1, for an o,p-unsaturated carbonyl
compound, 1 adds preferentially to the olefin to provide the cyclopropane derivative. On
the other hand, the more reactive 2 generally undergoes the methylene transfer to the
carbonyl, giving rise to the corresponding epoxide. For instance, treatment of B-ionone
(26) with 2, derived from trimethylsulfonium chloride and NaOH in the presence of a
phase-transfer catalyst Et;BnNCI, gave rise to vinyl epoxide 27 exclusively.'

~ g Me3SCl, NaOH, EtsBnNCI A0

CH,Clo/H,0, 90%

26 27

Isolated carbonyls always give epoxides from the Corey—Chaykovsky reaction.
Take the aldehyde substrate as an example. Spiro epoxide 30 was produced from the
reaction of trisnorsqualene aldehyde 28 (Rjo represents the polyene side-chain with 20
carbons) with  substituted sulfur ylide 29, prepared in situ from
cyclopropyldiphenylsulfonium tetrafluoroborate and KOH.*® For the epoxidation of
ketones, the Corey—Chaykovsky reaction works well for diaryl- (31),%! arylalkyl- (32),%2
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as well as dialkyl (33)23 ketones. When steric bias exists on the substrate, stereoselective
epoxidation may be achieved. For example, treatment of dihydrotestosterone (DHT, 35)
with the Corey ylide 1 followed by TPAP oxidation resulted in only one diastereomeric
keto-epoxide 36.

+BFZ
Yt
R2o CHO  KOH, DMSO, tt, 62% 0
28 30
o 5, DMSO/THF o
Ph”” “Ph o ., Ph” Pnh
31 NaH, 0°C, 90% 2
(0] (o) .
5, DMSO, NaH
i, 15 h, 87%
33 34
OH o}

1. 5, DMSO, NaH, 50°C

2. TPAP, NMO, MS, CH,Cly, rt
o 70%, 2 steps

35 36

Stereoselective epoxidation can be realized through either substrate-controlled
(e.g. 35 — 36) or reagent-controlled approaches. A classic example is the epoxidation of
4-t-butylcyclohexanone.'> When sulfonium ylide 2 was utilized, the more reactive ylide
irreversibly attacked the carbonyl from the axial direction to offer predominantly epoxide
37. When the less reactive sulfoxonium ylide 1 was used, the nucleophilic addition to the
carbonyl was reversible, giving rise to the thermodynamically more stable, equatorially
coupled betaine, which subsequently eliminated to deliver epoxide 38. Thus,
stereoselective epoxidation was achieved from different mechanistic pathways taken by
different sulfur ylides. In another case, reaction of aldehyde 38 with sulfonium ylide 2
only gave moderate stercoselectivity (41:40 = 1.5/1), whereas employment of
sulfoxonium ylide 1 led to a ratio of 41:40 = 13/1.>* The best stereoselectivity was
accomplished using aminosulfoxonium ylide 25, leading to a ratio of 41:40 = 30/1. For
ketone 42, a complete reversal of stereochemistry was observed when it was treated with
sulfoxonium ylide 1 and sulfonium ylide 2, respectively.”
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0O @]
O‘—LW;W
s

OMe O OMe O 0 . 0
e CHO R OMe O
MeO OMOM MeO OMOM  MeO OMOM

37

.,
“,

OMe OMe OMe
39 40 41
O
Jacia s
O 'H (0] H 0} H
44 42 43

In transforming bis-ketone 45 to keto-epoxide 46, the elevated stereoselectivity
was believed to be a consequence of the molecular shape — the sulfur ylide attacked
preferentially from the convex face of the strongly puckered molecule of 45. Moreover,
the pronounced chemoselectivity was attributed to the increased electrophilicity of the
furanone versus the pyranone carbonyl, as a result of an inductive effect generated by the
pair of spiroacetal oxygen substituents at the furanone a-position.?®

Q H

1, DMSO, nt

e

“COMe 15 min, >76%

Since chiral sulfur ylides racemize rapidly, they are generally prepared in situ
from chiral sulfides and halides. The first example of asymmetric epoxidation was
reported in 1989, using camphor-derived chiral sulfonium ylides with moderate yields
and ee (< 47%).”” Since then, much effort has been made in the asymmetric epoxidation
using such a strategy without a significant breakthrough. In one example, the reaction
between benzaldehyde and benzyl bromide in the presence of one equivalent of camphor-
derived sulfide 47 furnished epoxide 48 in high diastereoselectivity (trans:cis = 96:4)
with moderate enantioselectivity in the case of the trans isomer (56% ee)®
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p-Tol
OH
o Is a1 Ph., A H
+ A~
JU+ e e H Ph
PR H K,COg, CHaCN, 4 days, 72% 48

The Corey-Chaykovsky reaction incited some applications in medicinal
chemistry. During the synthesis of analogs of fluconazole, an azole antifungal agent,
treatment of 49 with 1 led to the corresponding epoxide, which was subsequently
converted to 50 as a pair of diastereomers.”’  Analogously, the Corey—Chaykovsky
reaction of ketone 51 gave the expected epoxide, which then underwent an SN2 reaction

with 1H-1,2 4-triazole in the presence of NaH to deliver 52, another azole antifungal
30
agent.

CHg o $s
o} N N7N SN
N ] Fl
F P 1, THF, then \=N —
NANNa, DMF, 60°C
\=y
L F
49 50
N=\
&N
N\/ N N=\
i 5, NaH, DMSO, then S NN
OH
NH DMF, 80° 4[
80°C N
51 CHs
52

1.1.5.2 Cyclopropanation

Due to the high reactivity of sulfonium ylide 2 for o,B-unsaturated ketone substrates, it
normally undergoes methylene transfer to the carbonyl to give the correspondmg
epoxides. However cyclopropanation did take place when 1,1- dlphenylethylene and
ethyl cinnamate'> were treated with 2 to furnish cyclopropanes 53 and 54, respectively.

5 equiv. 2,
Ph quiv Ph

Ph DMSO, 0°C, 61% Ph

53
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2, DMSO

P
NP co,et

F’h\[>\c02|st

54

t, 32%

Dimethylsulfoxonium methylide (1) is the reagent of choice for the
cyclopropanation of o,f-unsaturated carbonyl substrates. The reaction is generally
carried out at more elevated temperatures in comparison to that of 2, although exceptions
exist. The method works for o, B-unsaturated ketones, esters and amides. Representative
examples are found in transformations of 2(5H)-furanone 55 to cyclopropane 56 and
o, B-unsaturated Weinreb amide 57 to cyclopropane 58.%

5 equiv. 1, DMSO
| © o)
O, o,
0 50°C, 62 h, 93% Y

55 56
O 1, DMSO , 0
N ‘ 50°C, 88% \_¢ |

As in the case of epoxidation, asymmetric cyclopropanation can be accomplished
through either substrate-controlled or reagent-controlled approaches. The former
approach requires an inherent steric bias in the substrates that often exist in the form of
chiral auxiliaries. Substrate 59, derived from 1-hydroxy pinan-3-one, gave only
diastereomer 60 when treated with 1.>* Ylide 1 attacked the less shielded face opposite to
the gem-dimethyl group, and DMSO release with formation of the spirocyclic adduct
occurred prior to bond rotation. With regard to chiral o,B-unsaturated bicyclic y-lactam
61, the cyclopropanation took place in a highly diasteroselective fashion using anion 22
(dimethylsulfuranylidene acetate), resulting in the anti-adduct 62 as the predominant
product (62 : 63 = 99:1).**
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ﬁﬁN | 1.22 (MezS COz) \\C cone \\C COZMe

CO,Me 2. CHaN; COzMe
58% o H

CO Me
61 62 63

Reagent-controlled asymmetric cyclopropanation is relatively more difficult using
sulfur ylides, although it has been done.®® Tt is more often accomplished using chiral
aminosulfoxonium ylides. Finally, more complex sulfur ylides (e.g. 64) may result in
more elaborate cyclopropane synthesis, as exemplified by the transformation 65 — 66.°°

e -
1. Pho!*PFg (32%) O L LAwos
6

— -

2. m-CPBA, NaOH o" ) THF
H,0, 40°C, 67%

O/\/bph

~g 66
¢ ph r, 14 h, 98% 8 5
64
1.1.5.3 Aziridination

In the initial report by Corey and Chaykovsky, dimethylsulfonium methylide (2) reacted
smoothly with benzalaniline to provide an entry to 1,2-diphenylaziridine 67."* Franzen
and Driesen reported the same reaction with 81% yield for 67." In another example,
benzylidene-phenylamine reacted with 2 to produce 1-(p-methoxyphenyl)-2-
phenylaziridine in 71% vyield. The same reaction was also carried out using phase-
transfer catalysis conditions.*” Thus aziridine 68 could be generated consistently in good
yield (80-94%). Recently, more complex sulfur ylides have been employed to make
more functionalized aziridines, as depicted by the reaction between N-sulfonylimine 69
with diphenylsulfonium 3-(trimethylsilyl)propargylide (70) to afford aziridine 71, along
with desilylated aziridine 72.3

Ph. 1, DMSO Ph.y

)y -

H 60°C, 2 h, 81% Ph™ "H

Ph
67



