Valuing Employee Stock Options
Founded in 1807, John Wiley & Sons is the oldest independent publishing company in the United States. With offices in North America, Europe, Australia, and Asia, Wiley is globally committed to developing and marketing print and electronic products and services for our customers’ professional and personal knowledge and understanding.

The Wiley Finance series contains books written specifically for finance and investment professionals as well as sophisticated individual investors and their financial advisors. Book topics range from portfolio management to e-commerce, risk management, financial engineering, valuation, and financial instrument analysis, as well as much more.

Contents

List of Figures and Tables

Preface

Acknowledgments

About the Author

PART ONE

Impacts of the New FAS 123 Methodology

CHAPTER 1

Implications of the New FAS 123 Requirements

- A Brief Introduction
- An Executive Summary of the FAS 123 Valuation Implications
- Summary and Key Points

CHAPTER 2

The 2004 Proposed FAS 123 Requirements

- FAS 123 Background
- Summary and Key Points

CHAPTER 3

Impact on Valuation

- A Brief Description of the Different Methodologies
- Selection and Justification of the Preferred Method
- Application of the Preferred Method
- Technical Justification of Methodology Employed
- Options with Vesting and Suboptimal Behavior
- Options with Forfeiture Rates
- Options Where Risk-Free Rate Changes over Time
Options Where Volatility Changes over Time 32
Options Where Dividend Yield Changes over Time 32
Options Where Blackout Periods Exist 35
Summary and Key Points 39

CHAPTER 4
Haircuts on Nonmarketability, Modified Black-Scholes with Expected Life, and Dilution 41
- Nonmarketability Issues 41
- Expected Life Analysis 45
- Dilution 49
- Summary and Key Points 49

CHAPTER 5
Applicability of Monte Carlo Simulation 51
- Introduction to the Analysis 51
 - The Black-Scholes Model 52
 - Monte Carlo Path Simulation 52
- Applying Monte Carlo Simulation to Obtain a Stock Options Value 53
 - Binomial Lattices 53
- Analytical Comparison 54
- Applying Monte Carlo Simulation for Statistical Confidence and Precision Control 54
- Summary and Key Points 64

CHAPTER 6
Expense Attribution Schedule 65
- ESO Expense Attribution Schedule as Minigrants 65
- Summary and Key Points 73

PART TWO
Technical Background of the Binomial Lattice and Black-Scholes Models

CHAPTER 7
Brief Technical Background 77
- Black-Scholes Model 77
- Monte Carlo Simulation Model 79
CHAPTER 8
Binomial Lattices in Technical Detail

Options Valuation: Behind the Scenes 83
Binomial Lattices 87
The Look and Feel of Uncertainty 90
A Stock Option Provides Value in the Face of Uncertainty 92
Binomial Lattices as a Discrete Simulation of Uncertainty 94
Solving a Simple European Call Option Using
Binomial Lattices 99
Granularity Leads to Precision 102
Solving American and European Options with Dividends 105
Customizing the Binomial Lattice 108
The Customized Binomial Lattice Model 109
Treatment of Forfeiture Rates 112
Summary and Key Points 115
Appendix 8A—Binomial, Trinomial, and Multinomial Lattices 115

CHAPTER 9
The Model Inputs

Stock and Strike Price 119
Time to Maturity 120
Risk-Free Rate 120
Dividend Yield 121
Volatility 121
Logarithmic Stock Price Returns Approach 121
Annualizing Volatility 123
GARCH Model 123
Market Proxy Approach 124
Implied Volatilities Approach 125
Vesting 125
Suboptimal Exercise Behavior Multiple 126
Forfeitures 127
Blackout Periods 128
Lattice Steps 128
Summary and Key Points 129
PART THREE

A Sample Case Study Applying FAS 123

CHAPTER 10

A Sample Case Study

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock Price and Strike Price</td>
<td>133</td>
</tr>
<tr>
<td>Maturity</td>
<td>135</td>
</tr>
<tr>
<td>Risk-Free Rates</td>
<td>136</td>
</tr>
<tr>
<td>Dividends</td>
<td>136</td>
</tr>
<tr>
<td>Volatility</td>
<td>136</td>
</tr>
<tr>
<td>Vesting</td>
<td>140</td>
</tr>
<tr>
<td>Suboptimal Exercise Behavior Multiple</td>
<td>141</td>
</tr>
<tr>
<td>Forfeiture Rate</td>
<td>145</td>
</tr>
<tr>
<td>Number of Steps</td>
<td>145</td>
</tr>
<tr>
<td>Results and Conclusions</td>
<td>147</td>
</tr>
<tr>
<td>Summary and Key Points</td>
<td>157</td>
</tr>
<tr>
<td>Appendix 10A—Introduction to the Software</td>
<td>158</td>
</tr>
<tr>
<td>Getting Started</td>
<td>158</td>
</tr>
<tr>
<td>ESO Toolkit</td>
<td>158</td>
</tr>
<tr>
<td>ESO Functions</td>
<td>161</td>
</tr>
<tr>
<td>Auditing Templates and Spreadsheets</td>
<td>164</td>
</tr>
</tbody>
</table>

PART FOUR

Options Valuation Results Tables

APPENDIX

Getting Started with the Options Valuation Results Tables

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thirty-Five Percent Volatility and 3-Year Maturity ESOs with</td>
<td>169</td>
</tr>
<tr>
<td>Varying Stock Price, Suboptimal Behavior, Vesting Period,</td>
<td></td>
</tr>
<tr>
<td>and Forfeiture Rates</td>
<td>171</td>
</tr>
<tr>
<td>Seventy Percent Volatility and 3-Year Maturity ESOs with</td>
<td>179</td>
</tr>
<tr>
<td>Varying Stock Price, Suboptimal Behavior, Vesting Period,</td>
<td></td>
</tr>
<tr>
<td>and Forfeiture Rates</td>
<td>179</td>
</tr>
<tr>
<td>Thirty-Five Percent Volatility and 5-Year Maturity ESOs with</td>
<td>187</td>
</tr>
<tr>
<td>Varying Stock Price, Suboptimal Behavior, Vesting Period,</td>
<td></td>
</tr>
<tr>
<td>and Forfeiture Rates</td>
<td>187</td>
</tr>
<tr>
<td>Seventy Percent Volatility and 5-Year Maturity ESOs with</td>
<td>199</td>
</tr>
<tr>
<td>Varying Stock Price, Suboptimal Behavior, Vesting Period,</td>
<td></td>
</tr>
<tr>
<td>and Forfeiture Rates</td>
<td>199</td>
</tr>
</tbody>
</table>
Contents

Thirty-Five Percent Volatility and 7-Year Maturity ESOs with Varying Stock Price, Suboptimal Behavior, Vesting Period, and Forfeiture Rates 211
Seventy Percent Volatility and 7-Year Maturity ESOs with Varying Stock Price, Suboptimal Behavior, Vesting Period, and Forfeiture Rates 227
Thirty-Five Percent Volatility and 10-Year Maturity ESOs with Varying Stock Price, Suboptimal Behavior, Vesting Period, and Forfeiture Rates 243
Seventy Percent Volatility and 10-Year Maturity ESOs with Varying Stock Price, Suboptimal Behavior, Vesting Period, and Forfeiture Rates 267

Glossary 291
Notes 295
About the CD-ROM 301
Index 305
List of Figures and Tables

FIGURES

Figure 3.1 Tornado chart listing the critical input factors of a customized binomial model. 23
Figure 3.2 Tornado chart listing the critical input factors of the BSM. 24
Figure 3.3 Spider chart showing the nonlinear effects of input factors in the binomial model. 24
Figure 3.4 Dynamic sensitivity with simultaneously changing input factors in the binomial model. 25
Figure 3.5 Impact of suboptimal exercise behavior and vesting on option value in the binomial model. 26
Figure 3.6 Impact of suboptimal exercise behavior and stock price on option value in the binomial model. 27
Figure 3.7 Impact of suboptimal exercise behavior and volatility on option value in the binomial model. 28
Figure 3.8 Impact of forfeiture rates and vesting on option value in the binomial model. 29
Figure 5.1 Comparing the three approaches. 55
Figure 5.2 Distributional-fitting using historical, comparable, or forecast data. 60
Figure 5.3 Monte Carlo input assumptions. 61
Figure 5.4 Correlating input assumptions. 62
Figure 5.5 Statistical confidence restrictions and precision control. 62
Figure 5.6 Probability distribution of options valuation results. 63
Figure 5.7 Options valuation result at $0.01 precision with 99.9 percent confidence. 63
Figure 8.1 A three-step recombining lattice. 85
Figure 8.2 A two-step nonrecombining lattice. 86
Figure 8.3 The underlying stock price lattice. 90
Figure 8.4 Zero volatility stock. 91
Figure 8.5 Twenty percent volatility stock. 91
Figure 8.6 A graphical view of volatility. 92
Figure 8.7 Monte Carlo probability distributions of stock prices. 93
Figure 8.8 Call and put options. 94
Figure 8.9 Cone of uncertainty. 95
Figure 8.10 The binomial lattice as a discrete simulation. 96
Figure 8.11 Lattice views with different volatilities. 98
Figure 8.12 European call option solved using the BSM and binomial lattices. 99
Figure 8.13 First lattice evolution of the underlying stock price. 101
Figure 8.14 Second option valuation lattice (European call without dividends). 102
Figure 8.15 Second option valuation lattice (American option without dividends). 105
Figure 8.16 Second option valuation lattice (European option with dividends). 106
Figure 8.17 Second option valuation lattice (American option with dividends). 107
Figure 8A.1 Three-step recombining binomial lattice. 116
Figure 8A.2 Three-step recombining trinomial lattice. 117
Figure 10.1 Stock price forecast using stochastic path-dependent simulation techniques. 135
Figure 10.2 Results of stock price forecast using Monte Carlo simulation. 135
Figure 10.3 Estimating suboptimal exercise behavior multiples. 142
Figure 10.4 Convergence of the binomial lattice to closed-form solutions. 147
Figure 10.5 Monte Carlo simulation of ESO valuation result. 153
Figure 10A.1 ESO Toolkit main index. 159
Figure 10A.2 Input parameters. 160
Figure 10A.3 Intermediate calculations. 160
Figure 10A.4 ESO valuation results. 161
Figure 10A.5 Analyze report feature. 162
Figure 10A.6 ESO functions. 163
Figure 10A.7 Using ESO functions in existing spreadsheets. 163
Figure 10A.8 Auditing the formulas. 164
List of Figures and Tables

Tables

Table 3.1 Effects of Changing Risk-Free Rates on Option Value 30
Table 3.2 Effects of Changing Risk-Free Rates with Exotic Inputs on Option Value 31
Table 3.3 Effects of Changing Volatilities on Option Value 33
Table 3.4 Nonlinear Effects of Maturity 34
Table 3.5 Linear Effects of Dividends 34
Table 3.6 Effects of Changing Dividends over Time 35
Table 3.7 Effects of Blackout Periods on Option Value 36
Table 3.8 Effects of Significant Blackouts (Different Forfeiture Rates and Volatilities) 37
Table 3.9 Effects of Significant Blackouts (Different Dividend Yields and Vesting Periods) 37
Table 3.10 Effects of Significant Blackouts (Different Dividend Yields and Suboptimal Exercise Behaviors) 38
Table 4.1 Customized Binomial Lattice Valuation Results 43
Table 4.2 Nonmarketability and Nontransferability Discount 44
Table 4.3 Imputing the Expected Life for the BSM Using the Binomial Lattice Results 47
Table 4.4 Imputing the Expected Life for the BSM Using the Binomial Lattice Results under Nonzero Forfeiture Rates 48
Table 5.1(a–d) The Three Approaches’ Comparison Results 56
Table 5.2 Single-Point Result Using a Customized Binomial Lattice 60
Table 6.1 Example Valuation Summary 66
Table 6.2 Grant Allocation 70
Table 6.3 Monthly Graded-Vesting Grants Allocation 72
Table 6.4 Final Expense Allocation 72
Table 8.1 Comparison of Results 103
Table 8.2 Higher Lattice Steps Equals Higher Granularity and Precision 104
Table 8.3 Comparing the Application of Forfeiture Rates 113
Table 8A.1 Binomial and Trinomial Results (Basic Inputs) 118
Table 8A.2 Binomial and Trinomial Results (Exotic Inputs) 118
Table 10.1 Stock Price Forecast from Investor Relations 134
Table 10.2 U.S. Treasuries Risk-Free Spot Rates 137
Table 10.3 Forward Risk-Free Rates Resulting from Bootstrap Analysis 138
Table 10.1 Generalized Autoregressive Conditional Heteroskedasticity for Forecasting Volatility 139
Table 10.2 Volatility Estimates 140
Table 10.3 Estimating Suboptimal Exercise Behavior Multiple with Trimmed Ranges 144
Table 10.4 Estimating Suboptimal Exercise Behavior Multiples with Statistical Hypothesis Tests 145
Table 10.5 Estimating Forfeiture Rates 146
Table 10.6 Convergence of the Customized Binomial Lattice 148
Table 10.7 Analytical Customized Binomial Lattice Results 149
Table 10.8 Options Valuation Results 154
Table 10.9 Contribution to Options Valuation Reduction 155
Table 10.10 Expense Allocation (BSM) 157
Table 10.11 Expense Allocation (Customized Binomial Lattice) 157
Table 10.12 Dollar and Percentage Difference in Expenses 157
Table A.1 Scenario Analysis on the Option Results Tables (10% Annual Forfeiture) 170
This book was written after FASB released its proposed FAS 123 revision in March 2004. As one of the valuation consultants and FASB advisors on the FAS 123 initiative in 2003 and 2004, I would like to illustrate to the finance and accounting world that what FASB has proposed is actually pragmatic and applicable. I am neither for nor against the expensing of employee stock options and would recuse myself from the philosophical and sometimes emotional debate on whether employee stock options should be expensed (that they are a part of an employee’s total compensation, paid in part for the exchange of services, and are an economic opportunity cost to the firm just like restricted stocks or other contingent claims issued by the company) or should not be expensed (that they simply dilute the holdings of existing shareholders, are a cashless expense, and if expensed, provide no additional valuable information to the general investor as to the financial health of the company but rather reduce the company’s profitability and hence the ability to continue issuing more options to its employees). Rather, as an academic and valuation expert, my concern is with creating a universal standard of understanding on how FAS 123 can be uniformly applied to avoid ambiguity, and not whether employee stock options should be expensed. Therefore, let it not be said that the new ruling is abandoned because it is not pragmatic. This book is also my response to FASB board member Katherine Schipper’s direct request to me at the FASB public panel roundtable meeting (Palo Alto, California, June 2004) for assistance in providing more guidance on the overall valuation aspects of FAS 123.

Hopefully the contents of this book will subdue some of the criticisms on how binomial lattices can be used and applied in the real world. The results, tables, graphics, and sample cases illustrated throughout the book were calculated using customized binomial lattice software algorithms I developed to assist FASB in its deliberations, and were based on actual real-life consulting and advisory experience on applying FAS 123. Inexperienced critics will be surprised at some of the findings in the book. For instance, criticisms on the difficulty of finding the highly critical volatility may be unfounded because when real-life scenarios such as vesting, forfeitures, and
suboptimal exercise behavior are added to the model, volatility plays a much smaller and less prominent role. In addition, the book illustrates how Monte Carlo simulation with correlations can be added (to simulate volatility, suboptimal exercise behavior multiple, forfeiture rates, as well as other variables for thousands and even hundreds of thousands of simulation scenarios and trials) to provide a precision of up to $0.01 at a 99.9 percent statistical confidence; coupled with a convergence test of the lattice steps, this provides a highly robust modeling methodology. Future editions of this book will include any and all changes to the FAS 123 requirements since the March 2004 proposal.

Parts One and Four are written specifically for the chief financial officer and finance directors, who are interested in understanding what are the impacts and implications of using a binomial lattice versus a Black-Scholes model. Parts Two and Three are targeted more toward the analysts, consultants, and accountants who require the technical knowledge and example cases to execute the analysis.

JOHNATHAN MUN

San Francisco, California
JohnathanMun@cs.com
August 2004
Acknowledgments

The author is greatly indebted to Winny van Veeren of Veritas Software Corporation for her great insights in ESO valuation. In addition, a special word of thanks goes to Bill Falloon, senior editor at John Wiley & Sons, Inc., for his support and encouragement. Finally, many thanks to Mike Tovey, FAS 123 project manager, and members of the board of directors at FASB for graciously allowing me to assist in their deliberations.

J. M.
Dr. Johnathan C. Mun is the author of several other well-known books, including *Real Options Analysis: Tools and Techniques* (Wiley, 2002), *Real Options Analysis Course: Business Cases* (Wiley, 2003), *Faith Journey* (Xulon Press, 2003), and *Applied Risk Analysis: Moving Beyond Uncertainty* (Wiley, 2003). He is also the creator of the Real Options Analysis Toolkit software. His books and software have been adopted by major universities in the United States and around the world, and are used widely at a variety of Fortune 500 companies. Dr. Mun has taught seminars and workshops worldwide on the topics of options valuation, risk analysis, simulation, forecasting, financial analysis, and real options analysis. This book is the result of analytical work he did for the Financial Accounting Standards Board in 2003 and 2004, as well as FAS 123 employee stock options valuation advisory and consulting work he has performed at dozens of Fortune 500 firms.

He is currently the Vice President of Analytics at Decisioneering, Inc., the makers of *Real Options Analysis Toolkit* and the *Crystal Ball* suite of products, including applications of Monte Carlo simulation, optimization, options analysis, and forecasting. He heads up the development of real options analysis and financial analytics software products, analytical consulting, training, and technical support. He is also a Visiting and Adjunct Professor and has taught courses in financial management, investments, financial options, real options, economics, and statistics at the undergraduate and graduate MBA levels, as well as chairing several graduate Master’s theses committees. He has taught at universities all over the world, from the University of Applied Sciences (Germany and Switzerland) to Golden Gate University (California), St. Mary’s College (California), and others. Prior to joining Decisioneering, he was Consulting Manager and Financial Economist in the Valuation Services and Global Financial Services practice of KPMG Consulting and a manager with the Economic Consulting Services practice at KPMG LLP. He has extensive experience in econometric modeling, financial options analysis, real options, economic analysis, and statistics. During his tenure both at Decisioneering and at KPMG Consulting, he consulted with, advised, and trained others in the areas of options analysis, risk analysis, economic forecasting, and financial valuation for
many Fortune 500 firms. His experience prior to joining KPMG included being Department Head of Financial Planning and Analysis at Viking, Inc. of FedEx, responsible for performing financial forecasting, economic analysis, and market research. Prior to that, he had also performed some financial planning and freelance financial consulting work.

Dr. Mun received a Ph.D. in Finance and Economics from Lehigh University, where his research and academic interests were in the areas of Investment Finance, Econometric Modeling, Financial Options, Corporate Finance, and Microeconomic Theory. He also has an MBA from Nova Southeastern University and a BS in biology and physics from the University of Miami. He is certified in Financial Risk Management (FRM), a Certified Financial Consultant (CFC), and a Certified Risk Analyst (CRA), and is currently a third-level candidate for the Chartered Financial Analyst (CFA). He is a member of American Mensa, Phi Beta Kappa Honor Society, and Golden Key Honor Society as well as several other professional organizations, including the Eastern and Southern Finance Associations, American Economic Association, and Global Association of Risk Professionals. Finally, he has written many academic articles published in the Journal of the Advances in Quantitative Accounting and Finance, Global Finance Journal, International Financial Review, Journal of Applied Financial Economics, Journal of International Financial Markets, Institutions and Money, Financial Engineering News, Journal of the Society of Petroleum Engineers, and Journal of Financial Analysis.

He currently resides in California and can be reached via e-mail at JohnathanMun@cs.com.
PART One

Impacts of the New FAS 123 Methodology
Implications of the New FAS 123 Requirements

A BRIEF INTRODUCTION

In what the Wall Street Journal calls “among the most far-reaching steps that the Financial Accounting Standards Board (FASB) has made in its 30 year history,” on March 31, 2004, FASB released a Proposed Statement of Financial Accounting Standards (FAS) on Share-based Payment amending the old FAS Statements 123 and 95 issued in October 1995.

The original 1995 statements required that all share-based payment arrangements with parties other than employees be accounted for in value. The revised 2004 statement retains the principle established in FAS 123 (1995) that a public entity should measure the cost of employee services received in exchange for awards of equity instruments based on the fair value of the instruments at the grant date. In addition, the FASB has reaffirmed the conclusion in the 2004 proposed Statement 123 revision that employee services received in exchange for equity instruments give rise to recogniz-able compensation cost as the services are used in the issuing entity’s operations. Based on that conclusion, this proposed Statement requires that such compensation cost be recognized in the financial statements.

The FASB states in its proposal that it wants to maximize the convergence of U.S. and international accounting standards for employee stock options (ESOs), and as such, the proposed 2004 FAS 123 revisions are consistent with the International Accounting Standards Board’s share-based payment (IFRS 2, issued February 19, 2004). At the date of writing, the proposed Statement will be effective for new awards and portions of existing awards that have not yet vested at the beginning of the first fiscal year starting from December 15, 2004, with a possible delay in effective date to allow corporations to better prepare for the transition. In anticipation of the Standard, many companies such as GE and Coca-Cola have already...
voluntarily expensed their ESOs at the time of writing. This need for more transparency is in line with the 2002 Sarbanes-Oxley Act, which requires that public companies develop and comply with accepted standards of financial and managerial prudence.

One of the areas of concern is the fair-market valuation of these ESOs. The binomial lattice is the preferred method in the proposed FAS 123 requirements, and critics argue that companies do not necessarily have the resources in-house or the data availability to perform complex valuations that not only are consistent with these new requirements but will pass an audit as well.

The goal of this book is to provide you with a better understanding of the valuation applications of a customized binomial lattice through a systematic and objective assessment of the methodology. This book is concerned only with the valuation of ESOs, and not the management of these options. The analyses performed in this book use my own proprietary customized binomial lattice computer algorithms and my software, the Real Options Analysis Toolkit, and Decisioneering, Inc.’s Crystal Ball Monte Carlo simulation software. This book was written based on my advisory work with FASB in 2003 and 2004, graduate research work in the area of options analysis, actual FAS 123 consulting projects with several Fortune 500 firms, and options software development experience, as well as my prior three books.

This book is divided into four parts. In Part One, the impacts of the 2004 FAS 123 are reviewed. In Chapter 1, the implications of the new FAS 123 requirements with respect to the valuation of ESOs are introduced. Chapter 2 reviews the FAS 123 requirements in more detail, focusing on the methodological requirements. Chapter 3 illustrates the impacts to the valuation results of using a customized binomial lattice versus a traditional Black-Scholes model (BSM), as well as where the variation lies. (The traditional BSM described throughout this book is the original model with naïve assumptions without any modifications to include more exotic inputs, which can be very mathematically complex.) The chapter also reviews the selection and justification of the customized binomial lattice, as well as the effects of incorporating vesting, employee suboptimal exercise behavior, forfeiture rates, changing risk-free rates, changing dividends, and changing volatilities over time. Chapter 4 reviews some of the other modifications to value such as nonmarketability, expected life analysis, and dilution. Chapter 5 provides an introduction to using Monte Carlo simulation coupled with binomial lattices to obtain a robust and statistically valid set of option valuation results. Chapter 6 illustrates an example of how the option valuation’s fair-market value can be allocated and expensed over the vesting period of the option.
In Part Two, the technical background required to run the BSM and customized binomial lattices are provided. Chapter 7 provides a brief technical background of the BSM and binomial lattice. Chapter 8 provides more detailed technical background on the use of a simple binomial lattice, complete with step-by-step valuation examples. The customized binomial lattice algorithms are briefly explained. Chapter 8’s appendix explores in more detail the uses of binomial, trinomial, and multinomial lattices. Chapter 9 deals with how to obtain the model inputs, and their financial, statistical, and analytical justifications.

Chapter 10 in Part Three shows an example ESO fair-market valuation that is based on several real-life cases. Chapter 10’s appendix provides a “Getting Started Guide” in using the demo software in the accompanying CD-ROM.

Finally, Part Four provides multiple options valuation results that will prove valuable from the perspective of the analyst all the way to the chief financial officer when it comes to valuing the impact of using the binomial lattice versus BSM. These tables provide a first-pass rough estimate of the fair-market value of the option using a customized binomial lattice, providing management with valuable insights into the possible expenses before having to delve into more detailed, complex, and protracted analyses. In the face of implementing a challenging and potentially complex valuation system, firms need to first obtain a benchmark to understand if these more sophisticated models will provide comparable, lower, or higher values than the BSM.

AN EXECUTIVE SUMMARY OF THE FAS 123 VALUATION IMPLICATIONS

This book broaches the subject of fair-market valuation through an analytical assessment of the three mainstream approaches used in option pricing, and provides guidance on using them, coupled with the mathematical background, sample case study, and demo software to help the reader get started with ESO valuation. The first approach is a set of closed-form models, including the BSM for option pricing and the American option approximation pricing models. The second approach is the use of Monte Carlo path-dependent simulation, including its applications in option pricing as well as its use in simulating the option model’s uncertain and probabilistic inputs. The third and final approach is the use of lattices and the customized binomial lattices applied throughout this book. These three sets of methodologies are reviewed based on several criteria, including method applicability, underlying assumptions, robustness of analytical results, and ease of use.
Based on the results illustrated throughout the book, it can be concluded that the BSM, albeit theoretically correct and elegant, is insufficient and inappropriately applied when it comes to quantifying the fair-market value of an ESO. This is because the BSM is applicable only to European options without dividends, where the holder of the option can exercise the option only on its maturity date and the underlying stock does not pay any dividends. However, in reality, most ESOs are American-type options with dividends, where the option holder can execute the option at any time up to (after the vesting period and except blackout dates) and including the maturity date while the underlying stock pays dividends. A stock’s price drops by approximately the amount of the dividend on the ex-dividend date, which means that the value of an American stock option (with its ability for early exercise) is greater than that of a European-type option. However, for fairness of comparison, the Generalized Black-Scholes model (GBM) is used—the GBM allows for the inclusion of dividends albeit it is applicable only for valuing European options. The terms BSM and GBM will be used interchangeably throughout this book, which describes the original models developed by Black and Scholes without any modifications (the correct model will be used whenever appropriate).

In addition, under real-world conditions, ESOs have blackout dates and a time to vesting before the employee can execute the option, which is also contingent on the firm and/or the individual employee attaining a specific performance level (e.g., profitability, growth rate, or stock price hitting a minimum barrier before the options become live), and subject to forfeitures when the employee leaves the firm or is terminated prematurely before reaching the vested period. Also, certain options follow a tranching or graduated scale, where a certain percentage of the stock option grants becomes exercisable every year, and if the firm underperforms, it may be required to repurchase the options at a specific termination price. Just as important, the GBM assumes that all employees execute their options optimally—that is, the model assumes that every employee is intelligent enough to execute the option whenever it becomes optimal to do so. In reality, employees tend to execute their stock options prematurely and often suboptimally. The GBM or BSM do not adequately account for this suboptimal early exercise behavior and subsequently overvalue the option (sometimes significantly). The firm may undergo some corporate restructuring (e.g., divestitures, or mergers and acquisitions that may require a stock swap that changes the volatility of the underlying stock) and hence its underlying stock’s volatility may change over time. In addition, risk-free rates change over time (both U.S. Treasury spot rates and forward rates fluctuate) and will impact the value of the option. The same applies to dividend policy, where dividend payout ratios can change over the life