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FOREWORD

Whereas solid-state physics is concerned with the mathematical description of the

varied physical phenomena that solids exhibit and the solid-state chemist is

interested in probing the relationships between structural chemistry and physical

phenomena, the materials scientist has the task of using these descriptions and

relationships to design materials that will perform specified engineering functions.

However, the physicist and the chemist are often called on to act as material

designers, and the practice of materials design commonly requires the exploration

of novel chemistry that may lead to the discovery of physical phenomena of

fundamental importance for the body of solid-state physics. I cite three illustrations

where an engineering need has led to new physics and chemistry in the course of

materials design.

In 1952, I joined a group at the M.I.T. Lincoln Laboratory that had been charged

with the task of developing a square B–H hysteresis loop in a ceramic ferrospinel

that could have its magnetization reversed in less than 1 ms by an applied magnetic-

field strength less than twice the coercive field strength. At that time, the

phenomenon of a square B–H loop had been obtained in a few iron alloys by

rolling them into tapes so as to align the grains, and hence the easy magnetization

directions, along the axis of the tape. The observation of a square B–H loop led Jay

Forrester, an electrical engineer, to invent the coincident-current, random-access

magnetic memory for the digital computer since, at that time, the only memory

available was a 16 � 16 byte electrostatic storage tube. Unfortunately, the alloy

tapes gave too slow a switching speed. As an electrical engineer, Jay Forrester

assumed the problem was eddy-current losses in the tapes, so he had turned to the

ferrimagnetic ferrospinels that were known to be magnetic insulators. However,

the polycrystalline ferrospinels are ceramics that cannot be rolled! Nevertheless, the

U.S. Air Force had financed the M.I.T. Lincoln Laboratory to develop an Air

Defense System, of which the digital computer was to be a key component.

Therefore, Jay Forrester was able to put together an interdisciplinary team of

electrical engineers, ceramists, and physicists to realize his random-access mag-

netic memory with ceramic ferrospinels.

The magnetic memory was achieved by a combination of systematic empiricism,

careful materials characterization, theoretical analysis, and the emergence of an

unanticipated phenomenon that proved to be a stroke of good fortune. A systematic

mapping of the structural, magnetic, and switching properties of the Mg–Mn–Fe
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ferrospinels as a function of their heat treatments revealed that the spinels in one

part of the phase diagram were tetragonal rather than cubic and that compositions

just on the cubic side of the cubic-tetragonal phase boundary yield sufficiently

square B–H loops if given a carefully controlled heat treatment. This observation

led me to propose that the tetragonal distortion was due to a cooperative orbital

ordering on the Mn3þ ions that would lift the cubic-field orbital degeneracy;

cooperativity of the site distortions minimizes the cost in elastic energy and leads to

a distortion of the entire structure. This phenomenon is now known as a cooperative

Jahn–Teller distortion since Jahn and Teller had earlier pointed out that a molecule

or molecular complex having an orbital degeneracy would lower its energy by

deforming its configuration to a lower symmetry that removed the degeneracy.

Armed with this concept, I was able almost immediately to apply it to interpret the

structure and the anisotropic magnetic interactions that had been found in the

manganese-oxide perovskites, since the orbital order revealed the basis for

specifying the rules for the sign of a magnetic interaction in terms of the

occupancies of the overlapping orbitals responsible for the interatomic interactions.

These rules are now known as the Goodenough–Kanamori rules for the sign of a

superexchange interaction. Thus an engineering problem prompted the discovery

and description of two fundamental phenomena in solids that have ever since been

used by chemists and physicists to interpret structural and magnetic phenomena in

transition-metal compounds and to design new magnetic materials. Moreover, the

discovery of cooperative orbital ordering fed back to an understanding of our

empirical solution to the engineering problem. By annealing at the optimum

temperature for a specified time, the Mn3þ ions of a cubic spinel would migrate

to form Mn-rich regions where their energy is lowered through cooperative,

dynamic orbital ordering. The resulting chemical inhomogeneities acted as nucle-

ating centers for domains of reverse magnetization that, once nucleated, grew away

from the nucleating center. We also showed that eddy currents were not responsible

for the slow switching of the tapes, but a small coercive field strength and an

intrinsic damping factor for spin rotation.

In the early 1970s, an oil shortage focused worldwide attention on the need to

develop alternative energy sources, and it soon became apparent that these sources

would benefit from energy storage. Moreover, replacing the internal combustion

engine with electric-powered vehicles, or at least the introduction of hybrid

vehicles, would improve the air quality, particularly in big cities. Therefore, a

proposal by the Ford Motor Company to develop a sodium–sulfur battery operating

at 300�C with molten electrodes and a ceramic Naþ-ion electrolyte stimulated

interest in the design of fast alkali-ion conductors. More significant was interest in a

battery in which Liþ rather than Hþ is the working ion, since the energy density that

can be achieved with an aqueous electrolyte is lower than what, in principle, can be

obtained with a nonaqueous Liþ-ion electrolyte. However, realization of a Liþ-ion

rechargeable battery would require identification of a cathode material into/from

which Liþ ions can be inserted/extracted reversibly. Brian Steele of Imperial

College, London, first suggested use of TiS2, which contains TiS2 layers held

together only by Vander Waals S2���S2� bonding; lithium can be inserted
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reversibly between the TiS2 layers. M. Stanley Whittingham’s demonstration was

the first to reduce this suggestion to practice while he was at the Exxon Corporation.

Whittingham’s demonstration of a rechargeable Li–TiS2 battery was commercially

nonviable because the lithium anode proved unsafe. Nevertheless, his demonstra-

tion focused attention on the work of the chemists Jean Rouxel of Nantes, France,

and R. Schöllhorn of Berlin on insertion compounds that provide a convenient

means of changing continuously the mixed valency of a fixed transition-metal array

across a redox couple. Although work at Exxon was halted, their demonstration had

shown that if an insertion compound such as graphite were used as the anode, a

viable lithium battery could be achieved, but use of a less electropositive anode

would require an alternative insertion-compound cathode material that provided a

higher voltage vs. a lithium anode than TiS2. I was able to deduce that no sulfide

would give a significantly higher voltage than that obtained with TiS2 and therefore

that it would be necessary to go to a transition-metal oxide. Although oxides other

than V2O5 and MoO3, which contain vandyl or molybdyl ions, do not form layered

structures analogous to TiS2, I knew that LiMO2 compounds exist that have a

layered structure similar to that of LiTiS2. It was only necessary to choose the

correct M3þ cation and to determine how much Li could be extracted before the

structure collapsed. That was how the Li1�xCoO2 cathode material was developed

that now powers the cell telephones and laptop computers. The choice of M ¼ Co,

Ni, or Ni0:5þdMn0:5�d was dictated by the position of the redox energies and an

octahedral site-preference energy strong enough to inhibit migration of the M atom

to the Li layers on removal of Li. Electrochemical studies of these cathode

materials, and particularly of Li1�xNi0:5þdMn0:5�dO2, have provided a demonstra-

tion of the pinning of a redox couple at the top of the valence band, a concept of

singular importance for interpretation of metallic oxides having only M–O–M

interactions, of the reason for oxygen evolution at critical Co(IV)/Co(III) or Ni(IV)/

Ni(III) ratios in Li1�xMO2 studies, and of why Cu(III) in an oxide has a low-spin

configuration. Moreover, exploration of other oxide structures that can act as hosts

for insertion of Li as a guest species have provided a means of quantitatively

determining the influence of a countercation on the energy of a transition-metal

redox couple. This determination allows tuning of the energy of a redox couple,

which may prove important for the design of heterogenous catalysts.

As a third example, I turn to the discovery of high-temperature superconductiv-

ity in the copper oxides first announced by Bednorz and Müller of IBM Zürich in

the summer of 1986. Karl A. Müller, the physicist of the pair, had been thinking that

a dynamic Jahn–Teller ordering might provide an enhanced electron–phonon

coupling that would raise the superconductive critical temperature TC. He turned

to his chemist colleague Bednorz to make a mixed-valent Cu3þ/Cu2þ compound,

since Cu2þ has an orbital degeneracy in an octahedral site. This speculation led to

the discovery of the family of high-TC copper oxides; however, the enhanced

electron–phonon coupling is not due to a conventional dynamic Jahn–Teller orbital

ordering, but rather to the first-order character of the transition from localized to

itinerant electronic behavior of s-bonding Cu:3d electrons of (x2 � y2) symmetry in

CuO2 planes. In this case, the search for an improved engineering material has led
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to a demonstration that the celebrated Mott–Hubbard transition is generally not

smooth as originally assumed, and it has introduced an unanticipated new physics

associated with bond-length fluctuations and vibronic electronic properties. It has

challenged the theorist to develop new theories of the crossover regime that can

describe the mechanism of superconductive pair formation in the copper oxides,

quantum critical-point behavior at low temperatures, and an anomalous temperature

dependence of the resistivity at higher temperatures as a result of strong electron–

phonon interactions.

These examples show how the challenge of materials design from the engineer

may lead to new physics as well as to new chemistry. Sorting out the physical and

chemical origins of the new phenomena feed back to the range of concepts

available to the designer of new engineering materials. In recognition of the critical

role in materials design of interdisciplinary cooperation between physicists,

chemists, ceramists, metallergists, and engineers that is practiced in industry and

government research laboratories, John N. Lalena and David A. Cleary have

initiated with their book what should prove to be a growing trend toward greater

interdisciplinarity in the education of those who will be engaged in the design and

characterization of tomorrow’s engineering materials.

JOHN B. GOODENOUGH

Virginia H. Cockrell Centennial Chair in Engineering

The University of Texas at Austin
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PREFACE

Inorganic solid-state chemistry has matured into its own distinct subdiscipline. The

reader may wonder why we have decided to add another textbook to the plethora of

books already published. Our response is that we see a need for a single-source

presentation that recognizes the interdisciplinary nature of the field. Solid-state

chemists typically receive a small amount of training in condensed-matter physics,

but none in materials science or engineering, and yet all of these traditional fields

are inextricable components of inorganic solid-state chemistry.

Materials scientists and engineers have traditionally been primarily concerned

with the fabrication and utilization of materials already synthesized by the chemist

and identified by the physicist as having the appropriate intrinsic properties for a

particular engineering function. Although the demarcation between the three

disciplines remains in an academic sense, the separate job distinctions for those

working in the field are fading. This is especially obvious in the private sector,

where one must ensure that materials used in real commercial devices not only

perform their primary function, but also meet a variety of secondary requirements.

Individuals involved with such multidisciplinary projects must be prepared to

work independently or to collaborate with other specialists in facing design

challenges. In the latter case, communication is enhanced, if each individual is

able to speak the ‘‘language’’ of the other. Therefore, in this book we introduce a

number of concepts that are not usually covered in standard solid-state chemistry

textbooks. When this occurs, we try to follow the introduction of the concept with

an appropriate worked example to demonstrate its use. Two areas that have lacked

thorough coverage in most solid-state chemistry texts in the past, namely, micro-

structure and mechanical properties, are treated extensively in this book.

We have kept the mathematics to a minimum—but adequate—level, suitable for

a descriptive treatment. Appropriate citations are included for those needing the

quantitative details. It is assumed that the reader has sufficient knowledge of

calculus and elementary linear algebra, particularly matrix manipulations, and some

prior exposure to thermodynamics, quantum theory, and group theory. The book

should be satisfactory for senior-level undergraduate or beginning graduate students

in chemistry. One will recognize from the Table of Contents that entire textbooks

have been devoted to each of the chapters in this book, which indicates the

necessary limits on the depth of coverage. Along with their chemistry colleagues,
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physics and engineering students should also find the book to be informative and

useful.

Every attempt has been made to extensively cite all the original and pertinent

research in a fashion similar to that found in a review article. Students are

encouraged to seek out this work. We have also included biographies of several

individuals who have made significant fundamental contributions to inorganic

materials science in the twentieth century. Limiting these to the small number

we have room for was, of course, difficult. The reader should be warned that some

topics have been left out. In this book, we only cover nonmolecular inorganic

materials. Polymers and other molecular substances are not discussed. Also omitted

are coverages of surface science, self-assembly, and composite materials.

We are grateful to Prof. John B. Wiley, Dr. Nancy F. Dean, Dr. Martin W. Weiser,

Dr. Everett E. Carpenter, and Dr. Thomas K. Kodenkandath for reviewing various

chapters in this book. We are grateful to Prof. John F. Nye, Prof. John B.

Goodenough, Dr. Frans Spaepen, Dr. Larry Kaufman, and Dr. Bert Chamberland

for providing biographical information. We also thank Prof. Philip Andersn, Prof.

Mats H. Hillert, Prof. Nye, Dr. Kaufman, Dr. Terrell Vanderah, Dr. Barbara Sewall,

and Mrs. Jennifer Moss for allowing us to use photographs from their personal

collections. Finally, we acknowledge the inevitable neglect our families must have

felt during the period taken to write this book. We are grateful for their under-

standing and tolerance.
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CHAPTER 1

The Mesoscale

The prefix meso- comes from the Greek mesos, meaning ‘‘intermediate’’ or ‘‘in the

middle.’’ Materials scientists and engineers describe the structure of a substance at

four different length scales: macroscopic > mesocopic > microscopic > molecular/

nano level. Sometimes the labels for the two intermediate levels are interchanged.

To avoid confusion in this textbook, we group these two levels into one ‘‘meso’’

length scale between the nano- and macroscopic levels.

Before the advent of X-ray diffractometry, mineralogists could only visually

examine crystals. An entire classification scheme was developed and still in use

today for describing a single crystal’s external morphology, or macroscopic

appearance. One or more of 47 possible forms are usually apparent in the mor-

phology. A form is a collection of symmetry-equivalent faces. The crystal habit,

which depends on the relative sizes of the faces of the various forms present, may

be described as cubic, octahedral, fibrous, acicular, prismatic, dendritic (tree-like),

platy, or blade-like, among others. If a crystal is grown in a symmetrical

environment, for example, freely suspended in a liquid, its morphological sym-

metry is exactly that of the point group isogonal (same angular relation) with its

space group. It will depart from true point group symmetry under nonsymmetrical

growth conditions.

With conventionally processed polycrystals, the smallest particles that are

discernible with a high-quality optical microscope are the individual crystallites,

or grains, that make up the sample. The term microstructure refers to the grain

morphology, or grain size, shape, and orientation. Different techniques may be used

to examine specific structural features. For example, high-resolution imaging with a

scanning electron microscope (SEM) enables observation of dislocations. Informa-

tion about preferred orientation can be obtained with an X-ray diffractometer equipped

with a texture goniometer or by electron backscattered diffraction (EBSD).

Given the penetration depths in Table 1.1, it is obvious that electron diffraction

and microscopy only probe the surfaces of solids (the topmost atomic layers),

whereas neutron and X-ray diffraction provide information about the bulk. It is well

known that the surface crystalline structure of a solid may differ from that of the

bulk. The surfaces of most samples, however, are usually subjected to some sort of

Principles of Inorganic Materials Design By John N. Lalena and David A. Cleary
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chemical–mechanical polishing prior to microstructural analysis to ensure that bulk

grain morphology is apparent.

Inorganic materials are commonly grouped into one of two structure categories:

crystalline or amorphous (glassy). Amorphous materials possess no long-range

structural order, or periodicity. By contrast, crystalline solids are composed of

arrays of atoms or molecules, whose positions may be referenced to a translation-

ally invariant lattice. All crystals possess one or more of the basic symmetry

elements. Some authors also classify fractals as a distinct structural class. In this

case, the structure is self-similar, or scale-invariant, looking identical at all length

scales (e.g., cauliflowers and silica aerogels). Crystal structure, however, is the topic

of the next chapter. In this chapter, we focus on the microstructures of polycrystal-

line solids. The majority of solid materials of technological interest are used in

polycrystalline form.

Microstructure is determined by the conditions used during the material

processing. Hence, our objective is to clarify that a major goal of inorganic

materials engineering is the systematic generation of specific grain morphologies

in order to vary and adapt the properties of polycrystalline materials to given

applications. We focus on describing the microstructures of solidification products

(metals), formed powder aggregates (ceramics), and thin films. Microstructure/

property correlation is also discussed. Mechanical, chemical, and transport proper-

ties are markedly influenced by microstructure.

1.1 INTERFACES IN POLYCRYSTALS

The regions separating different grains, or crystallites, within a polycrystalline solid

are called grain boundaries. Although grain boundaries are often regarded as

regions of structural disorder, it is now well established that many have a periodic

structure. True incoherency, in which there is little correlation between atomic

positions across the boundary, only sets in when the mismatch between adjacent

crystals is very high (Bhadeshia, 1987). This is primarily determined by the relative

orientations of the adjoining grains. In a polycrystalline sample, both the grain

orientation distribution, or texture, and the structure of the grain boundary itself can

be crucial to the bulk materials properties. Therefore, it is appropriate to begin with

orientation relationships.

TABLE 1.1 Some Probes Used in Materials Characterization

Penetration

Source Wavelengtha (Å) Depth

Light 4 � 103–7 � 103 0

Neutrons 1–2.5 cm–dm

X-rays 0.1–10 mm–mm

Electrons 0.04 nm

a For elementary particles, l¼ hc/
p

(2mc2E); for light and X-rays, l¼ hc/E.
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1.1.1 Orientation Relationships in Bicrystals

The orientation relationship between a pair of grains of the same substance (the only

kind we will consider here), a bicrystal, is often expressed by an axis-angle

description, since one crystal always can be generated from the other by a rigid-

body rotation about a suitable axis. More precisely, the lattices can be made

to coincide by turning one of the crystals about a suitable rotation axis. Rotation

axes are commonly denoted as unit vectors, in terms of three indices of

direction written in square brackets, [uvw], while the misorientation angle is

expressed in degrees about this axis. The [uvw] indices are obtained by taking

the projections of the vector on the x, y, and z-axes, respectively, of a Cartesian

coordinate system and dividing these three numbers by their highest common

denominator.

It is always possible to describe the orientation relationship between a pair of

grains in terms of more than one axis-angle pair. Consider a pair of adjacent

identical cubic crystals of different orientation, A and B. Suppose further that B can

be generated from A by a right-hand rotation of 60� counterclockwise about the A

crystal’s body-diagonal axis, or the [111]A direction. This particular orientation

relationship is called a twin, since the two domains are related by a symmetry

element (a twin operation) that is not part of the space group symmetry of a single

crystal of the material. The extra symmetry element may be a reflection plane (twin

plane) or a rotation axis (twin axis). The high symmetry of the cubic lattice allows

us to find numerous equivalent axis-angle pairs for any orientation relationship.

Using this twin boundary as an example, we now show how other axis-angle pairs,

which are equivalent to a 60� right-hand rotation about the [111]A axis, can be

obtained.

Indices are convenient for describing directions (vectors or axes) in crystals.

However, direction cosines are much more useful for calculations. Therefore, one

must first convert the direction indices, [uvw], designating the rotation axis into

direction cosines. In our present example, the body diagonal of a cube of unit length

has direction indices [111]. This is seen by using a Cartesian coordinate system,

where the origin of the cube is taken to be one of its corners and which is designated

as (x1, y1, z1) ¼ (0, 0, 0). The body diagonal is obtained by drawing a line segment

of length jrj from the origin and terminating at the coordinates (x2, y2, z2) ¼ (1, 1, 1).

The direction cosines are given by the equations:

cos a ¼ r1 ¼ ðx2 � x1Þ= j r j

cos b ¼ r2 ¼ ðy2 � y1Þ= j r j

cos g ¼ r3 ¼ ðz2 � z1Þ= j r j

ð1:1Þ

where jrj is given by ½r2
1 þ r2

2 þ r2
3 �

1=2 ¼ ½ðx2 � x1Þ2 þ ðy2 � y1Þ2 þ ðz2 � z1Þ2�1=2
.

Hence, in the cubic crystal, we get cos a ¼ cos b ¼ cos g ¼ 0:5773, satisfying the

requirement that cos2 aþ cos2 bþ cos2 g ¼ 1.

INTERFACES IN POLYCRYSTALS 3



A (3 � 3) square rotation matrix, R, may now be obtained, which has the

following elements:

r1r1ð1�cos yÞþcos yÞ r1r2ð1�cos yÞþr3 sin yÞ r1r3ð1�cos yÞ�r2 sin yÞ
r1r2ð1�cos yÞ�r3 sin yÞ r2r2ð1�cos yÞþcos yÞ r2r3ð1�cos yÞþr1 sin yÞ
r1r3ð1�cos yÞþr2 sin yÞ r2r3ð1�cos yÞ�r1 sin yÞ r3r3ð1�cos yÞþcos yÞ

0
@

1
A

ð1:2Þ

In this book, we follow the standard convention for all matrices, that the elements

ai1, ai2; . . . ; ain are the elements of the ith row, and the elements a1j; a2j; . . . ; amj

are the elements of the jth column. That is, the first subscript for an element denotes

the column and the second subscript gives the row. Equation 1.2 transforms the

components of a vector referred to one basis to those referred to the other basis as:

a1 ¼ R11b1 þ R21b2 þ R31b3

a2 ¼ R12b1 þ R22b2 þ R32b3

a3 ¼ R13b1 þ R23b2 þ R33b3

ð1:3Þ

In Eq. 1.3, R23, for example, is the second element in the third row (or, equivalently,

the third element of the second column) of Eq. 1.2. For r1 ¼ r2 ¼ r3 ¼ 0:5773 and

y ¼ 60�, Eq. 1.2 gives:

R ¼
0:6667 0:6667 0:3333

�0:3333 0:6667 0:6667

0:6667 0:3333 0:6667

0
@

1
A ð1:4Þ

In order to obtain the equivalent axis-angle pairs, R must be multiplied by the

matrices representing the 24 rotation operations of the cubic lattice. The rotational

degeneracy of all crystal lattices can be obtained from the character tables for their

respective point groups: cubic, Oh (24), hexagonal, D6h (12), hexagonal close

packed, D3d (6), tetragonal, D4h (8), trigonal, D3d (6), orthorhombic, D2h (4),

monoclinic, C2h (2), and triclinic, Ci (1).

Continuing with the present example, we can operate on Eq. 1.4 with the (3 � 3)

square matrix representing, say, a 90� right-hand rotation about [100], which is

obtained from Eq. 1.2 with r1 ¼ 1, r2 ¼ r3 ¼ 0 and y ¼ 90�. The result is a product

matrix, which we call J:

J ¼
1 0 0

0 0 1

0 �1 0

0
B@

1
CA

0:6667 0:6667 �0:3333

�0:3333 0:6667 0:6667

0:6667 �0:3333 0:6667

0
B@

1
CA

¼
0:6667 0:6667 �0:3333

0:6667 �0:3333 0:6667

0:3333 �0:6667 �0:6667

0
B@

1
CA

ð1:5Þ
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Note that J is not the product of two symmetry operations, because the first rotation

took crystal A into crystal B, rather than back into itself. The A and B orientations

are distinguishable. We can now use J to extract an equivalent axis-angle pair. The

new rotation angle, y, is given by

j11 þ j22 þ j33 ¼ 1 þ 2 cos y ð1:6Þ

where the terms on the left-hand side are the diagonal elements of J. The equivalent

rotation axis for y 6¼ p or, for nonsymmetric matrices (when tJ 6¼ J), is obtained

from the relations:

r1 ¼ ½ j23 � j32�=2 sin y; r2 ¼ ½ j31 � j13�=2 sin y; r3 ¼ ½ j12 � j21�=2 sin y

ð1:7Þ

where r2
1 þ r2

2 þ r2
3 ¼ 1. When the product matrix is symmetric (tJ ¼ J), for

example, if y ¼ 180�, Eq. 1.6 does not apply. In this case, the following equation

is needed to determine the rotation matrix:

j11 ¼ 1 � 2ðr2
2 þ r2

3Þ j12 ¼ 2 r1r2 j13 ¼ 2 r1r3

j21 ¼ 2 r1r2 j22 ¼ 1 � 2ðr2
1 þ r2

3Þ j23 ¼ 2 r2r3

j31 ¼ 2 r1r3 j32 ¼ 2 r2r3 j33 ¼ 1 � 2ðr2
1 þ r2

2Þ
ð1:8Þ

where r2
1 þ r2

2 þ r2
3 ¼ 1. When using Eq. 1.8, the idea is to extract the maximum

component from the diagonal elements of the matrix. If j11 is of maximum

magnitude, compute:

r1 ¼ ½ j11 � j22 � j33 þ 1�1=2=2 r2 ¼ j13=2r1 r3 ¼ j13=2r1

If j22 is the maximum, compute:

r2 ¼ ½ j22 � j11 � j33 þ 1�1=2=2 r1 ¼ j12=2u2 r3 ¼ j23=2r2

If j33 is the maximum, compute:

r3 ¼ ½ j33 � j11 � j22 þ 1�1=2=2 r1 ¼ j13=2r3 r2 ¼ j23=2r3

Example 1.1 Calculate the axis-angle pair from the product matrix in Eq. 1.5 that

is equivalent to a 60� rotation about [111]A.

Solution The rotation angle, using Eq. 1.6, is

cos�1ð½0:6667 � 0:3333 � 0:6667 � 1�=2Þ ¼ y ¼ 2:300 rad

2:3000 � 180=p ¼ 131:8�
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We see by inspection that J is a nonsymmetric matrix (jij 6¼ jjiÞ. Therefore, we can

use Eq. 1.7 to compute the components of the rotation axis:

r1 ¼ ½0:6667 � ð�0:6667Þ�=2 sinð131:8Þ ¼ 0:8943

r2 ¼ ½0:3333 � ð�0:3333Þ�=2 sinð131:8Þ ¼ 0:4470

r3 ¼ ½0:6667 � 0:6667�=2 sinð131:8Þ ¼ 0

From vector algebra, we know that any ordered set of three numbers that can be

obtained from [r1 r2 r3] by multiplying all of them by the same positive constant k is

also a set of direction numbers for the vector r, in that they define the direction of

the vector. Hence choosing k to be (1/0.4470) gives: [0.8943/0.4470, 0.4470/0.4470,

0] or [210]. Therefore, the equivalent axis-angle pair is rotated by 131.8� about

[210]A.

Using the procedure just outlined with other symmetry operations of the cubic

lattice, we can calculate other axis-angle pairs that, for the purposes of expressing

the orientation relationship in a cubic bicrystal, are equivalent to a 60� rotation

about h111iA. The results are given in Table 1.2

Obviously, a completely unambiguous description of the relative orientation

between two identical crystals must contain the axis-angle pair (rather than an angle

alone). As we have just seen, however, a rotation matrix can also be used to specify

the orientation relation within a bicrystal. We have just gone to great lengths to

show how these matrix elements are computed. The advantage of expressing the

orientation relationship in this manner will be apparent in Section 1.1.3 where we

quantify the ‘‘goodness of fit’’ at the interface between grains.

1.1.2 Grain Boundary Orientations

We have been discussing orientation relationships between pairs of grains. This is

not the same as the orientation of the grain boundary. For example, Figure 1.1

shows a twinned bicrystal like that discussed earlier. As illustrated in the figure, the

grain boundary plane between two crystals with this orientation relationship need

not coincide with the twin plane. The orientation relationship between the grains

TABLE 1.2 Axis-Angle Pairs Equivalent to a

60� Rotation about h111iA in a Cubic Bicrystal

Axis Angle

h111iA 180�

h012iA 131.8�

h112iA 180�

h113iA 146.4�

h11�33iA 146.4�

h011iA 70.5�

h011iA 109.5�
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does provide us with three of the five degrees of freedom needed to specify the

grain boundary orientation, however. One of these degrees of freedom, we have

seen, is a rotation angle. The rotation is carried out about a rotation axis, which we

have been denoting by three indices of direction, [uvw]. Because an axis is a polar

vector in spherical coordinates, it can also be specified by a polar angle and an

azimuthal angle relative to the grain boundary plane. Thus, three of our five degrees

of freedom are Euler angles that, taken together, describe the orientation relation-

ship between the grains: 0 � fE � 2p; 0 � yE � p; and 0 � cE � 2p (the sub-

script E simply denotes that these are Euler angles). The remaining two degrees of

freedom define the boundary plane in the coordinate system of the reference grain.

They are spherical angles that specify the boundary plane inclination: 0 � yS � 2p;

0 � fS � p, where the subscript S denotes spherical angles.

One might naturally ask: How many different grain boundary orientations are

observable? The number of distinguishable orientations, N, depends on the preci-

sion with which the various angular measurements are made, and the number of

symmetry operators for the crystal class. For example, for a cubic bicrystal the

boundary normal can be selected in two directions, the crystals can be exchanged,

and one can apply 24 rotation operations to either crystal. There are thus 2 � 2 � 242

combinations of the five angular parameters that lead to identical bicrystals. To

generalize, if we represent the number of symmetry operations for the crystal class

by Z, the precision of the angular measurements by �, and the number of degrees of

freedom by n, we have the following formula for the number of distinguishable

orientations (Saylor et al., 2000).

N ¼ 1=ð4Z2ÞQ
n;�

ðn=�Þ

¼ ½ð2pÞðpÞð2pÞð2pÞðpÞ�=ð4Z2�5Þ ð1:9Þ
¼ 8p5=ð4Z2�5Þ

where � is in radians. The 8p5 factor is the product of the full ranges for each

angular parameter. For a cubic system, if � ¼ 0:087 (5�), Eq. 1.9 predicts 2:1 � 105

distinct boundaries. The number of distinguishable boundaries obviously increases

with increases in the angular precision.

(a) (b)

Figure 1.1 (a) The twin plane coincides with the boundary plane. (b) The twin plane and

boundary plane do not coincide.
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Despite such a large number of possible orientations, it has been observed

experimentally that grain orientation relationships do not occur in a random

manner. For example, low-energy grain boundaries like the twin boundary are

very commonly observed in cubic systems. It is hard to say whether this is a result

of thermodynamic or kinetic control. Interfacial energy minimization could be

responsible, or the activation energies for nucleation and grain growth in certain

orientations could be lower, or possibly both factors could be at work.

The Dislocation Model of Low Angle Grain Boundaries A general grain

boundary has a mixture of tilt and twist character. We can think of a pure tilt

boundary as consisting of an axis of rotation that is in the grain boundary plane

(Figure 1.2a). In contrast, twist boundaries contain an axis of rotation that is

perpendicular to the grain boundary plane (Figure 1.2b). A useful way to picture the

symmetrical tilt boundary (a boundary in which the boundary plane contains the

rotation axis and bisects the rotation angle) is to consider it as a straight array of

edge dislocations, as in Figure 1.3. In a single-crystal metal, edge dislocations

consist of extra half-planes of atoms. In ionic or covalent crystals, edge dislocations

involve extra half planes of unit cells. As long as the misorientation angle is low

(i.e., small-angle grain boundaries), tilt boundaries may be regarded as the

coalescence of these line defects into a dislocation network. The spacing

between the dislocations, D, is

D ¼ b= sin y ð1:10Þ

where b is the Burgers vector, perpendicular to the line of the dislocation, and y is

the misorientation angle.

If the dislocation density is low (the value of D is large), a semicoherent

interface results, in which regions of good fit are separated by the individually

recognizable interface dislocations. Note how the extra half-planes in Figure 1.3 all

have a single Burgers vector. In an unsymmetrical low-angle tilt boundary, different

Burgers vectors are required to accommodate the mismatch. The dislocation model

is really only valid for low-angle grain boundaries. In the cubic crystal class, for

(a) (b)

θ

θ

Figure 1.2 (a) A tilt boundary. (b) A twist boundary.
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values y >�15�, D can get so small, corresponding to a high dislocation density,

that dislocations become indistinguishable (Read and Shockley, 1950). The sym-

metrical low-angle twist boundary can similarly be represented by a screw

dislocation (Figure 1.4). Screw dislocations have been likened to multistoried

parking garages, the atomic planes spiraling around the dislocation line in the same

(a) (b)

θ
b

D

Figure 1.3 (a) A low-angle tilt boundary. (b) Representation as an array of parallel edge

dislocations.

(a) (b)

θ θ

Figure 1.4 (a) A low-angle twist boundary. (b) Representation as a screw dislocation.
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manner as a parking garage floor spirals around a central pole of the garage

(Weertman and Weertman, 1992).

1.1.3 Grain Boundary Geometry: The Coincidence Site Lattice

The evolution of our modern picture of crystalline interfaces can be summarized as

follows. The earliest geometric models of crystalline interfaces were the ‘‘amor-

phous’’ high-angle grain boundary by Hargreaves and Hill (Hargreaves and Hill,

1929), and the twin interface by the French mining engineer and crystallographer

Georges Friedel (1865–1933) (Friedel, 1926), son of organic chemist Charles

Friedel. (1832–1899). N. F. Mott first suggested that grain boundaries should

contain regions of fit and misfit (Mott, 1948). Kronberg and Wilson then pointed out

the importance of the coincidence of atom positions across grain boundaries in

influencing metal properties such as diffusion coefficients and mobilities (Kronberg

and Wilson, 1949). Ranganthan presented a general procedure for obtaining

coincidence relationships between lattices about rotation axes (Ranganathan, 1966).

The modern method for quantifying the goodness of fit between two adjacent

grains examines the number of lattice points (not atomic positions) from each grain

that coincide. In special cases, for example when the grain boundary plane is a twin

plane, the lattice sites for each of the adjacent crystals coincide in the boundary.

These are called coherent boundaries. It has long since been experimentally verified

that coherent grain boundaries possess special properties. For example, coherent

boundaries migrate faster than random boundaries during recrystallization (Aust

and Rutter, 1959).

Consider a pair of adjacent crystals. We mentally expand the two neighboring

crystal lattices until they interpenetrate and fill all space. Without loss of generality,

it is assumed that the two lattices possess a common origin. If we now hold one

crystal fixed and rotate the other, it is found that a number of lattice sites for each

crystal, in addition to the origin, coincide with certain relative orientations. The set

of coinciding points form a coincidence site lattice, or CSL, which is a sublattice

for both the individual crystals.

In order to quantify the lattice coincidence between the two grains, A and B, the

symbol � customarily designates the reciprocal of the fraction of A (or B) lattice

sites that are common to both A and B.

� ¼ Number of crystal lattice sites=Number of coincidence lattice sites ð1:11Þ

For example, if one-third of the A (or B) crystal lattice sites are coincidence points

belonging to both the A and B lattices, then, � ¼ 1=ð1=3Þ ¼ 3. The value of � also

gives the ratio between the areas enclosed by the CSL unit cell and crystal unit cell.

The value of � is a function of the lattice types and grain misorientation. The two

grains need not have the same crystal structure or unit cell parameters. Hence, they

need not be related by a rigid-body rotation. The boundary plane intersects the CSL

and will have the same periodicity as that portion of the CSL along which the

intersection occurs.
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The simple CSL model is directly applicable to the cubic crystal class. The lower

symmetry of the other crystal classes necessitates the more sophisticated formalism

known as the constrained coincidence site lattice, or CCSL (Chen and King, 1988).

In this book, we only treat cubic systems. Interestingly, whenever an even value is

obtained for � in a cubic system, it will always be found that an additional lattice

point lies in the center of the CSL unit cell. The true area ratio is then half the

apparent value. This operation can always be applied in succession, until an odd

value is obtained—thus � is always odd in the cubic system. A rigorous mathe-

matical proof of this would require that we invoke what is known as O-lattice

theory (Bollman, 1967) The O-lattice takes into account all equivalence points

between two neighboring crystal lattices. It includes as a subset not only coinciding

lattice points (the CSL) but also all nonlattice sites of identical internal coordinates.

However, to expand on that topic would be well beyond the scope of this textbook.

The interested reader is referred to Bhadeshia (1987) or Bollman (1970).

Single crystals and bicrystals with no misorientation (i.e., y¼ 0), by convention,

are denoted �1. In practice, small- or low-angle grain boundaries with a mis-

orientation angle less than 10�–15� are also included under the �1 term. Since � is

always odd, the coincidence orientation for high-angle boundaries with the largest

fraction of coinciding lattice points is �3 (signifying that 1/3 of the lattice sites

coincide). Next in line would be �5, then �7, and so on.

Figure 1.5 shows a tilt boundary between two cubic crystals. The grain boundary

plane is perpendicular to the plane of the page. In the figure, we are looking down

one of the h100i directions, and the [100] axis about which grain B is rotated is also

perpendicular to the page and passes through the origin. At the precise misorienta-

tion angle of 36.9�, one-fifth of the B crystal lattice sites are coincidence points,

which also belong to the expanded lattice of crystal A; this is a �5 CSL

misorientation. The set of coincidence points forms the CSL, the unit cell of which

is outlined. Note that the area enclosed by the CSL unit cell is five times that

enclosed by the crystal unit cell.

Fortunately, there is an easy, although tedious, way to determine the true value

for �. If an integer, N, can be found such that all the elements of the rotation matrix

become integers when multiplied by N, then that integer will be the � value. The

value of N is found simply by multiplying all the matrix elements by integers, in

increments of one beginning with the number 1, until the matrix elements are all

integers. If the value of � turns out to be even using this procedure, then the true

value is obtained by successively dividing N by two until the result is an odd

integer. This method can be used to compute the value of � for any general rotation

matrix. For example, factoring out 1/3 from R in Eq. 1.4 gives a matrix with

integral elements, in which � is equal to three:

R ¼ 1=3

2 2 �1

�1 2 2

2 �1 2

0
@

1
A

Hence, the 60� h111i twin boundary has a �3 CSL misorientation. It is also a

coherent boundary because of the large number of coincidence points along the
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twin plane itself, as shown in Figure 1.6. In this figure, we are looking down on the

h111i rotation axis. The lattice sites shown are in rows off the h111i axis, along the

set of (111) planes, as illustrated in the bottom left corner. It will be recalled that

the boundary plane intersects the CSL and will have the same periodicity as that

portion of the CSL along which the intersection occurs. Thus, not all �3 boundaries

will be coherent. For example, although rotations of 70.5� and 109.5� about h011iA

are also equivalent �3 misorientations, only the 70.5� rotation will result in a high

degree of coincidence along the h011i.

Example 1.2 The matrix corresponding to a rotation of 50.5� about [110] is given

in Bhadeshia’s monograph Worked Examples in the Geometry of Crystals as:

R ¼
0:545621 �0:545621 0:636079

0:181961 0:818039 0:545621

0:818039 0:181961 �0:545621

0
@

1
A

Calculate the value of �.

(a) (b)

Figure 1.5 A view down the [001] direction of a tilt boundary between two crystals (A, B)

with a misorientation angle of 36.9� about [001]. The grain boundary is perpendicular to

the plane of the page. Every fifth atom in the [010] direction in B is a coincidence point

(shaded). The area enclosed by the CSL unit cell (bold lines) is five times that of the crystal

unit cell, so �¼ 5.
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