PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING
CONTENTS

PREFACE xvii

PREFACE TO THE FIRST EDITION xxi

SYMBOLS AND ABBREVIATIONS xxv

PHYSICAL CONSTANTS AND CONVERSION FACTORS xxxiii

PRACTICAL FORMULAE xxxv

1 INTRODUCTION 1

1.1 Materials Processing / 1
1.2 Plasmas and Sheaths / 6
 Plasmas / 6
 Sheaths / 11
1.3 Discharges / 14
 Radio Frequency Diodes / 14
 High-Density Sources / 18
1.4 Symbols and Units / 20

2 BASIC PLASMA EQUATIONS AND EQUILIBRIUM 23

2.1 Introduction / 23
CONTENTS

2.2 Field Equations, Current, and Voltage / 24
 Maxwell’s Equations / 24
2.3 The Conservation Equations / 28
 Boltzmann’s Equation / 28
 Macroscopic Quantities / 30
 Particle Conservation / 30
 Momentum Conservation / 31
 Energy Conservation / 34
 Summary / 35
2.4 Equilibrium Properties / 35
 Boltzmann’s Relation / 37
 Debye Length / 38
 Quasi-neutrality / 40
Problems / 41

3 ATOMIC COLLISIONS

3.1 Basic Concepts / 43
 Elastic and Inelastic Collisions / 43
 Collision Parameters / 44
 Differential Scattering Cross Section / 46
3.2 Collision Dynamics / 49
 Center-of-Mass Coordinates / 49
 Energy Transfer / 52
 Small Angle Scattering / 53
3.3 Elastic Scattering / 55
 Coulomb Collisions / 55
 Polarization Scattering / 58
3.4 Inelastic Collisions / 63
 Atomic Energy Levels / 63
 Electric Dipole Radiation and Metastable Atoms / 67
 Electron Ionization Cross Section / 70
 Electron Excitation Cross Section / 72
 Ion–Atom Charge Transfer / 73
 Ion–Atom Ionization / 78
3.5 Averaging Over Distributions and Surface Effects / 78
 Averaging Over a Maxwellian Distribution / 78
 Energy Loss per Electron–Ion Pair Created / 81
 Surface Effects / 82
Problems / 83
4 PLASMA DYNAMICS

4.1 Basic Motions / 87
 Motion in Constant Fields / 87
 \(E \times B \) Drifts / 90
 Energy Conservation / 91

4.2 Nonmagnetized Plasma Dynamics / 93
 Plasma Oscillations / 93
 Dielectric Constant and Conductivity / 95
 Ohmic Heating / 97
 Electromagnetic Waves / 99
 Electrostatic Waves / 101

4.3 Guiding Center Motion / 102
 Parallel Force / 104
 Adiabatic Constancy of the Magnetic Moment / 105
 Drift Due to Motion Along Field Lines (Curvature Drift) / 106
 Drift Due to Gyration (Gradient Drift) / 107
 Polarization Drift / 108

4.4 Dynamics of Magnetized Plasmas / 110
 Dielectric Tensor / 110
 The Wave Dispersion / 112

4.5 Waves in Magnetized Plasmas / 113
 Principal Electron Waves / 115
 Principal Waves Including Ion Dynamics / 118
 The CMA Diagram / 121

4.6 Wave Diagnostics / 123
 Interferometer / 123
 Cavity Perturbation / 126
 Wave Propagation / 127

Problems / 129

5 DIFFUSION AND TRANSPORT

5.1 Basic Relations / 133
 Diffusion and Mobility / 133
 Free Diffusion / 134
 Ambipolar Diffusion / 135

5.2 Diffusion Solutions / 136
 Boundary Conditions / 136
5.3 Low-Pressure Solutions / 144
 Variable Mobility Model / 144
 Langmuir Solution / 146
 Heuristic Solutions / 147
5.4 Diffusion Across a Magnetic Field / 149
 Ambipolar Diffusion / 152
5.5 Magnetic Multipole Confinement / 155
 Magnetic Fields / 155
 Plasma Confinement / 157
 Leak Width w / 159
Problems / 160

6 DIRECT CURRENT (DC) SHEATHS 165

6.1 Basic Concepts and Equations / 165
 The Collisionless Sheath / 167
6.2 The Bohm Sheath Criterion / 168
 Plasma Requirements / 169
 The Presheath / 170
 Sheath Potential at a Floating Wall / 172
 Collisional Sheaths / 173
 Simulation Results / 174
6.3 The High-Voltage Sheath / 175
 Matrix Sheath / 175
 Child Law Sheath / 176
6.4 Generalized Criteria for Sheath Formation / 178
 Electronegative Gases / 179
 Multiple Positive Ion Species / 182
6.5 High-Voltage Collisional Sheaths / 184
6.6 Electrostatic Probe Diagnostics / 185
 Planar Probe With Collisionless Sheath / 187
 Non-Maxwellian Electrons / 189
 Cylindrical Probe With a Collisionless Sheath / 191
 Double Probes and Emissive Probes / 195
 Effect of Collisions and DC Magnetic Fields / 198
 Probe Construction and Circuits / 199
Probes in Time-Varying Fields / 201
Problems / 203

7 CHEMICAL REACTIONS AND EQUILIBRIUM / 207

7.1 Introduction / 207
7.2 Energy and Enthalpy / 208
7.3 Entropy and Gibbs Free Energy / 216
 Gibbs Free Energy / 219
7.4 Chemical Equilibrium / 221
 Pressure and Temperature Variations / 224
7.5 Heterogeneous Equilibrium / 226
 Equilibrium Between Phases / 226
 Equilibrium at a Surface / 229
Problems / 231

8 MOLECULAR COLLISIONS / 235

8.1 Introduction / 235
8.2 Molecular Structure / 236
 Vibrational and Rotational Motion / 237
 Optical Emission / 239
 Negative Ions / 240
8.3 Electron Collisions With Molecules / 241
 Dissociation / 243
 Dissociative Ionization / 245
 Dissociative Recombination / 246
 Example of Hydrogen / 247
 Dissociative Electron Attachment / 247
 Polar Dissociation / 250
 Metastable Negative Ions / 251
 Electron Impact Detachment / 251
 Vibrational and Rotational Excitations / 252
 Elastic Scattering / 253
8.4 Heavy-Particle Collisions / 253
 Resonant and Nonresonant Charge Transfer / 255
 Positive–Negative Ion Recombination / 256
 Associative Detachment / 258
 Transfer of Excitation / 260
 Rearrangement of Chemical Bonds / 262
Contents

Ion–Neutral Elastic Scattering / 263
Three-Body Processes / 264

8.5 Reaction Rates and Detailed Balancing / 265
Temperature Dependence / 266
The Principle of Detailed Balancing / 267
A Data Set for Oxygen / 270

8.6 Optical Emission and Actinometry / 274
Optical Emission / 275
Optical Actinometry / 277
O Atom Actinometry / 278
Problems / 279

9 CHEMICAL KINETICS AND SURFACE PROCESSES / 285

9.1 Elementary Reactions / 285
Relation to Equilibrium Constant / 288

9.2 Gas-Phase Kinetics / 289
First-Order Consecutive Reactions / 290
Opposing Reactions / 292
Bimolecular Association With Photon Emission / 293
Three-Body Association / 295
Three-Body Positive–Negative Ion Recombination / 297
Three-Body Electron–Ion Recombination / 298

9.3 Surface Processes / 299
Positive Ion Neutralization and Secondary
Electron Emission / 299
Adsorption and Desorption / 303
Fragmentation / 308
Sputtering / 308

9.4 Surface Kinetics / 311
Diffusion of Neutral Species / 311
Loss Rate for Diffusion / 312
Adsorption and Desorption / 315
Dissociative Adsorption and Associative Desorption / 316
Physical Adsorption / 316
Reaction With a Surface / 317
Reactions on a Surface / 318
Surface Kinetics and Loss Probability / 319
Problems / 320
10 PARTICLE AND ENERGY BALANCE IN DISCHARGES 327

10.1 Introduction / 327
10.2 Electropositive Plasma Equilibrium / 330
 Basic Properties / 330
 Uniform Density Discharge Model / 333
 Nonuniform Discharge Model / 336
 Neutral Radical Generation and Loss / 338
10.3 Electronegative Plasma Equilibrium / 340
 Differential Equations / 342
 Boltzmann Equilibrium for Negative Ions / 345
 Conservation Equations / 348
 Validity of Reduced Equations / 349
10.4 Approximate Electronegative Equilibria / 350
 Global Models / 351
 Parabolic Approximation For Low Pressures / 354
 Flat-Topped Model For Higher Pressures / 358
10.5 Electronegative Discharge Experiments and Simulations / 359
 Oxygen Discharges / 360
 Chlorine Discharges / 366
10.6 Pulsed Discharges / 369
 Pulsed Electropositive Discharges / 370
 Pulsed Electronegative Discharges / 376
 Neutral Radical Dynamics / 380

Problems / 381

11 CAPACITIVE DISCHARGES 387

11.1 Homogeneous Model / 388
 Plasma Admittance / 390
 Sheath Admittance / 391
 Particle and Energy Balance / 395
 Discharge Parameters / 397
11.2 Inhomogeneous Model / 399
 Collisionless Sheath Dynamics / 400
 Child Law / 402
 Sheath Capacitance / 403
 Ohmic Heating / 404
 Stochastic Heating / 405
 Self-Consistent Model Equations / 406
Scalings / 410
Collisional Sheaths / 411
Low and Moderate Voltages / 413
Ohmic Heating in the Sheath / 413
Self-Consistent Collisionless Heating Models / 414
Dual-Frequency and High-Frequency Discharges / 416
Electronegative Plasmas / 417

11.3 Experiments and Simulations / 418
Experimental Results / 419
Particle-in-Cell Simulations / 423
Role of Secondaries / 428
Implications for Modeling / 429

11.4 Asymmetric Discharges / 430
Capacitive Voltage Divider / 430
Spherical Shell Model / 432

11.5 Low-Frequency RF Sheaths / 434

11.6 Ion Bombarding Energy at Electrodes / 441

11.7 Magnetically Enhanced Discharges / 448

11.8 Matching Networks and Power Measurements / 452
Power Measurements / 456

Problems / 457

12 INDUCTIVE DISCHARGES 461

12.1 High-Density, Low-Pressure Discharges / 462
Inductive Source Configurations / 462
Power Absorption and Operating Regimes / 464
Discharge Operation and Coupling / 466
Matching Network / 469

12.2 Other Operating Regimes / 470
Low-Density Operation / 470
Capacitive Coupling / 471
Hysteresis and Instabilities / 473
Power Transfer Efficiency / 476
Exact Solutions / 476

12.3 Planar Coil Configuration / 477

12.4 Helical Resonator Discharges / 483

Problems / 487
13 WAVE-HEATED DISCHARGES

13.1 Electron Cyclotron Resonance Discharges / 492
 Characteristics and Configurations / 492
 Electron Heating / 497
 Resonant Wave Absorption / 501
 Model and Simulations / 507
 Plasma Expansion / 509
 Measurements / 512

13.2 Helicon Discharges / 513
 Helicon Modes / 514
 Antenna Coupling / 517
 Helicon Mode Absorption / 520
 Neutral Gas Depletion / 525

13.3 Surface Wave Discharges / 527
 Planar Surface Waves / 528
 Cylindrical Surface Waves / 530
 Power Balance / 530

Problems / 532

14 DIRECT CURRENT (DC) DISCHARGES

14.1 Qualitative Characteristics of Glow Discharges / 535
 Positive Column / 536
 Cathode Sheath / 537
 Negative Glow and Faraday Dark Space / 537
 Anode Fall / 537
 Other Effects / 538
 Sputtering and Other Configurations / 539

14.2 Analysis of the Positive Column / 539
 Calculation of T_e / 540
 Calculation of E and n_0 / 541
 Kinetic Effects / 542

14.3 Analysis of the Cathode Region / 543
 Vacuum Breakdown / 544
 Cathode Sheath / 546
 The Negative Glow and Faraday Dark Space / 550

14.4 Hollow Cathode Discharges / 551
 Simple Discharge Model / 552
 Metal Vapor Production in a Hollow Cathode Discharge / 555
14.5 Planar Magnetron Discharges / 559
 Limitations of Glow Discharge
 Sputtering Source / 559
 Magnetron Configuration / 560
 Discharge Model / 561
14.6 Ionized Physical Vapor Deposition / 564
Problems / 568

15 ETCHING

15.1 Etch Requirements and Processes / 571
 Plasma Etch Requirements / 572
 Etch Processes / 576
15.2 Etching Kinetics / 579
 Surface Kinetics / 579
 Discharge Kinetics and Loading Effect / 583
 Chemical Framework / 585
15.3 Halogen Atom Etching of Silicon / 586
 Pure Chemical F-Atom Etching / 587
 Ion Energy-Driven F-Atom Etching / 589
 CF$_4$ Discharges / 592
 O$_2$ and H$_2$ Feedstock Additions / 596
 Cl-Atom Etching / 598
15.4 Other Etch Systems / 600
 F and CF$_x$ Etching of SiO$_2$ / 600
 Si$_3$N$_4$ Etching / 602
 Aluminum Etching / 602
 Copper Etching / 603
 Resist Etching / 604
15.5 Substrate Charging / 606
 Gate Oxide Damage / 607
 Grounded Substrate / 607
 Nonuniform Plasmas / 608
 Transient Damage During Etching / 611
 Electron Shading Effect / 612
 Radiofrequency Biasing / 613
 Etch Profile Distortions / 614
Problems / 616
16 DEPOSITION AND IMPLANTATION 619

16.1 Introduction / 619
16.2 Plasma-Enhanced Chemical Vapor Deposition / 621
 Amorphous Silicon / 622
 Silicon Dioxide / 625
 Silicon Nitride / 629
16.3 Sputter Deposition / 630
 Physical Sputtering / 630
 Reactive Sputtering / 632
16.4 Plasma-Immersion Ion Implantation (PIII) / 634
 Collisionless Sheath Model / 636
 Collisional Sheath Model / 641
 Applications of PIII to Materials Processing / 644
Problems / 646

17 DUSTY PLASMAS 649

17.1 Qualitative Description of Phenomena / 649
17.2 Particle Charging and Discharge Equilibrium / 651
 Equilibrium Potential and Charge / 651
 Discharge Equilibrium / 656
17.3 Particulate Equilibrium / 658
17.4 Formation And Growth Of Dust Grains / 662
17.5 Physical Phenomena And Diagnostics / 668
 Strongly Coupled Plasmas / 668
 Dust Acoustic Waves / 669
 Driven Particulate Motion / 670
 Laser Light Scattering / 671
17.6 Removal or Production of Particulates / 673
Problems / 675

18 KINETIC THEORY OF DISCHARGES 679

18.1 Basic Concepts / 679
 Two-Term Approximation / 680
 The Krook Collision Operator / 680
 Two-Term Collisional Kinetic Equations / 681
 Diffusion and Mobility / 684
 Druyvesteyn Distribution / 685
 Electron Distribution in an RF Field / 686
Effective Electrical Conductivity / 687
18.2 Local Kinetics / 689
18.3 Nonlocal Kinetics / 693
18.4 Quasi-Linear Diffusion and Stochastic Heating / 699
 Quasi-linear Diffusion Coefficient / 700
 Stochastic Heating / 703
 Relation to Velocity Kick Models / 704
 Two Term Kinetic Equations / 704
18.5 Energy Diffusion in a Skin Depth Layer / 706
 Stochastic Heating / 706
 Effective Collision Frequency / 708
 Energy Distribution / 709
18.6 Kinetic Modeling of Discharges / 711
 Non-Maxwellian Global Models / 711
 Inductive Discharges / 712
 Capacitive Discharges / 715
Problems / 719

APPENDIX A. COLLISION DYNAMICS 723
 Coulomb Cross Section / 725

APPENDIX B. THE COLLISION INTEGRAL 727
 Boltzmann Collision Integral / 727
 Maxwellian Distribution / 728

APPENDIX C. DIFFUSION SOLUTIONS FOR VARIABLE MOBILITY MODEL 731

REFERENCES 735

INDEX 749
While the state-of-the-art has advanced dramatically in the ten years since publication of our first edition, the fundamentals still abide. The first, nine chapters on fundamentals of low pressure partially ionized plasmas (Chapters 2–6) and gas-phase and surface physics and chemistry (Chapters 7–9) have been revised mainly to clarify the presentation of the material, based on the authors’ continuing teaching experience and increased understanding. For plasmas, this includes significant changes and additions to Sections 5.2 and 5.3 on diffusion and diffusion solutions, 6.2 on the Bohm criterion, 6.4 on sheaths with multiple positive ions, and 6.6 on Langmuir probes in time-varying fields. For gas phase and surface physics and chemistry it includes revised presentations in Sections 9.2 and 9.3 of sputtering physics, loss rates for neutral diffusion, and loss probabilities. The argon and oxygen rate coefficient data sets in Chapters 3 and 8 have been brought up to date.

Chapters 10–14 on discharges have been both revised and expanded. During the last decade, the processing community has achieved a more thorough understanding of electronegative discharge equilibrium, which lies at the core of the fluorine-, chlorine-, and oxygen-containing plasmas used for processing. Electronegative discharges are described in the new or revised Sections 10.3–10.5. An important new processing opportunity is the use of pulsed power discharges, which are described in a new Section 10.6. Chapter 11 on capacitive discharges has been expanded to incorporate new material on collisionless sheaths, dual-frequency, high-frequency, and electronegative discharges. New Sections 11.5 and 11.6 have been added on high-density rf sheaths and ion energy distributions, which are important for rf-biased, high-density processing discharges. Chapter 12 on inductive discharges now incorporates the electron inertia inductance in the discharge model and includes a new subsection on hysteresis and instabilities, whose effects can limit the performance
of these discharges for processing. Section 13.2 on helicon discharges has been expanded to incorporate new understanding of helicon mode absorption and neutral gas depletion, both important for helicon discharge modeling. Two Sections 14.4 and 14.6 have been added on hollow cathode discharges and on ionized physical vapor deposition. Hollow cathode discharges have important applications in both processing and for gas lasers, and serve as an example of low pressure dc discharge analysis. Ionized physical vapor deposition has some important applications for thin film deposition and illustrates the combined use of dc and rf discharges for processing.

Chapters 15 and 16 on etching, deposition, and implantation have been brought up to date. In Section 15.4, a brief subsection on copper etching has been included. A new Section 15.5 on charging effects has been added, since differential substrate charging is now fairly well understood and is known to damage thin film oxides.

During the last decade, particulates in discharges have been studied both with a view to controlling their formation, to avoid generating defects during processing, and for producing powders and nanocrystalline materials. In a new Chapter 17 on dusty plasmas, the physics and technology of this important area is described, including particulate charging and discharge equilibrium, particulate equilibrium, particulate formation and growth, diagnostics, and removal and production techniques.

Also during the last decade, discharge analysis based on kinetic theory has advanced considerably, and kinetic techniques have found increasing use. In a new Chapter 18, we give an introduction to the kinetic theory of discharges, including the basic concepts, local and nonlocal kinetics, quasi-linear diffusion and stochastic heating, and examples of discharge kinetic modeling.

Errors in the first and second printings of the first edition have been corrected. All topics treated have been brought up to date and incorporate the latest references to the literature. The list of references has been expanded from about 6 to 14 pages.

Because we emphasize the development of a strong foundation in the fundamental physical and chemical principles, our one-semester course teaching this material to a mixed group of mainly graduate students in electrical, chemical, and nuclear engineering, materials science, and physics has not changed much over the years. The outline in the first preface for a 30, 1.5 hour lecture course is still relevant, with, perhaps, some additional emphasis on electronegative plasma equilibria and on pulsed plasmas. (Some sections have been renumbered.)

Our colleagues C.K. Birdsall and J.P. Verboncoeur and the plasma theory and simulation group (PTSG) at Berkeley continue to maintain a set of user-friendly programs for PCs and workstations for computer-aided instruction and demonstrations. The software and manuals can be downloaded from their web site http://ptsg.eecs.berkeley.edu.

In preparing this revision, we have received encouragement and benefited from discussions with many friends and colleagues. We thank I.D. Kaganovich for carefully reviewing Chapter 18 on kinetic theory. We are indebted to J.T. Gudmundsson for assistance in updating the argon and oxygen rate coefficient data sets (for more complete data, see his web site http://www.raunvis.hi.is/tumi/), and to Z. Petrović
and D. Marić, who provided assistance in updating the field-intensified ionization coefficient and the breakdown voltages given in Chapter 14. We thank B. Cluggish, R.N. Franklin, V.A. Godyak, and M. Kilgore for their comments clarifying various calculations. We have benefited greatly from the insight and suggestions of our colleagues C.K. Birdsall, J.P. Booth, R.W. Boswell, P. Chabert, C. Charles, S. Cho, T.H. Chung, J.W. Coburn, R.H. Cohen, D.J. Economou, D. Fraser, D.A. Graves, D.A. Hammer, Y.T. Lee, L.D. Tsendin, M. Tuszewski, J.P. Verboncoeur, A.E. Wendt, and H.F. Winters. Our recent postdoctoral scholars S. Ashida, J. Kim, T. Kimura, K. Takechi, and H.B. Smith, and recent graduate students J.T. Gudmundsson, E. Kawamura, S.J. Kim, I.G. Kouznetsov, A.M. Marakhtanov, K. Patel, Z. Wang, A. Wu, and Y. Wu, have taught us much, and some of their work has been incorporated into our revised text. The authors gratefully acknowledge the hospitality of R.W. Boswell at the Australian National University, Canberra, and M.G. Haines at Imperial College, London, where considerable portions of the revision were written.

MICHAEL A. LIEBERMAN
ALLAN J. LICHTENBERG

September, 2004
This book discusses the fundamental principles of partially ionized, chemically reactive plasma discharges and their use in thin-film processing. Plasma processing is a high-technology discipline born out of the need to access a parameter space in materials processing unattainable by strictly chemical methods. The field is interdisciplinary, combining the areas of plasma physics, surface science, gas-phase chemistry, and atomic and molecular physics. The common theme is the creation and use of plasmas to activate a chain of chemical reactions at a substrate surface. Our treatment is mainly restricted to discharges at low pressures, <1 Torr, which deliver activation energy, but not heat, to the surface. Plasma-based surface processes are indispensable for manufacturing the integrated circuits used by the electronics industry, and we use thin-film processes drawn from this field as examples. Plasma processing is also an important technology in the aerospace, automotive, steel, biomedical, and toxic waste management industries.

In our treatment of the material, we emphasize the development of a strong foundation in the fundamental physical and chemical principles that govern both discharges and gas- and surface-phase processes. We place little emphasis on describing state-of-the-art discharges and thin-film processes; while these change with time, the fundamentals abide. Our treatment is quantitative and emphasizes the physical insight and skills needed both to do back-of-the-envelope calculations and to do first-cut analyses or designs of discharges and thin-film processes. Practical graphs and tables are included to assist in the analysis. We give many examples throughout the book.

The book is both a graduate text, including exercises for the student, and a research monograph for practicing engineers and scientists. We assume that the reader has the usual undergraduate background in mathematics (2 years), physics (1 1/2 years), and, chemistry (1/2 or 1 year). Some familiarity with partial differential equations as
commonly taught in courses on electromagnetics or fluid dynamics at the junior or senior undergraduate level is also assumed.

After an introductory chapter, the book is divided into four parts: low-pressure partially ionized plasmas (Chapters 2–6); gas and surface physics and chemical dynamics (Chapters 7–9); plasma discharges (Chapters 10–14); and plasma processing (Chapters 15 and 16). Atomic and molecular collision processes have been divided into two relatively self-contained chapters (Chapters 3 and 8, respectively) inserted before the corresponding chapters on kinetics in each case. This material may be read lightly or thoroughly as desired. Plasma diagnostics appear in concluding sections (Sections 4.6, 6.6, 8.6, and 11.6) of various chapters and often also serve as applications of the ideas developed in the chapters.

For the last five years, the authors have taught a one-semester course based on this material to a mixed group of mainly graduate students in electrical, chemical, and nuclear engineering, materials science, and physics. A typical syllabus follows for 30 lectures, each $1\frac{1}{2}$ hours in length:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2 (light coverage)</td>
</tr>
<tr>
<td>4</td>
<td>1 (Sections 4.1 and 4.2 excluding waves, only)</td>
</tr>
<tr>
<td>5</td>
<td>2 (Sections 5.1–5.3 only)</td>
</tr>
<tr>
<td>6</td>
<td>3 (omit Section 6.4)</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>2 (light coverage, omit Section 8.6)</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>1 (omit Section 10.3)</td>
</tr>
<tr>
<td>11</td>
<td>2 (Sections 11.1 and 11.2 only)</td>
</tr>
<tr>
<td>12</td>
<td>1 (Section 12.1 only)</td>
</tr>
<tr>
<td>13</td>
<td>1 (Section 13.1 only)</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>2 (omit Section 16.4)</td>
</tr>
</tbody>
</table>

The core ideas of the book are developed in the sections of Chapters 2, 4–7, 9, and 10 listed in the syllabus. Atomic and molecular collisions (Chapters 3 and 8) can be emphasized more or less, but some coverage is desirable. The remaining chapters (Chapters 11–16), as well as some sections within each chapter, are relatively self-contained and topics can be chosen according to the interests of the instructor. More specialized material on guiding center motion (Section 4.3), dynamics (Section 4.4), waves (Section 4.5) and diffusion in magnetized plasmas (Sections 5.4 and 5.5) can generally be deferred until familiarity with the core material has been developed.
Our colleagues C.K. Birdsall and V. Vahedi and the plasma simulation group at Berkeley have developed user-friendly programs for PCs and workstations for computer-aided instruction and demonstrations. A number of concepts in discharge dynamics have been illustrated using various output results from these programs (see Figures 1.11, 2.2, and 6.3). We typically do four or five 20-minute simulation demonstrations in the course during the semester using this software. The software and manuals can be obtained by contacting the Software Distribution Office, Industrial Liaison Program, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720; the electronic mail address, telephone, and fax numbers are software@eecs.berkeley.edu, (510) 643-6687, and (510) 643-6694, respectively.

This book has been three years in writing. We have received encouragement and benefited from discussions with many friends and colleagues. We acknowledge here those who contributed significantly to our enterprise. We are indebted to D.L. Flamm who was a MacKay Visiting Lecturer at Berkeley in 1988–89 and co-taught (with A.J.L.) an offering of our course in which he emphasized the chemical principles of plasma processing. One of the authors (M.A.L.) has taught abbreviated versions of the material in this book to process engineers in various short courses, along with his colleagues C.K. Birdsall, D.B. Graves, and V. Vahedi. We have benefited greatly from their insight and suggestions. Our colleagues N. Cheung, D. Graves, D. Hess, and S. Savas, our postdoctoral scholars C. Pico and R. Stewart, and our graduate students D. Carl, K. Kalpakjian, C. Lee, R. Lynch, G. Misium, R. Moroney, K. Niazi, A. Sato, P. Wainman, A. Wendt, M. Williamson, and B. Wood have taught us much, and some of their work has been incorporated into our text. Some of the material in Chapters 10, 12, and 13 is based on a review article by R.A. Gottscho and one of the authors (M.A.L.) in Physics of Thin Films, Vol. 18, edited by M. Francombe and J.L. Vossen, Academic Press, New York, 1994. We thank V.A. Godyak, M.B. Lieberman, and S. Brown for reviewing several chapters and suggesting clarifications of the text. W.D. Getty has used a preprint of our manuscript to teach a course similar to ours, and the final text has benefited from his comments and suggestions. Many of the ideas expressed in the book were developed by the authors while working on grants and contracts supported by the National Science Foundation, the Department of Energy, the Lawrence Livermore National Laboratory, the State of California MICRO Program, the California Competitive Technology Program, SEMATECH and the Semiconductor Research Corporation, IBM, Applied Materials, and Motorola. The authors gratefully acknowledge the hospitality of M.G. Haines at Imperial College, London (M.A.L.), and of R. Boswell at the Australian National University, Canberra (A.J.L.), where much of the manuscript was developed. We gratefully thank E. Lichtenberg and P. Park for typing portions of the manuscript.
SYMBOLS AND ABBREVIATIONS

SYMBOLS

a radius (m); atomic radius; \(a_0 \), Bohr radius; \(a_j \), chemical activity of species \(j \); \(a_v \), etching anisotropy

a acceleration (m/s^2)

A area (m^2); a constant; \(A_R \), reduced mass (amu)

b impact parameter (m); radius (m)

B magnetic induction (T); a constant; \(B_{\text{rot}} \), rotational constant of molecule

c velocity of light in vacuum

C a constant; capacitance (F/m); \(C_V \), specific heat at constant volume (J/mol K); \(C_p \), specific heat at constant pressure

C a contour or closed loop

d denotes an exact differential

delta denotes a nonexact differential (Chapter 7)

d distance (m); plasma size (m)

D diffusion coefficient (m^2/s); displacement vector (C/m^2); \(D_a \), ambipolar diffusion coefficient; \(D_{a+} \), ambipolar diffusion coefficient in the presence of negative ions; \(D_v \), velocity space diffusion coefficient (m^3/s^3); \(D_E \), energy diffusion coefficient (V^2/s); \(D_{\text{SiO}_2} \), deposition rate of silicon dioxide (m/s)

e unsigned charge on an electron (1.602 \times 10^{-19} \text{ C})

e the natural base (2.718)

E electric field (V/m); etch (or deposition) rate (Å/min)

E the voltage equivalent of the energy (V); i.e., energy(J) = eE (V)

f frequency (Hz); distribution function (m^{-6} s^{-3}); \(f_m \), Maxwellian distribution; \(f_{\text{pe}} \), electron plasma frequency; \(f_{\text{pi}} \), ion plasma frequency
Symbols and Abbreviations

f_c collisional force per unit volume (N/m^3)
F force (N)
g degeneracy; \bar{g}, statistical weight; energy distribution function; gravitational constant
g denotes a gas
G Gibbs free energy (J); volume ionization rate (m^{-3} s^{-1}); G_f, Gibbs free energy of formation; G_r, Gibbs free energy of reaction; conductance (\Omega^{-1}); particle density source (m^{-3} s^{-1})
h center-to-edge density ratio; h_y, axial ratio; h_R, radial ratio
H enthalpy (J); magnetic field (A/m); height (m); H_f, enthalpy of formation; H_r, enthalpy of reaction
H Boltzmann H function
i integer
I electrical current (A); differential scattering cross section (m^2/sr); I_{AB}, I_{mol}, moment of inertia of molecule (kg m^2)
I modified Bessel function of the first kind
j \sqrt{-1}; integer
J electrical current density (A/m^2); rotational quantum number
J Bessel function of the first kind
\mathcal{J} \mathcal{J}_j denotes chemical species j
k Boltzmann’s constant (1.381 \times 10^{-23} J/K); wave number or wave vector (m^{-1})
K first-order (s^{-1}), second-order (m^3/s), or third-order (m^6/s) rate constant
K modified Bessel function of the second kind
K equilibrium constant
l discharge length (m); antenna length (m); quantum number; integer
l denotes a liquid
\ell denotes length for a line integral
L length (m); volume loss rate (m^{-3} s^{-1}); inductance (H); particle density sink (m^{-3} s^{-1})
m electron mass (9.11 \times 10^{-31} kg); mass (kg); azimuthal mode number; m_l, m_s, and m_J, quantum numbers for axial component of orbital, spin, and total angular momentum
M ion mass (kg)
\mathcal{M} number of chemical species
n particle density (m^{-3}); principal quantum number (an integer); n_i, ion density; n_e, electron density; n_g, neutral gas density
n' area density (m^{-2}); n'_0, area density of surface sites
N quantity of a substance (mol); index of refraction of a wave
N number of turns
p pressure (N/m^2); particle momentum (kg m/s); p', standard pressure (1 bar or 1 atm); p_d, electric dipole moment (C m); p_{ohm}, ohmic power density (W/m^3)
P power (W); probability
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q)</td>
<td>electric charge (C)</td>
</tr>
<tr>
<td>(\mathbf{q})</td>
<td>heat flow vector (W/m²)</td>
</tr>
<tr>
<td>(Q)</td>
<td>heat (J); electric charge (C)</td>
</tr>
<tr>
<td>(\dot{Q})</td>
<td>resonant circuit or cavity quality factor</td>
</tr>
<tr>
<td>(r)</td>
<td>radial position (m); (r_c), gyroradius; (r_{ce}), electron gyroradius</td>
</tr>
<tr>
<td>(R)</td>
<td>gas constant (8.314 J/(K mol)); cylinder radius (m); center-of-mass coordinate (m); nuclear separation (m); reaction rate (m⁻³ s⁻¹); resistance (Ω)</td>
</tr>
<tr>
<td>(s)</td>
<td>sheath thickness (m); sticking coefficient; (\tilde{s}), thermal sticking coefficient; (s_v) or (s_h), etching selectivity</td>
</tr>
<tr>
<td>(S)</td>
<td>denotes a solid</td>
</tr>
<tr>
<td>(S)</td>
<td>energy flux (W/(m² s)); entropy (J/K); closed surface area (m²); (S_p), pumping speed (m³/s)</td>
</tr>
<tr>
<td>(S)</td>
<td>denotes a closed surface</td>
</tr>
<tr>
<td>(t)</td>
<td>time (s)</td>
</tr>
<tr>
<td>(T)</td>
<td>temperature (K); (T_0), standard temperature (298 K)</td>
</tr>
<tr>
<td>(T)</td>
<td>temperature in units of volts (V)</td>
</tr>
<tr>
<td>(u)</td>
<td>average velocity (m/s); (u_B), Bohm velocity; (u_E), (\mathbf{E} \times \mathbf{B}) velocity; (u_D), diamagnetic drift velocity</td>
</tr>
<tr>
<td>(U)</td>
<td>energy (J); internal energy (J); potential energy (J)</td>
</tr>
<tr>
<td>(v)</td>
<td>velocity (m/s); vibrational quantum number; (\tilde{v}), average speed; (v_{th}), thermal velocity; (v_R), relative velocity; (v_{ph}), phase velocity</td>
</tr>
<tr>
<td>(V)</td>
<td>voltage or electric potential (V); (\tilde{V}), rf voltage; (\overline{V}), dc or time-average voltage</td>
</tr>
<tr>
<td>(Y)</td>
<td>volume (m³)</td>
</tr>
<tr>
<td>(W)</td>
<td>energy per unit volume (J/m³); width (m)</td>
</tr>
<tr>
<td>(W)</td>
<td>kinetic energy (J); work (J)</td>
</tr>
<tr>
<td>(x)</td>
<td>rectangular coordinate (m); (x_j), mole fraction of species (j); (x_{iz}), fractional ionization</td>
</tr>
<tr>
<td>(X)</td>
<td>reactance (Ω)</td>
</tr>
<tr>
<td>(y)</td>
<td>rectangular coordinate (m)</td>
</tr>
<tr>
<td>(Y)</td>
<td>admittance (Ω⁻¹)</td>
</tr>
<tr>
<td>(z)</td>
<td>rectangular or axial cylindrical coordinate (m)</td>
</tr>
<tr>
<td>(Z)</td>
<td>relative charge on an ion, in units of e; impedance (Ω)</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>spatial rate of variation (m⁻¹); spatial attenuation or decay constant (m⁻¹); first Townsend coefficient (m⁻¹); ratio of negative ion to electron density; (\alpha_j), stochiometric coefficient of species (j); (\alpha_p), atomic or molecular polarizability (m³)</td>
</tr>
<tr>
<td>(\beta)</td>
<td>spatial rate of variation (m⁻¹); a constant</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>secondary electron emission coefficient; wall loss probability; ratio of electron-to-ion temperature; ratio of specific heats; complex propagation constant; (\gamma_{se}), secondary electron emission coefficient; (\gamma_{sput}), sputtering coefficient</td>
</tr>
<tr>
<td>(\Gamma)</td>
<td>particle flux (m⁻² s⁻¹)</td>
</tr>
<tr>
<td>(\Gamma)</td>
<td>the Gamma function</td>
</tr>
</tbody>
</table>
δ Dirac delta function; layer thickness (m); δ_p, collisionless skin depth (m); δ_c, collisional skin depth (m); δ_e, anomalous skin depth (m)
Δ denotes the change of a quantity
ε dielectric constant (F/m); ε_0, vacuum permittivity (8.854 × 10^{-12} F/m);
 ε_p, plasma dielectric constant
ξ a small displacement (m); ξ_L, fractional energy loss for elastic collision
θ angle (rad); spherical polar angle; scattering angle in laboratory system;
 fractional surface coverage
Θ scattering angle in center of mass system (rad)
η efficiency factor
κ relative dielectric constant; κ_p, relative plasma dielectric constant; κ_T,
 thermal conductivity
λ mean free path (m); λ_c, collisional mean free path; λ_e, electron mean free path;
 λ_i, ion mean free path; λ_{De}, electron Debye length (m)
Λ diffusion length (m); ratio of Debye length to minimum impact parameter
μ mobility (m^2/V s); chemical potential (J/mol); μ_0, vacuum permeability
 (4π × 10^{-7} H/m); μ_{mag}, magnetic moment
ν collision or interaction frequency (s^{-1} or Hz); ν_c, collision frequency
ζ a constant
τ 3.1416
Π stress tensor (N/m^2)
ρ volume charge density (C/m^3); ρ_s, surface charge density (C/m^2)
σ cross section (m^2); σ_{dc}, dc electrical conductivity (Ω^{-1} m^{-1}); σ_{rf}, rf
electrical conductivity
τ mean free time (s); time constant (s); τ_c, collision time
φ angle (rad); spherical azimuthal angle
ψ magnetic flux (T m^2)
Φ electric potential (V); Φ_p, plasma potential; Φ_w, wall potential
χ angle (rad); χ_{01}, first zero of zero order Bessel function
ψ spherical polar angle in velocity space
Ψ helix pitch (rad)
ω radian frequency (rad/s); ω_{pe}, electron plasma frequency; ω_c, gyration
 frequency; ω_{ce}, electron gyration frequency
Ω solid angle (sr)
∇, ∇_r vector spatial derivative; ∇_v, vector velocity derivative; ∇_T, vector
derivative in total energy coordinates
A scalar
A vector
A unit vector (has unit magnitude)
A oscillating or rf part
A average or dc part; equilibrium value
A dA/dt
A d^2A/dt^2
⟨A⟩ average