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CHAPTER 1
Introduction

E xperience, how much and of what, is a valuable commodity. It represents
a major difference between an airline pilot and a New York cab driver,

a surgeon and a butcher, and a successful financier and a cashier at your
local grocer’s. Experience with data and its analysis, experience constructing
portfolios, experience in trading, and even experience losing money (one ex-
perience we could all do without) are part of the education of the financially
literate. Of course, few of us have the courage to approach the manager of the
local bank and ask for a few million so that we can acquire this experience,
and fewer bank managers have the courage to accede to our request. The
“joy of simulation” is that you do not need to have a Boeing 767 to fly one,
and you don’t need millions of dollars to acquire considerable experience
in valuing financial products, constructing portfolios, and testing trading
rules. Of course, if your trading rule is to buy condos in Florida because you
expect that all boomers will wish to retire there, a computer simulation will
do little to help you since the ingredients of your decision are based largely
on psychology (yours and theirs). But if your rule is that you should hedge
your current investment in condos using financial derivatives written on real
estate companies, the methods of computer simulation become relevant.

This book concerns the simulation and analysis of models for financial
markets, particularly traded assets such as stocks and bonds. We pay par-
ticular attention to financial derivatives such as options. These are financial
instruments that derive their value from some associated asset. For example,
a call option is written on a particular stock, and its value depends on the
price of the stock at expiry. But there are many other types of financial deriva-
tives, traded on assets such as bonds, currency markets or foreign exchange
markets, and commodities. Indeed, there is a growing interest in so-called
real options, those written on some real-world physical process such as the
temperature or the amount of rainfall.

1



2 MONTE CARLO SIMULATION AND FINANCE

In general, an option gives the holder a right, not an obligation, to sell
or buy a prescribed asset (the underlying asset) at a price determined by
the contract (the exercise or strike price). For example, if you own a call
option on shares of IBM with expiry date October 20, 2005, and exercise
price $120, then on October 20, 2005, you have the right to purchase a
fixed number, say 100, of shares of IBM at the price of $120. If IBM is
selling for $130 on that date, then your option is worth $10 per share on
expiry. If IBM is selling for $120 or less, then your option is worthless. We
need to know what a fair value would be for this option when it is sold,
say, on February 1, 2005. Determining this fair value relies on sophisticated
models both for the movements in the underlying asset and the relationship
of this asset with the derivative, and this is the subject of a large part of this
book. You may have bought an IBM option for one of two reasons, either
because you are speculating on an increase in the stock price or to hedge a
promise that you have made to deliver IBM stocks to someone in the future
against possible increases in the stock price. The second use of derivatives is
similar to the use of an insurance policy against movements in an asset price
that could damage or bankrupt the holder of a portfolio. It is this second
use of derivatives that has fueled most of the phenomenal growth in their
trading. With the globalization of economies, industries are subject to more
and more economic forces that they are unable to control but nevertheless
wish some form of insurance against. This requires hedges against a whole
litany of disadvantageous moves of the market, such as increases in the cost
of borrowing, decreases in the value of assets held, and changes in foreign
currency exchange rates.

The advanced theory of finance, like many other areas in which complex
mathematics plays an important part, is undergoing a revolution aided by
the computer and the proliferation of powerful simulation and symbolic
mathematical tools. This is the mathematical equivalent of the invention of
the printing press. The numerical and computational power once reserved
for the most highly trained mathematicians, scientists, and engineers is now
available to any competent programmer.

One of the first hurdles faced in adopting stochastic or random models
in finance is the recognition that, for all practical purposes, the prices of
equities in an efficient market are random variables; that is, although they
may show some dependence on fiscal and economic processes and policies,
they have a component of randomness that makes them unpredictable. This
appears on the surface to be contrary to the training we all receive that every
effect has a cause, and every change in the price of a stock must be driven
by some factor in the company or the economy. But we should remember
that random models are often applied to systems that are essentially causal
when measuring and analyzing the various factors influencing the process
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and their effects is too monumental a task. Even in the simple toss of a
fair coin, the result is determined by the forces applied to the coin during
and after it is tossed. In spite of this, we model it as a random variable
because we have insufficient information on these forces to make a more
accurate prediction of the outcome. Most financial processes in an advanced
economy are of a similar nature. Exchange rates, interest rates, and equity
prices are subject to the pressures of a large number of traders, government
agencies, and speculators, as well as the forces applied by international trade
and the flow of information. In the aggregate there are many forces and
much information that influence the process. Although we might hope to
predict some features of the process such as the average change in price or
the volatility, a precise estimate of the price of an asset one year from today is
clearly impossible. This is the basic argument necessitating stochastic models
in finance. Adoption of a stochastic model implies neither that the process
is pure noise nor that we are unable to develop a forecast. Such a model is
adopted whenever we acknowledge that a process is not perfectly predictable
and the nonpredictable component of the process is of sufficient importance
to warrant modeling.

Now, if we accept that the price of a stock is a random variable, what
are the constants in our model? Is a dollar of constant value, and if so, the
dollar of which nation? Or should we accept one unit of an index that in
some sense represents a share of the global economy as the constant? This
question concerns our choice of what is called the numeraire in deference
to the French influence on the theory of probability, or the process against
which the value of our assets will be measured. There is no unique answer
to this question, nor does that matter for most purposes. We can use a bond
denominated in Canadian dollars as the numeraire, or one in U.S. dollars.
Provided we account for the variability in the exchange rate, the price of
an asset will be the same. Since to some extent our choice of numeraire
is arbitrary, we may pick whatever is most convenient for the problem
at hand.

One of the most important modern tools for analyzing a stochastic sys-
tem is simulation. Simulation is the imitation of a real-world process or
system. It is essentially a model, often a mathematical model of a process.
In finance, a basic model for the evolution of stock prices, interest rates,
exchange rates, and other factors would be necessary to determine a fair
price of a derivative security. Simulations, like purely mathematical models,
usually make assumptions about the behavior of the system being modeled.
This model requires inputs, often called the parameters of the model, and
outputs, a result that might measure the performance of a system, the price
of a given financial instrument, or the weights on a portfolio chosen to have
some desirable property. We usually construct the model in such a way that
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inputs are easily changed over a given set of values, as this allows for a more
complete picture of the possible outcomes.

Why use simulation? The simple answer is that it transfers work to the
computer. Models can be handled that involve greater complexity and fewer
assumptions, and a more faithful representation of the real world is possible.
By changing parameters we can examine interactions and sensitivities of the
system to various factors. Experimenters may use a simulation to provide a
numerical answer to a question, assign a price to a given asset, identify op-
timal settings for controllable parameters, examine the effects of exogenous
variables, or identify which of several schemes is more efficient or more prof-
itable. The variables that have the greatest effect on a system can be isolated.
We can also use simulation to verify the results obtained from an analytic
solution. For example, many of the tractable models used in finance to select
portfolios and price derivatives are wrong. They put too little weight on the
extreme observations, the large positive and negative movements (crashes),
which have the most dramatic effect on the results. Is this lack of fit of major
concern when we use a standard model such as the Black-Scholes model to
price a derivative? Questions such as this can be answered in part by exam-
ining simulations that accord more closely with the real world but are in-
tractable to mathematical analysis.

Simulation is also used to answer questions starting with “what if.”
For example, what would be the result if interest rates rose 3 percentage
points over the next 12 months? In engineering, determining what would
happen under extreme circumstances is often referred to as stress testing,
and simulation is a particularly valuable tool here since the scenarios of
concern are those that we observe too rarely to have substantial experience
with. Simulations are used, for example, to determine the effect on an aircraft
of extreme conditions and to analyze flight data information in the event of
an accident. Simulation often provides experience at a lower cost compared
with the alternatives.

But these advantages are not without some sacrifice. Two individuals
may choose to model the same phenomenon in different ways and, as a
result, may derive quite different simulation results. Because the output from
a simulation is random, it is sometimes hard to analyze; statistical experience
and tools are valuable assets. Building models and writing simulation code is
not always easy. Time is required to construct the simulation, validate it, and
analyze the results. And simulation does not render mathematical analysis
unnecessary. If a reasonably simple analytic expression for a solution exists,
it is always preferable to a simulation. A simulation may provide an approxi-
mate numerical answer for one or more possible parameter values, but only
an expression for the solution provides insight into the way it responds to
the individual parameters, the sensitivities of the solution.
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In constructing a simulation, there are a number of distinct steps:

1. Formulate the problem at hand. Why do we need to use simulation?
2. Set the objectives as specifically as possible. This should include what

measures on the process are of most interest.
3. Suggest candidate models. Which of these are closest to the real world?

Which are fairly easy to write computer code for? What parameter values
are of interest?

4. If possible, collect real data and identify which of the models in step 3
is most appropriate. Which does the best job of generating the general
characteristics of the real data?

5. Implement the model. Write computer code to run simulations.
6. Verify (debug) the model. Using simple special cases, ensure that the code

is doing what you think it is doing.
7. Validate the model. Ensure that it generates data with the characteristics

of the real data.
8. Determine simulation design parameters. How many simulations are to

be run, and what alternatives are to be simulated?
9. Run the simulation. Collect and analyze the output.

10. Are there surprises? Do we need to change the model or the parameters?
Do we need more runs?

11. Finally, document the results and conclusions in the light of the simula-
tion results. Tables of numbers are to be avoided. Well-chosen graphs are
often better ways of gleaning qualitative information from a simulation.

In this book, we will not always follow our own advice, leaving some
of the steps for the reader to fill in. Nevertheless, the importance of model
validation, for example, cannot be overstated. Particularly in finance, where
data can be plentiful, highly complex mathematical models are too often
applied without any evidence that they fit the observed data adequately.
The reader is advised to consult and address each of the steps above with
each new simulation (and many of the examples in this text). Helpful infor-
mation is provided in the appendixes, which may be found on the Web at
www.wiley.com/go/mcleish.

Example

Let us consider an example illustrating a simple use for a simulation model.
We are considering a buyout bid for the shares of a company. Although
the company’s stock is presently valued at around $11.50 per share, a care-
ful analysis has determined that it fits sufficiently well with our current as-
sets that if the buyout were successful, it would be worth approximately
$14.00 per share in our hands. We are considering only three alternatives, an



6 MONTE CARLO SIMULATION AND FINANCE

immediate cash offer of $12.00, $13.00, or $14.00 per share for outstanding
shares of the company. Naturally, we would like to bid as low as possible,
but we expect a competitor virtually simultaneously to make a bid for the
company, and the competitor values the shares differently. The competitor
has three bidding strategies, which we will simply identify as I, II, and III.
There are costs associated with any pair of strategies (our bid combined with
the competitor’s bidding strategy), including costs associated with losing a
given bid to the competitor or paying too much for the company. In other
words, the payoff to our firm depends on the amount bid by the competitor,
and the possible scenarios are given in Table 1.1.

The payoffs to the competitor are somewhat different and are given in
Table 1.2. For example, the combination of Our bid = $13 per share and
competitor strategy II results in a loss of 4 units (for example, four dollars
per share) to us and a gain of 4 units to our competitor. However, it is
not always the case that our loss is the same as our competitor’s gain. A
game with the property that, under all possible scenarios, the gains add to
a constant is called a zero-sum game, and these are much easier to analyze
analytically. Define the 3×3 matrix of payoffs to your company by A and
the payoff matrix to our competitor by B:

A =



3 2 −2
1 −4 4
0 −5 5


 ↪ B =




−1 −2 3
0 4 −6
0 5 −5




Suppose we play strategy i = 1, 2, 3 (i.e., bid $12, $13, $14) with prob-
abilities p1↪ p2↪ p3↪ respectively, and the probabilities of the competitor’s
strategies are q1↪ q2↪ q3. Then if we denote

p =



p1

p2

p3


 ↪ q =




q1

q2

q3




we can write our expected payoff in the form
∑3

i=1

∑3
j=1 piAij qj . Written as

a vector-matrix product, this takes the form pTAq. This might be thought of

TABLE 1.1 Payoffs to Our Firm

Competitor’s Strategy

Our Bid I II III

12 3 2 −2
13 1 −4 4
14 0 −5 5
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TABLE 1.2 Payoffs to Competitor

Competitor’s Strategy

Our Bid I II III

12 −1 −2 3
13 0 4 −6
14 0 5 −5

as the average return to our firm in the long run if this game were repeated
many times, although in the real world the game is played only once. If
the vector q were known, we would clearly choose pi = 1 for the row i
corresponding to the maximum component of Aq since this maximizes our
payoff. Similarly, if our competitor knew p↪ they would choose qj = 1 for
the column j corresponding to the maximum component of pTB. Over the
long haul, if this game were indeed repeated may times, we would likely keep
track of our opponent’s frequencies and replace the unknown probabilities
by the frequencies. However, we assume that both the actual move made by
our opponent and the probabilities that they use in selecting their move are
unknown at the time we commit to our strategy. However, if the game is
repeated many times, each player obtains information about the opponent’s
taste in moves, and this would seem to be a reasonable approach to building
a simulation model for this game. Suppose the game is played repeatedly,
with each of the two players updating their estimated probabilities using
information gathered about their opponent’s historical use of their available
strategies. We may record the number of times each strategy is used by each
player and hope that the relative frequencies approach a sensible limit. This
is carried out by the following Matlab function.

function [p,q]=nonzerosum(A,B,nsim)

% A and B are payoff matrices to the two participants

in a game.

Outputs

%mixed strategies p and q determined by simulation

conducted nsim times

n=size(A);

% A and B have the same size

p=ones(1,n(1)); q=ones(n(2),1);

% initialize with positive weights on all strategies

for i=1:nsim

% runs the simulation nsim times
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[m,s]=max(A*q);

% s=index of optimal strategy for us

[m,t]=max(p*B);

% =index of optimal strategy for competitor

p(s)=p(s)+1; % augment counts for us

q(t)=q(t)+1;

% augment counts for competitor

end

p=p-ones(1,n(1)); p=p/sum(p);

% remove initial weights from counts and then

q=q-ones(n(2),1); q=q/sum(q);

% convert counts to relative frequencies

The following output results from running this function for 50,000
simulations.

[p,q]=nonzerosum(A,B,50000)

This results in approximately p′ = [ 2
3 0 1

3 ] and q ′ = [0 1
2

1
2 ] with an

average payoff to us of 0 and to the competitor of 1/3 . This seems to indicate
that the strategies should be “mixed” or random. We should choose a bid
of $12.00 with probability around 2/3, and $14.00 with probability 1/3. It
appears that the competitor need only toss a fair coin and select between
II and III based on its outcome. Why randomize our choice? The average
value of the game to us is 0 if we use the probabilities given (in fact, if our
competitor chooses probabilities q ′ = [0 1

2
1
2 ], it doesn’t matter what our

frequencies are, because the average is 0). If we were to believe that a single
fixed strategy is always our “best,” then our competitor could presumably
determine what our “best” strategy is and act to reduce our return (i.e.,
to substantially less than 0) while increasing theirs. Only randomization
provides the necessary insurance that neither player can guess the strategy
to be employed by the other. This is a rather simple example of a two-person
game with a nonconstant sum (in the sense that A + B is not a constant
matrix). The mathematical analysis of such games can be quite complex. In
such a case, provided we can ensure cooperation, participants may cooperate
for a greater total return.

There is no assurance that the solution given here is optimal. In fact, the
solution is worth an average per game of 0 to us and 1/3 to our competitor.
If we revise our strategy to p′ = [ 2

3
2
9

1
9 ]↪ for example, our average return

is still 0 but we have succeeded in reducing that of our opponent to 1/9,
though it is unclear what our motivation for this would be. The solution we
arrived at in this case seems to be a sensible solution, achieved with little
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TABLE 1.3

If U < 2/3 2/3 ≤ U < 1
Bid 12 13 14

effort. Evidently, in a game such as this, there is no clear definition of what
an optimal strategy would be, since one might plan one’s play based on the
worst-case or the best-case scenario, or something in between, such as an
average. Do we attempt to collaborate with our competitor for greater total
return and then subsequently divide this in some fashion? This simulation has
modeled a simple form of competitor behavior and arrived at a reasonable
solution—the best we can hope for without further assumptions.

There remains the question of how we actually select a bid with prob-
abilities 2/3, 0, and 1/3, respectively. First, let us assume that we are able to
choose a “random number” U in the interval [0, 1] such that the probability
that it falls in any given subinterval is proportional to the length of that
subinterval. This means that the random number has a uniform distribution
on the interval [0, 1]. Then we could determine our bid based on the value
of this random number from Table 1.3.

The way in which U is generated on a computer will be discussed in
more detail in Chapter 2, but for the present note that each of the three
alternative bids has the correct probability.



CHAPTER 2
Some Basic Theory of Finance

INTRODUCTION TO PRICING: SINGLE-PERIOD MODELS

Let us begin with a very simple example designed to illustrate the no-arbitrage
approach to pricing derivatives. Consider a stock whose price at present
is $s. Over a given period, the stock may move either up or down—up
to a value su, where u > 1 with probability p, or down to a value sd,
where d < 1 with probability 1 − p. In this model, these are the only moves
possible for the stock in a single period. Over a longer period, of course,
many other values are possible. In this market, we also assume that there is
a so-called risk-free bond available returning a guaranteed rate of r% per
period. Such a bond cannot default; there is no random mechanism govern-
ing its price, and its return is known upon purchase. An investment of $1 at
the beginning of the period returns a guaranteed $(1 + r) at the end. Then a
portfolio purchased at the beginning of a period consisting of y stocks and
x bonds will return at the end of the period an amount $x(1 + r) + ysZ,
where Z is a random variable taking values u and d with probabilities p
and 1 − p, respectively. We permit owning a negative amount of a stock or
bond, corresponding to shorting or borrowing the corresponding asset for
immediate sale.

An ambitious investor might seek a portfolio whose initial cost is zero
(i.e., x + ys = 0) such that the return is greater than or equal to zero with
positive probability. Such a strategy is called an arbitrage. This means that
the investor is able to achieve a positive probability of future profits with
no down-side risk with a net investment of $0. In mathematical terms, the
investor seeks a point (x↪ y) such that x + ys = 0 (the net cost of the portfolio
is zero) and

x(1 + r) + ysu ≥ 0

x(1 + r) + ysd ≥ 0

10
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with at least one of the two inequalities strict (so there is never a loss and
a nonzero chance of a positive return). Alternatively, is there a point on the
line y = − 1

s
x that lies on or above both of the two lines

y = −1 + r

su
x

y = −1 + r

sd
x

and strictly above one of them? Since all three lines pass through the origin,
we need only compare the slopes: an arbitrage will not be possible if

−1 + r

sd
≤ −1

s
≤ −1 + r

su
(2.1)

and otherwise there is a point (x↪ y) permitting an arbitrage. The condition
for no arbitrage (2.1) reduces to

d

1 + r
≤ 1 ≤ u

1 + r
(2.2)

So the condition for no arbitrage demands that (1 + r − u) and
(1 + r − d) have opposite sign, or d ≤ (1 + r) ≤ u. Unless this occurs, the
stock always has either a better or a worse return than the bond, which
makes no sense in a free market where both are traded without compul-
sion. Under a no-arbitrage assumption, since d ≤ (1 + r) ≤ u, the bond pay-
off is a convex combination or a weighted average of the two possible
stock payoffs; that is, there are probabilities 0 ≤ q ≤ 1 and 1 − q such that
(1 + r) = qu + (1 − q)d. In fact, it is easy to solve this equation to determine
the values of q and 1 − q.

q = (1 + r) − d

u − d
and 1 − q = u − (1 + r)

u − d

Denote by Q the probability distribution that puts probabilities q and 1 − q
on the points su and sd. Then if S1 is the value of the stock at the end of the
period, note that

1

1 + r
EQ(S1) = 1

1 + r
(qsu + (1 − q)sd) = 1

1 + r
s(1 + r) = s

where EQ denotes the expectation assuming that Q describes the probabil-
ities of the two outcomes.

In other words, if there is to be no arbitrage, there exists a probability
measure Q such that the expected price of the future value of the stock S1
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discounted to the present using the return from a risk-free bond is exactly the
present value of the stock. The measure Q is called the risk-neutral measure,
and the probabilities that it assigns to the possible outcomes of S are not
necessarily those that determine the future behavior of the stock. The risk-
neutral measure embodies both the current consensus beliefs in the future
value of the stock and the consensus investors’ attitude to risk avoidance. It
is not usually true that 1

1+r
EP (S1) = s, with P denoting the actual probabil-

ity distribution describing the future probabilities of the stock. Indeed, it is
highly unlikely that an investor would wish to purchase a risky stock if he or
she could achieve exactly the same expected return with no risk at all using
a bond. We generally expect that for a risky investment to be attractive, its
expected return should be greater than that of a risk-free investment. Notice
in this example that the risk-neutral measure Q did not use the probabilities
p and 1 − p that the stock will go up or down, and this seems contrary to
intuition. Surely if a stock is more likely to go up, then a call option on the
stock should be valued higher!

Let us suppose, for example, that we have a friend willing, in a private
transaction, to buy or sell a stock at a price determined from his subjectively
assigned distribution P, different from Q. The friend believes that the stock
is presently worth

1

1 + r
EP S1 = psu + (1 − p)sd

1 + r
�= s since p �= q

The friend offers his assets as a sacrifice to the gods of arbitrage. If the friend’s
assessed price is greater than the current market price, we can buy on the
open market and sell to the friend. Otherwise, we can do the reverse. Either
way one is enriched monetarily (and perhaps impoverished socially!).

So why should we use the Q measure to determine the price of a given
asset in a market (assuming, of course, there is a risk-neutral Q measure and
we are able to determine it)? Not because it precisely describes the future
behavior of the stock, but because if we use any other distribution, we offer
an intelligent investor (and there are many!) an arbitrage opportunity, or an
opportunity to make money at no risk and at our expense.

Derivatives are investments that derive their value from that of a corres-
ponding asset, such as a stock. A European call option is an option that
permits you (but does not compel you) to purchase the stock at a fixed
future date (the maturity date) for a given predetermined price (the exercise
price of the option). For example, a call option with an exercise price of
$10 on a stock whose future value is denoted S1↪ is worth on expiry S1 − 10
if S1 > 10 but nothing at all if S1 < 10. The difference S1 − 10 between the
value of the stock on expiry and the exercise price of the option is your profit
if you exercise the option, purchasing the stock for $10 and selling it on the
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open market at $S1. However, if S1 < 10↪ there is no point in exercising
your option, as you are not compelled to do so and your return is $0. In
general, your payoff from purchasing the option is a simple function of the
future price of the stock, such as V (S1) = max(S1 − 10↪ 0). We denote this
by (S1 − 10)+. The future value of the option is a random variable, but it
derives its value from that of the stock; hence it is called a derivative and the
stock is the underlying.

A function of the stock price V (S1), which may represent the return
from a portfolio of stocks and derivatives, is called a contingent claim. V (S1)
represents the payoff to an investor from a certain financial instrument or
derivative when the stock price at the end of the period is S1. In our simple
binomial example above, the random variable takes only two possible values
V (su) and V (sd).We will show that there is a portfolio, called a replicating
portfolio, consisting of an investment solely in the above stock and bond
that reproduces these values, V (su) and V (sd), exactly. We can determine
the corresponding weights on the bond and stocks (x↪ y) simply by solving
the two equations in two unknowns

x(1 + r) + ysu = V (su)

x(1 + r) + ysd = V (sd)

Solving, y∗ = V (su)−V (sd)
su−sd

and x∗ = V (su)−y∗su
1+r

. By buying y∗ units of the stock
and x∗ units of the bond, we are able to replicate the contingent claim V (S1)
exactly—that is, produce a portfolio of stocks and bonds with exactly the
same return as the contingent claim. So, in this case at least, there can be only
one possible present value for the contingent claim, and that is the present
value of the replicating portfolio, x∗ + y∗s. If the market placed any other
value on the contingent claim, then a trader could guarantee a positive return
by a simple trade, shorting the contingent claim and buying the equivalent
portfolio or buying the contingent claim and shorting the replicating port-
folio. Thus this is the only price that precludes an arbitrage opportunity.
There is a simpler expression for the current price of the contingent claim in
this case:

1

1 + r
EQV (S1) = 1

1 + r
(qV (su) + (1 − q)V (sd))

= 1

1 + r

(
1 + r − d

u − d
V (su) + u − (1 + r)

u − d
V (sd)

)
= x∗ + y∗s

In words, the discounted expected value of the contingent claim is equal to
the no-arbitrage price of the derivative where the expectation is taken using
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the Q measure. Indeed, any contingent claim that is attainable must have
its price determined in this way. Although we have developed this for an
extremely simple case, it extends much more generally.

Suppose we have a total of N risky assets whose prices at times t = 0↪ 1
are given by (S

j
0 ↪ S

j
1 )↪ j = 1↪ 2↪ . . . ↪ N. We denote by S0 and S1 the column

vectors of initial and final prices:

S0 =



S1
0

S2
0
.
.
.

SN
0


↪ S1 =



S1
1

S2
1
.
.
.

SN
1


where at time 0↪ S0 is known and S1 is random. Assume also that there is a
riskless asset (a bond) paying interest rate r over one unit of time. Suppose
we borrow money (this is the same as shorting bonds) at the risk-free rate
to buy wj units of stock j at time 0 for a total cost of

∑
wj S

j
0 . The value

of this portfolio at time t = 1 is T (w) = ∑
wj (S

j
1 − (1 + r)S

j
0 ). If there

are weights wj so that this sum is always nonnegative, and P (T (w) > 0)> 0↪
then this is an arbitrage opportunity. Similarly, by replacing the weights wj

by their negative −wj, there is an arbitrage opportunity if for some weights
the sum is nonpositive and negative with positive probability. In summary,
there are no arbitrage opportunities if for all weights wj , P (T (w) > 0) > 0
and P (T (w) < 0) > 0, so T (w) takes both positive and negative values.
We assume that the moment-generating function M(w) = E[exp(

∑
wj ×

(S
j
1 − (1 + r)S

j
0 ))] exists and is an analytic function of w. Roughly, the

condition that the moment-generating function is analytic ensures that we
can expand the function in a series expansion in w. This is the case, for exam-
ple, if the values of S1 and S0 are bounded. The following theorem is a special
case of Rogers (1994) and provides the equivalence of the no-arbitrage
condition and the existence of an equivalent measure Q.

Theorem 1 A necessary and sufficient condition that there be no arbitrage
opportunities is that there exists a measure Q equivalent to P such that
EQ(S

j
1 ) = 1

1+r
S

j
0 for all j = 1↪ . . . ↪ N.

Proof Define M(w) = E exp(T (w)) = E[exp(
∑

wj (S
j
1 − (1 + r)S

j
0 ))] and

consider the problem
min

w
ln(M(w))
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The no-arbitrage condition implies that for each j there exists ε > 0 such
that

P [Sj
1 − (1 + r)S

j
0 > ε] > 0

and therefore as wj → ∞ while the other weights wk↪ k �= j, remain fixed,

M(w) = E
[
exp

(∑
wj

(
S

j
1 − (1 + r)S

j
0

))]
> C exp(wj ε)

× P [Sj
1 − (1 + r)S

j
0 > ε] → ∞ as wj → ∞

Similarly, M(w) → ∞ as wj → −∞. From the properties of a moment-
generating function, M(w) is convex, continuous, and analytic and M(0) =1 .
Therefore, the function M(w) has a minimum w∗ satisfying

∂M(w)

∂wj
= 0 for all j (2.3)

or

E[Sj
1 exp(T (w))] = (1 + r)S

j
0 E[exp(T (w))]

or

S
j
0 = E[exp(T (w))S

j
1 ]

(1 + r)E[exp(T (w))]

Define a distribution or probability measure Q as follows: For any event A
and w = w∗↪

Q(A) = EP [IA exp(w′S1)]

EP [exp(w′S1)]
=
∫

A

(
dQ

dP

)
dP

where the Radon-Nikodym derivative is

dQ

dP
= exp(w′S1)]

EP [exp(w′S1)]

Since ∞ > dQ
dP

> 0, the measure Q is equivalent to the original probability
measure P (in the intuitive sense that it has the same support). When we
calculate expected values under this new measure, note that for each j ↪

EQ(S
j
1 ) = EP

[
dQ

dP
S

j
1

]
= EP [Sj

1 exp(w′S1)]

EP [exp(w′S1)]

= (1 + r)S
j
0
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or

S
j
0 = 1

1 + r
EQ(S

j
1 )

Therefore, the current price of each stock is the discounted expected value
of the future price under this “risk-neutral” measure Q.

Conversely, if

EQ(S
j
1 ) = 1

1 + r
S

j
0 for all j (2.4)

holds for some measure Q, then EQ[T (w)] = 0 for all w, and this implies
that the random variable T (w)is either identically 0 or admits both positive
and negative values. Therefore, the existence of the measure Q satisfying
(2.4) implies that there are no arbitrage opportunities. �

The so-called risk-neutral measure Q above is constructed to minimize
the cross-entropy between Q and P subject to the constraints E(S1 − (1 + r)×
S0) = 0 (cross-entropy is defined later). If there are J possible values of the
random variables S1 and S0 , then (2.3) consists of J equations in J unknowns,
and so it is reasonable to expect a unique solution. In this case, the Q measure
is unique and we call the market complete.

The theory of pricing derivatives in a complete market is rooted in a
rather trivial observation because in a complete market, the derivative can be
replicated with a portfolio of other marketable securities. If we can reproduce
exactly the same (random) returns as the derivative provides using a portfolio
that combines other marketable securities (which have prices assigned by the
market), then the derivative must have the same price as the portfolio. Any
other price would provide arbitrage opportunities.

Of course, in the real world there are costs associated with trading; these
costs are usually related to a bid-ask spread. There essentially are different
prices for buying a security and for selling it. The argument above assumes
a frictionless market with no trading costs, with borrowing any amount at
the risk-free bond rate possible, and a completely liquid market in which
any amount of any security can be bought or sold. Moreover, it is usually
assumed that the market is complete, although it is doubtful that complete
markets exist. If a derivative security can be perfectly replicated using other
marketable instruments, then its only purpose in the market is packaging.
All models, excepting those on Fashion File, have deficiencies and critics.
The merit of the frictionless trading assumption is that it provides an accu-
rate approximation to increasingly liquid real-world markets. Like all useful
models, this permits tentative conclusions that are subject to constant study
and improvement.


