NANOTECHNOLOGY APPLICATIONS TO TELECOMMUNICATIONS AND NETWORKING

Daniel Minoli
Managing Director
Leading-Edge Networks Incorporated
NANOTECHNOLOGY APPLICATIONS TO TELECOMMUNICATIONS AND NETWORKING

Daniel Minoli
Managing Director
Leading-Edge Networks Incorporated
For Anna

And for my Father and Mother
CONTENTS

Preface xv
About the Author xix

1. Nanotechnology and Its Business Applications 1
 1.1 Introduction and Scope 1
 1.1.1 Introduction to the Nanoscale 1
 1.1.2 Plethora of Potential Applications 7
 1.1.3 Challenges and Opportunities 13
 1.1.4 Technology Scope 15
 1.1.5 Commercialization Scope 18
 1.1.6 Opportunities of the Technology and the 21st Century Nanotechnology Research and Development Act of 2003 22
 1.2 Present Course of Investigation 23

2. Basic Nanotechnology Science—Physics 25
 2.1 Approach and Scope 26
 2.2 Basic Science 27
 2.2.1 Atoms 27
 2.2.2 Key Subatomic Particles 28
 2.2.3 Atomic Structure 36
 2.2.4 Substances and Elements 39
 2.2.5 Nomenclature and Periodic Table 45
 2.2.6 Making Compounds 47
 2.3 Basic Properties of Conductors, Insulators, and Semiconductors 49
 2.4 Basic Properties of Silicon and Basics of Transistor Operation 51
 2.4.1 Transistors 51
 2.4.2 Manufacturing Approaches 53
 2.4.3 Manufacturing Limitations 55
 2.5 Conclusion 58
3. Basic Nanotechnology Science—Chemistry

3.1 Introduction and Background

3.2 Basic Chemistry Concepts
 3.2.1 Physical Aspects
 3.2.2 Bonding
 3.2.3 Basic Formulation/Machinery of Chemical Reactions
 3.2.4 Chemistry of Carbon
 3.2.5 Graphical View of the Atomic Structure Of Materials

3.3 Conclusion

4. Nanotubes, Nanomaterials, and Nanomaterial Processing

4.1 Introduction

4.2 Basic Nanostructures
 4.2.1 Carbon Nanotubes
 4.2.2 Nanowires
 4.2.3 Nanocones
 4.2.4 Applications of Nanotubes, Nanowires, and Nanocones
 4.2.5 Quantum Dots
 4.2.6 Quantum Dots Nanocrystals
 4.2.7 Ultrananocrystalline Diamond
 4.2.8 Diamondoids
 4.2.9 Nanocomposites
 4.2.10 Thin-Films
 4.2.11 Nanofoam
 4.2.12 Nanoclusters
 4.2.13 Smart Nanostructures
 4.2.14 Environmental Issues for Nanomaterials

4.3 Manufacturing Techniques
 4.3.1 General Approaches
 4.3.2 Self-Assembly Methods

4.4 System Design

4.5 Conclusion

5. Nanophotonics

5.1 Introduction and Background: A Plethora of Opportunities

5.2 General Photonics Trends

5.3 Basic Nanophotonics
5.3.1 Photonic Crystals 150
5.3.2 Photonic Crystal Fibers 153
5.3.3 Photonic Crystal Lasers 154
5.3.4 Plasmonics 155
5.3.5 Integration 155
5.3.6 New Technologies 156
5.3.7 Instrumentation 157

5.4 Photonic Crystals 157
5.4.1 Overview 157
5.4.2 Applicability of Technology 159
5.4.3 Fabrication 161

5.5 Telecom Applications of Photonic Crystals 162
5.5.1 Quantum Cascade Lasers 162
5.5.2 Photonic Crystal Fibers 163
5.5.3 Superprism Effect in Photonic Crystal 164

5.6 Plasmonics 165
5.6.1 Study of Light at the Nanoscale 165
5.6.2 Physics of the Near-Field 173

5.7 Advanced Topics 177
5.7.1 Nonlinear Optics 177
5.7.2 Confinement and Microresonators 179
5.7.3 Quantum Optics 183
5.7.4 Superlenses 184

5.8 Conclusion 184

6. Nanoelectronics 185

6.1 Introduction 186
6.1.1 Recent Past 186
6.1.2 The Present and its Challenges 189
6.1.3 Future 193

6.2 Overview of Basic Nanoelectronic Technologies 199
6.2.1 Single Electron Devices 199
6.2.2 Quantum Mechanical Tunnel Devices 202
6.2.3 Spin Nanoelectronics (Spintronics) 204
6.2.4 Molecular Nanoelectronics 205
6.2.5 Fault Tolerant Designs 207
6.2.6 Quantum Cellular Automata 208
6.2.7 Quantum Computing 209
6.3 Additional Details on Nanoelectronic Systems 210
 6.3.1 Quantum Dots and Quantum Wires 211
 6.3.2 Quantum Computing 215
 6.3.3 Fabrication Methods and Techniques for Nanoelectronics 218
 6.3.4 Microscopy Tools for Nanoelectronics 226
 6.3.5 Microelectromechanical Systems and Microoptoelectromechanical Systems Applications 229

6.4 Conclusion 230

Appendix A Historical Developments Related to Atomic Theory and Additional Perspectives 231
Appendix B Brief Introduction to Hilbert Spaces 237
Appendix C Reference Information 241
Appendix D Basic Nanotechnology Science—Quantum Physics 248
 D.1 Physics Developments Leading to a Quantum Model 248
 D.1.1 Experimental Highlights 249
 D.1.2 Basic Mechanisms 252
 D.2 Quantum Concepts 254
 D.2.1 Electron Density of Atoms 255
 D.2.2 Energy Levels 266
 D.2.3 Heisenberg’s Uncertainty Principle 272
 D.2.4 Motion in Two Dimensions 275
 D.2.5 \(\Psi \)—The Probability Amplitude 275
 D.2.6 The Hydrogen Atom—Developing the Hydrogenic Atomic Orbital Concepts 279
 D.2.7 Formal Application of Theory 288
 D.3 Other Topics 293
 D.3.1 Field Theory 293
 D.3.2 String Theory 297
 D.3.3 A Few Words About the Current Understanding of Physics 297

Appendix E Mechanical Molecular Models and Quantum Aspects of Chemistry 299
 E.1 Mechanical Molecular Models 299
 E.2 Quantum Chemistry/Linear Combination of Atomic Orbitals 303
E.2.1 Linear Combination of Atomic Orbitals Approach

Page 304

E.2.2 Hartree-Fock (HF) Approach

Page 306

E.2.3 Configuration Interaction Method

Page 307

E.2.4 Semiempirical Molecular Orbital Methods

Page 307

E.2.5 Modeling for Nanomaterials

Page 307

Appendix F Basic Molecular/Nanotechnology Instrumentation

Page 308

F.1 Overview of Generic Microscopy Tools

Page 310

- **F.1.1 Laser Scanning Confocal Microscopy**
 Page 315
- **F.1.2 Secondary Ion Mass Spectrometry (SIMS)**
 Page 315
- **F.1.3 Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)**
 Page 315
- **F.1.4 Scanning Electron Microscopy (SEM)**
 Page 316
- **F.1.5 Field Emission Scanning Electron Microscopy (FE-SEM)**
 Page 316
- **F.1.6 Transmission Electron Microscopes (TEMs)**
 Page 316
- **F.1.7 Energy Dispersive X-Ray Spectrometry (EDS)**
 Page 316
- **F.1.8 Auger Electron Spectrometry (AES) and Scanning Auger Microscopy (SAM)**
 Page 317
- **F.1.9 X-Ray Photoelectron Spectroscopy (XPS) and Electron Spectroscopy for Chemical Analysis (ESCA)**
 Page 317
- **F.1.10 Rutherford Backscattering Spectrometry (RBS)**
 Page 317
- **F.1.11 Hydrogen Forward Scattering Spectrometry (HFS)**
 Page 317
- **F.1.12 Particle Induced X-Ray Emission (PIXE)**
 Page 318
- **F.1.13 Atomic Force Microscopy (AFM), Scanning Tunneling Microscopy (STM), and Magnetic Force Microscopy (MFM)**
 Page 318
- **F.1.14 Total Reflection X-Ray Fluorescence (TXRF)**
 Page 318
- **F.1.15 Fourier Transform Infrared Spectrometry (FTIR)**
 Page 318
- **F.1.16 µ-Raman Spectroscopy**
 Page 319
- **F.1.17 Gas Chromatography/Mass Spectrometry (GC/MS)**
 Page 319
- **F.1.18 Enhanced Sensitivity for Quantitation with Tandem Mass Spectrometry**
 Page 321
- **F.1.19 X-Ray Fluorescence (XRF)**
 Page 322
CONTENTS

F.1.20 Focused Ion Beam (FIB) 322
F.1.21 Near-Field Scanning Optical Microscopy (NSOM) and Near-Field Optical Spectroscopy (NFOS) 323

F.2 Details on Some Key Systems 324
 F.2.1 Contact Mode AFM 324
 F.2.2 Magnetic AC Mode (MAC Mode) 325
 F.2.3 Acoustic AC Mode (AAC Mode) 325
 F.2.4 Current-Sensing AFM 327
 F.2.5 Force Modulation AFM 328
 F.2.6 Phase Imaging 329
 F.2.7 Pulsed Force Mode (PFM) 330
 F.2.8 Electrostatic Force Microscopy (EFM) 331
 F.2.9 Magnetic Force Microscopy (MFM) 332
 F.2.10 Lateral Force Microscopy (LFM) 333
 F.2.11 Scanning Tunneling Microscope (STM) 334

Appendix G Quantum Computing 336
 G.1 Introduction 336
 G.2 Fundamental Theoretical Challenges 337
 G.2.1 Quantum Algorithms 338
 G.2.2 Quantum Complexity Theory 338
 G.2.3 Fault-Tolerant Quantum Computing 338
 G.2.4 Simulation of Quantum Systems 339
 G.3 Quantum Computation Historical Review 339
 G.3.1 A Short Summary of Significant Breakthroughs in Quantum Information Theory 339
 G.3.2 Current Developments and Directions 343
 G.4 Quantum Information Theory 348
 G.4.1 Capacities 349
 G.4.2 Entanglement and Correlations 352
 G.4.3 Cryptographic Primitives 355
 G.5 Quantum Computer Architectures 359
 G.5.1 Initial Conceptual Development 361
 G.5.2 Testing the Components 361
 G.5.3 Assembling the Components into a Working Device 361
This is believed to be the first book that takes a view of nanotechnology from a telecommunications and networking perspective. Nanotechnology refers to the manipulation of materials at the atomic or molecular level. Nanotechnology is getting a lot of attention of late not only in academic settings and in laboratories around the world, but also in government and venture capitalists’ initiatives. There now is a major drive to commercialize the technology by all sorts of firms, ranging from start-ups to Fortune 100 companies.

At the start of the decade, Charles Vest, the president of MIT, observed: “We are just beginning to understand how to use nanotechnology to build devices and machines that imitate the elegance and economy of nature. The gathering nanotechnology revolution will eventually make possible a huge leap in computing power, vastly stronger yet much lighter materials, advances in medical technologies, as well as devices and processes with much lower energy and environmental costs.”

Nanotechnology is a nanometer-level bottom-up\(^1\) assembly approach that allows developers to engineer particles at the molecular level, building them up to the “right size,” with engineered functional properties. A nanometer is one billionth of a meter (a meter being about 3 ft). Bottom-up process technology provides a control mechanism over development of particles with respect to their size, shape, morphology, and surface conditions. Because of the challenges involved in working at this microscopic scale of a few nanometers, research and engineering efforts involving manipulation of components as “large” as 100 nm are typically included in the field of nanotechnology. Atoms are typically between one-tenth and one-half of a nanometer wide.

Research and development topics in nanotechnology range from molecular manipulation to nanomachines (microscopic devices that can themselves carry out tasks at the atomic or sub-atomic level). While nanomachines represent futuristic initiatives with relatively little current (commercial) achievement, nanomaterials, nanomaterial processing, nanophotonics, and nanoelectronics are already resulting (or will do so in the next 3–5 years) in usable technologies.

In this book we focus on developments and technologies that have the potential to be used (or are already being used) in communication and networking environments. Such applications include faster and smaller non-silicon-based processors, faster and smaller switches (particularly optical switches), and MEMSs (microelectromechanical

\(^1\)In the nanotechnology field the term *bottom-up* is preferred to the (perhaps) more common English-language term *bottoms-up*.
systems). MEMS are microscale systems (~100 µm) that include both mechanical and electrical devices integrated on a single die or chip. MOEMS are microoptical-electromechanical systems consisting of MEMS devices with integral optical components such as mirrors, lenses, filters, laser diodes, emitters or other optics. A MEMS system may include microfluidic elements, integral microelectronics or ICs, “lab-on-chip” systems, actuators, micromotors, or sensors. Efforts are already underway to create nanoscale MEMSs, also known as NEMSs.

In Chapter 1 we review the basic concepts of nanotechnology and applications. In Chapters 2 and 3 we cover supportive topics such as physics and chemistry basics (e.g., electron, atoms, atomic structures, molecules, bonded structures); electrical properties (e.g., insulators, semiconductors, conductors); and chemical bonds and reactions. Chapter 2 also provides a basic introduction to transistors, in support of the discussion to follow in Chapter 6. It turns out that while classical Newtonian mechanics can predict with precision the motions of masses ranging in size from microscopic particles to stars, it cannot predict the behavior of the particles in the atomic domain; at these dimensions quantum theory (physics) comes into play. Hence, as a spin-off of Chapters 2 and 3, in Appendices D and E we discuss some of the basic scientific principles that support quantum theory; the reader who may find these two appendices somewhat demanding may choose to skip this material and move on to the chapters that follow, which are generally self-contained. In Chapter 4 we look at nanomaterials and nanomaterial processing: Individual nanoparticles and nanostructures (e.g., nanotubes, nanowires) are discussed. Nanophotonics is discussed in Chapter 5 (e.g., nanocrystals, nanocrystal fibers). Nanoelectronics (e.g., metal nanoclusters, semiconducting nanoclusters, nanocrystals, quantum dots) is covered in Chapter 6. Both Chapters 5 and 6 provide a discussion of near-term and longer-term applications in the field of computers, telecommunications, and networking. An extensive glossary is also included. Appendix F discusses nanoinstrumentation, while Appendix G provides detailed information on quantum computing.

This book is intended as an introduction to the field of nanotechnology for telecommunications vendors, researchers, and students who want to start thinking about the potential opportunities afforded by these emerging scientific developments and approaches for the next-generation networks to be deployed 5–10 years in the future. Advanced planning is a valuable and effective exercise. When the author first joined Bell Telephone Laboratories in 1978, he was involved in planning networks 5–10 years into the future. While, recently, advanced planning and strategic development have suffered at the hand of the “next-quarter” mentality, it is indeed advantageous to plan 10 years out, only if for the reason that it takes about 10–15 years to grow a carrier (such as a CLEC, a hotspot provider, a 3G wireless operator) to turn a profit from a cold start.

As noted, this book is intended as an introduction to the field. We hope it will serve as motivation, by raising interest, to continue the line of investigation and research into the field. We have made every effort to make it relatively self-contained by discussing the introductory fundamental principles involved, and by providing an extensive glossary. Most professionals outside the field of basic sciences probably have forgotten freshman college physics and chemistry. The most
basic take-aways from these courses are summarized in the book, to facilitate the discussion of nanotechnology applications.

The reader is encouraged, after reading this text, to seek out additional books that go into greater detail. Each chapter included here can be supported by an entire book just covering each individual chapter-level topic.

Finally, it should be noted that nanotechnology is a highly active burgeoning field at this time, with (hundreds of) thousands of articles, publications, lectures, seminars, and books available. Given this plethora of research, this book is based liberally on industry sources. In this context, we have made every effort to acknowledge the source of the material we cover and provide appropriate credit thereof; we hope, with said diligence, that any unwitting omissions are strictly minimal and/or essentially inconsequential. Hence, while the actual synthesis of the topic(s) as presented here is original, the intrinsic material itself is based on the 750+ references that we cite and utilize throughout the body of the text.

Acknowledgement

I would like to thank Mr. Emile A. Minoli for contributions in Chapters 2 and 3.

The cover page shows Daniel Minoli (center front) with a slide rule next to an AM radio the student trio built based on discrete electronic components. Students Melvin Lee (left front) and Steven Lightburn (right front) part of the student trio are with Mr. Tepper (middle front), electronics teacher in a Technical Electronics Laboratory in High School in Brooklyn, NY in the fall of 1970. Two second-row students are unidentified. As this textbook shows, electronics and electronics density has come a long way in the past 35 years, and will continue to do so under the thrust of nanotechnology.

Daniel Minoli
Daniel Minoli has many years of telecom, networking, and information technology (IT) experience for end-users, carriers, academia, and venture capitalists, including work at ARPA think tanks, Bell Telephone Laboratories, ITT, Prudential Securities, Bell Communications Research (Bellcore/Telcordia), AT&T, NYU, Rutgers University, Stevens Institute of Technology, and Societe General de Financement de Quebec (1975–2001). Recently, he also played a founding role in the launching of two networking companies through the high-tech incubator Leading Edge Networks Inc., which he ran in the early 2000s: Global Wireless Services, a provider of secure broadband hotspot mobile Internet and hotspot VoIP services to high-end marinas; and InfoPort Communications Group, an optical and gigabit Ethernet metropolitan carrier supporting data center/SAN/channel extension and grid computing network access services (2001–2003). In the recent past, Mr. Minoli was involved (on behalf of a venture capitalist considering a $15 million investment) in nanotechnology-based systems using quantum cascade lasers (QCLs) for 10-μm-transmission free space optics communication systems.

An author of a number of technical references on IT, telecommunications, and data communications, he has also written columns for ComputerWorld, NetworkWorld, and Network Computing (1985–2005). He has taught at New York University (Information Technology Institute), Rutgers University, Stevens Institute of Technology, Carnegie Mellon University, and Monmouth University (1984–2003). Also, he was a Technology Analyst At-Large, for Gartner/DataPro (1985–2001); based on extensive hands-on work at financial firms and carriers, he tracked technologies and wrote around 50 distinct CTO/CIO-level technical/architectural scans in the area of telephony and data communications systems, including topics on security, disaster recovery, IT outsourcing, network management, LANs, WANs (ATM and MPLS), wireless (LAN and public hotspot), VoIP, network design/economics, carrier networks (such as metro Ethernet and CWDM/DWDM), and e-commerce. Over the years he has advised venture capitalists for investments of $150 million in a dozen high-tech companies and has acted as expert witness in a (won) $11 billion lawsuit regarding a wireless air-to-ground communication system.
CHAPTER 1

Nanotechnology and Its Business Applications

1.1 INTRODUCTION AND SCOPE

1.1.1 Introduction to the Nanoscale

Nanotechnology is receiving a lot of attention of late across the globe. The term *nano* originates etymologically from the Greek, and it means “dwarf.” The term indicates physical dimensions that are in the range of one-billionth (10^{-9}) of a meter. This scale is called colloquially *nanometer scale*, or also *nanoscale*. One nanometer is approximately the length of two hydrogen atoms. Nanotechnology relates to the design, creation, and utilization of materials whose constituent structures exist at the nanoscale; these constituent structures can, by convention, be up to 100 nm in size.\(^1\)\(^2\)\(^3\) Nanotechnology is a growing field that explores electrical, optical, and magnetic activity as well as structural behavior at the molecular and submolecular level. One of the practical applications of nanotechnology (but certainly not the only one) is the science of constructing computer chips and other devices using nanoscale building elements. This book is a basic practical survey of this field with an eye on computing and telecom applications.

The nanoscale dimension is important because quantum mechanical (non-Newtonian) properties of electronics, photons, and atoms are evident at this scale. Nanoscale structures permit the control of fundamental properties of materials without changing the materials’ chemical status. Nanostructure, such as nanophotonic devices, nanowires, carbon nanotubes, plasmonics devices, among others, are planned to be

\(^1\) Measures are relatives; hence, one can talk about something being 1000 nanometers (nm), or 1 microm (\(\mu\)m), of 10,000 Angstroms (\(\AA\)). A micron is a unit of measurement representing one-millionth of a meter and is equivalent to a micrometer. An angstrom is a unit of measurement indicating one-tenth of a nanometer, or one ten-billionth of a meter (often used in physics and/optics to measure atoms and wavelengths of light).

\(^2\) Atoms are typically between 0.1 and 0.5 nm wide.

\(^3\) For comparison, a human hair is between 100,000 and 200,000 nm in diameter and a virus is typically 10 nm wide.
incorporated into telecommunication components and into microprocessors in the next few years, leading to more powerful communication systems and computers—these nanostructures are discussed in the chapters that follow. Nanotechnology is seen as a high-profile emerging area of science and technology. Proponents prognosticate that, in the next few years, nanotechnology will have a major impact on society. Recently, Charles Vest [1], the president of MIT, observed: “The gathering nanotechnology revolution will eventually make possible a huge leap in computing power, vastly stronger yet much lighter materials, advances in medical technologies, as well as devices and processes with much lower energy and environmental costs.” There already are an estimated 20,000 researchers worldwide working in nanotechnology today.

In the sections that follow in this chapter we preliminarily answer questions such as: What is nanotechnology? What are the applications of nanotechnology? What is the market potential for nanotechnology? What are the global research activities in nanotechnology? Why would a practitioner (the likely reader of this book), need to care? We then position the reader for the balance of the book, which looks at the nanotechnology topic from an application, and, more specifically, from a telecom- and networking-perspective angle.

While many definitions for nanotechnology exist, the National Nanotechnology Initiative (NNI4), calls an area of research, development, and engineering “nanotechnology” only if it involves all of the following [2]:

1. Research and technology development at the atomic, molecular, or macromolecular levels, in the length scale of approximately 1- to 100-nm range
2. Creating and using structures, devices, and systems that have novel properties and functions because of their small and/or intermediate size
3. Ability to control or manipulate matter on the atomic scale

Hence, nanotechnology can be defined as the ability to work at the molecular level, atom by atom, to create large structures with fundamentally new properties and functions. Nanotechnology can be described as the precision-creation and precision-manipulation of atomic-scale matter [3]; hence, it is also referred to as precision molecular engineering. Nanotechnology is the application of nanoscience to control processes on the nanometer scale, that is, between 0.1 and 100 nm [4]. The field is also known as molecular engineering or molecular nanotechnology (MNT). MNT deals with the control of the structure of matter based on atom-by-atom and/or molecule-by-molecule engineering; also, it deals with the products and processes of molecular manufacturing [5]. The term engineered nanoparticles describes particles that do not occur naturally; humans have been putting together different materials throughout time, and now with nanotechnology they are doing so at the nanoscale.

4The National Nanotechnology Initiative (NNI) is a U.S. government-funded R&D and commercialization initiative for nanoscience and nanotechnology. The 21st Century Nanotechnology Research and Development Act of 2003 put into law programs and activities supported by the initiative.
As it might be inferred, nanotechnology is highly interdisciplinary as a field, and it requires knowledge drawn from a variety of scientific and engineering arenas: Designing at the nanoscale is working in a world where physics, chemistry, electrical engineering, mechanical engineering, and even biology become unified into an integrated field. “Building blocks” for nanomaterials include carbon-based components and organics, semiconductors, metals, and metal oxides; nanomaterials are the infrastructure, or building blocks, for nanotechnology.

The term nanotechnology was introduced by Nori Taniguchi in 1974 at the Tokyo International Conference on Production Engineering. He used the word to describe ultrafine machining: the processing of a material to nanoscale precision. This work was focused on studying the mechanisms of machining hard and brittle materials such as quartz crystals, silicon, and alumina ceramics by ultrasonic machining. Years earlier, in a lecture at the annual meeting of the American Physical Society in 1959 (There’s Plenty of Room at the Bottom) American Physicist and Nobel Laureate Richard Feynman argued (although he did not coin or use the word nanotechnology) that the scanning electron microscope could be improved in resolution and stability, so that one would be able to “see” atoms. Feynman proceeded to predict the ability to arrange atoms the way a researcher would want them, within the bounds of chemical stability, in order to build tiny structures that in turn would lead to molecular or atomic synthesis of materials [6]. Based on Feynman’s idea, K. E. Drexler advanced the idea of “molecular nanotechnology” in 1986 in the book Engines of Creation, where he postulated the concept of using nanoscale molecular structures to act in a machinelike manner to guide and activate the synthesis of larger molecules. Drexler proposed the use of a large number (billions) of roboticlike machines called “assemblers” (or nanobots) that would form the basis of a molecular manufacturing technology capable of building literally anything atom by atom and molecule by molecule. Quite a bit of work has been done in the field since the publication of the book, although the concept of nanobots is still speculative.5

At this time, an engineering discipline has already grown out of the pure and applied science; however, nanoscience still remains somewhat of a maturing field. Nanotechnology can be identified precisely with the concept of “molecular manufacturing” (molecular nanotechnology) introduced above or with a broader definition that also includes laterally related subdisciplines [7]. This text will encompass both perspectives; the context should make clear which of the definitions we are using. The nanoscale is where physical and biological systems approach a comparable dimensional scale. A basic “difference” between systems biology and nanotechnology is the goal of the science: systems biology aims to uncover the fundamental operation of the cell in an effort to predict the exact response to specific stimuli and genetic variations (has scientific discovery focus); nanotechnology, on the other hand, does not attempt to be so precise but is chiefly concerned with useful design

5The possibility of building tiny motors on the scale of a molecule appears to have been brought one step closer of late: researchers recently have described how they were able—using light or electrical stimulation—to cause a molecule to rotate on an axis in a controlled fashion, similar to the action of a motor [8].
Figure 1.1 depicts the current evolution of various disciplines toward a nanoscale focus. Figure 1.2 places “nano” in the continuum of scales, while Figure 1.3 depicts the size of certain natural and manmade objects (Table 1.1, loosely based on [10] depicts additional substances, entities, and materials). A nanometer is about the width of four silicon atoms (with a radius of 0.13 nm) or two hydrogen atoms (radius of 0.21 nm); also see Figure 1.4. Figure 1.5 depicts an actual nanostructure. For comparison purposes, the core of a single-mode fiber is 10,000 nm in diameter, and a 10-nm nanowire is 1000 times smaller than (the core of) a fiber. The nanoscale exists at a boundary between the “classical world” and the “quantum mechanical world”; therefore, realization of nanotechnology promises to afford revolutionary new capabilities. In this context, the following quote is noteworthy [11]:

When the ultimate feature sizes of nanoscale objects are approximately a nanometer or so, one is dealing with dimensions an order of magnitude larger than the scale exploited by chemists for over a century. Synthetic chemists have manipulated the constituents, bonding, and stereochemistry of vast numbers of molecules on the angstrom scale, and physical and analytical chemists have examined the properties of these molecules. So what is so special about the nanoscale? There are many answers to this question, possibly as many as there are people who call themselves nanoscientists or nanotechnologists. A particularly intriguing feature of the nanoscale is that this is the scale on which
biological systems build their structural components, such as microtubules, microfilaments, and chromatin. The associations maintaining these and the associations of other cellular components seem relatively simple when examined by high-resolution structural methods, such as crystallography or Nuclear Magnetic Resonance—shape complementarity, charge neutralization, hydrogen bonding, and hydrophobic interactions. A key property of biological nanostructures is molecular recognition, leading to self-assembly and the templating of atomic and molecular structures. Those who wish to create defined nanostructures would like to develop systems that emulate this behavior.
TABLE 1.1 Scale of Some Substances and Entities

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Planck length (the smallest measurement of length that has meaning)</td>
<td>1.616×10^{-35} m</td>
</tr>
<tr>
<td>One fermi (aka a femtometer: a unit suitable to express the size of</td>
<td>1×10^{-15} m</td>
</tr>
<tr>
<td>atomic nuclei)</td>
<td></td>
</tr>
<tr>
<td>Diameter of proton</td>
<td>1.66×10^{-15} m</td>
</tr>
<tr>
<td>Classical diameter of neutron</td>
<td>2.2×10^{-15} m</td>
</tr>
<tr>
<td>Diameter of the nucleus of a helium atom</td>
<td>3.8×10^{-15} m</td>
</tr>
<tr>
<td>Classical diameter of an electron</td>
<td>5.636×10^{-15} m</td>
</tr>
<tr>
<td>Diameter of the nucleus of an aluminum atom</td>
<td>7.2×10^{-15} m</td>
</tr>
<tr>
<td>Diameter of the nucleus of a gold atom</td>
<td>1.4×10^{-14} m</td>
</tr>
<tr>
<td>Wavelength of γ rays</td>
<td>1×10^{-12} m</td>
</tr>
<tr>
<td>Diameter of flourine ion</td>
<td>3.8×10^{-10} m</td>
</tr>
<tr>
<td>Most likely distance from electron to nucleus in a hydrogen atom (bohr radius)</td>
<td>5.29×10^{-11} m</td>
</tr>
<tr>
<td>Distance between bonded hydrogen atoms</td>
<td>7.41×10^{-11} m</td>
</tr>
<tr>
<td>One angstrom</td>
<td>1×10^{-10} m</td>
</tr>
<tr>
<td>Van der Waals radius of hydrogen atoms (max distance between atoms that are not bonded)</td>
<td>1.2×10^{-10} m</td>
</tr>
<tr>
<td>Resolution (size of smallest visible object) of a transmission electron microscope</td>
<td>2×10^{-10} m</td>
</tr>
<tr>
<td>Distance between bonded iron atoms</td>
<td>2.48×10^{-10} m</td>
</tr>
<tr>
<td>Van der Waals radius of potassium atoms (max distance between atoms that are not bonded)</td>
<td>2.75×10^{-10} m</td>
</tr>
<tr>
<td>Diameter of water molecule</td>
<td>3×10^{-10} m</td>
</tr>
<tr>
<td>Distance between base pairs in a DNA molecule</td>
<td>3.4×10^{-10} m</td>
</tr>
<tr>
<td>Diameter of xenon ion</td>
<td>3.8×10^{-10} m</td>
</tr>
<tr>
<td>Distance between bonded cesium atoms</td>
<td>5.31×10^{-10} m</td>
</tr>
<tr>
<td>One nanometer</td>
<td>1×10^{-9} m</td>
</tr>
<tr>
<td>Size of glucose molecule</td>
<td>1.5×10^{-9} m</td>
</tr>
<tr>
<td>Diameter of DNA helix</td>
<td>2×10^{-9} m</td>
</tr>
<tr>
<td>Diameter of insulin molecule</td>
<td>5×10^{-9} m</td>
</tr>
<tr>
<td>Diameter of a hemoglobin molecule</td>
<td>6×10^{-9} m</td>
</tr>
<tr>
<td>Thickness of cell wall (Gram-negative bacteria)</td>
<td>1×10^{-8} m</td>
</tr>
<tr>
<td>Size of typical virus</td>
<td>7.5×10^{-8} m</td>
</tr>
<tr>
<td>Thickness of gold leaf</td>
<td>1.25×10^{-7} m</td>
</tr>
<tr>
<td>Diameter of smallest bacteria</td>
<td>2×10^{-7} m</td>
</tr>
<tr>
<td>Resolution (size of smallest visible object) of an optical microscope</td>
<td>2×10^{-7} m</td>
</tr>
<tr>
<td>Length of the smallest transistor in a Pentium 3 chip</td>
<td>2.6×10^{-7} m</td>
</tr>
<tr>
<td>Wavelength of violet light</td>
<td>4.1×10^{-7} m</td>
</tr>
<tr>
<td>Wavelength of red light</td>
<td>6.8×10^{-7} m</td>
</tr>
<tr>
<td>One micrometer (micron)</td>
<td>1×10^{-6} m</td>
</tr>
<tr>
<td>Size of typical bacterium</td>
<td>1×10^{-6} m</td>
</tr>
<tr>
<td>Diameter of average human cell nucleus</td>
<td>1.7×10^{-6} m</td>
</tr>
<tr>
<td>Thickness of typical red blood cell</td>
<td>2.4×10^{-6} m</td>
</tr>
<tr>
<td>Length of the smallest transistor in an Intel 286 chip</td>
<td>3×10^{-6} m</td>
</tr>
<tr>
<td>Diameter of typical capillary</td>
<td>4×10^{-6} m</td>
</tr>
<tr>
<td>Length of the smallest transistor in an Intel 8086 chip</td>
<td>6×10^{-6} m</td>
</tr>
<tr>
<td>Diameter of a single yeast organism</td>
<td>7×10^{-6} m</td>
</tr>
</tbody>
</table>
INTRODUCTION AND SCOPE

TABLE 1.1 (Continued)

<table>
<thead>
<tr>
<th>Description</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of a single yeast organism</td>
<td>7×10^{-6} m</td>
</tr>
<tr>
<td>Diameter of typical red blood cell</td>
<td>8.4×10^{-6} m</td>
</tr>
<tr>
<td>Diameter of average cell in human body</td>
<td>1×10^{-5} m</td>
</tr>
<tr>
<td>Size of a grain of talcum powder</td>
<td>1×10^{-5} m</td>
</tr>
<tr>
<td>Length of the smallest transistor in the first 6502 chips</td>
<td>1.6×10^{-5} m</td>
</tr>
<tr>
<td>Length of the smallest transistor in an Intel 4004 (the first microprocessor)</td>
<td>2×10^{-5} m</td>
</tr>
<tr>
<td>Diameter of a small grain of sand</td>
<td>2.0×10^{-5} m</td>
</tr>
<tr>
<td>Diameter of a typical human hair</td>
<td>2.5×10^{-5} m</td>
</tr>
<tr>
<td>Thickness of typical sheet of paper</td>
<td>8.38×10^{-5} m</td>
</tr>
<tr>
<td>Optical resolution: minimum size of object that can resolved by unaided eye</td>
<td>1×10^{-4} m</td>
</tr>
<tr>
<td>Size of a grain (crystal) of salt</td>
<td>1×10^{-4} m</td>
</tr>
<tr>
<td>Diameter of a period printed at end of typical sentence</td>
<td>3×10^{-4} m</td>
</tr>
<tr>
<td>Diameter of the most common type of optical fiber (including cladding)</td>
<td>3.7×10^{-4} m</td>
</tr>
<tr>
<td>Size of largest known bacterium</td>
<td>7.5×10^{-4} m</td>
</tr>
<tr>
<td>Diameter of the head of the average pin</td>
<td>1.7×10^{-3} m</td>
</tr>
<tr>
<td>Diameter of a large grain of sand</td>
<td>2×10^{-3} m</td>
</tr>
</tbody>
</table>

~ 125 Carbon atoms (diam. = 1.8 Å)
~ 15 Hydrogen atoms (diam. = 4.1 Å)

FIGURE 1.4 What one gets at the nanometer scale.

1.1.2 Plethora of Potential Applications

Nanotechnology is an enabling and potentially disruptive technology that can address requirements in a large number of industries. Developments in nanoscale science and engineering promise to impact, if not revolutionize, many fields and lead to a new technological base and infrastructure that can have major impact on telecom, computing, and information technology (in the form of optical networking/nanophotonics, nanocomputing/nanoelectronics, and nanostorage); health care and biotechnology; environment; energy; transportation; and space exploration, among
Nanotechnology will enable manufacturers to produce computer chips and sensors that are considerably smaller, faster, more energy efficient, and cheaper to manufacture than their present-day counterparts. Specifically, nanotechnology is now giving rise to many new applications such as quantum computing, surface and materials modification, novel separations, sensing technologies, diagnostics, and human biomedical replacements.

The technology will also open up completely new areas of research because, as already stated, matter behaves differently at this physical scale. Interfacing materials with biology is widely believed to be the exciting new frontier for nanotechnology. For example, the National Aeronautics and Space Administration (NASA) foresees a zone of convergence between biotechnology, nanotechnology, and information technology; consequently, NASA, is funding basic nanoscience, as well as work on nanostructured materials, nanoelectronics, and research into sensors. As another example, the U.S. Army is funding soldier nanotechnologies to develop products to substantially reduce the weight that soldiers must carry while increasing physical protection.

Nanomaterials give impetus to new applications of the (nano)technology because they exhibit novel optical, electric, and/or magnetic properties. The first generation of nanotechnology (late 1990s–early 2000s) focused on performance enhancements to existing micromaterials; the second generation of nanotechnology (slated for 2006–2007) will start employing nanomaterials in much more significant and radical ways. Industry observers assert that nanotechnological advances are essential...