Organizational Simulation
This Page Intentionally Left Blank
Organizational Simulation
Organizational Simulation

Edited by
William B. Rouse
Kenneth R. Boff

WILEY-INTERSCIENCE
A JOHN WILEY & SONS, INC., PUBLICATION
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>xxii-xxiv</td>
</tr>
<tr>
<td>Preface</td>
<td>xxv-xxvi</td>
</tr>
<tr>
<td>Contributors</td>
<td>xxvii-xl</td>
</tr>
</tbody>
</table>

1 Introduction and Overview

William B. Rouse and Kenneth R. Boff

- Scope of Organizational Simulation
 - Architecture of Organizational Simulation
 - Perspectives on Organizational Simulation
- Workshop on Organizational Simulation
 - Enterprise Systems
 - NASA Columbia
 - Command and Control – C2
 - Domestic Crisis – G8
 - Joint Urban Operations – JUO
- Functionality and Technology
- Overview of Book
 - Introduction
 - Behaviors
 - Modeling
 - Simulations & Games
- Conclusions
- References

2 Strategic Thinking Via Organizational Simulation

William B. Rouse

- Abstract

17
Contents

Introduction
Strategy Questions
- How can a new strategy best be deployed?
- What are the organizational implications of a new strategy?
- How will novel situations be addressed with this strategy?
- What are the design implications of this strategy?
- What are the work implications of a new organization?
- How well will the organization perform in the environment?
Summary

Enterprise Integration
- Context of Challenge
- Nature of Challenge
- Organizational Issues
- Phenomena to Stimulate
- Types of Interaction Needed
- Measure of OrgSim Success

Command & Control
- Contest of Challenge
- Nature of Challenge
- Organizational Issues
- Phenomena to Stimulate
- Types of Interaction Needed
- Measures of OrgSim Success

Joint Urban Operations
- Context of Challenge
- Nature of Challenge
- Organizational Issues
- Phenomena to Stimulate
- Types of Interaction Needed
Measure of OrgSim Success

- Functional Requirements
 - Models of Interaction
 - View and Information Flows
 - Tasks & Experiences
 - User Support
- Methods & Tools

Enabling Technologies

Conclusions

References

3 Using Organizational Simulation to Develop Unprecedented Systems

Stephen E. Cross

Abstract

Introduction

Illustrations of Unprecedented Systems

- Story 1 – DART
- Story 2 – Robotics-Agents-People – or RAP – Teams

Role of Teams and Culture Change

Requirements For Organizational Simulation

- Architecture
- Process
- Scenarios
- Agents
- Measurement
- Putting it all together

Summary

References
4 The Learning Organization and Organizational Simulation 55
Dee H. Andrews, Herbert H. Bell and Robert N. Shearer

Abstract 55
The Learning Organization Concept 55
Organizational Simulation 57
The Literature of the Learning Organization 57
Philosophy of an LO 57
Characteristic Activities of a Learning Organization 58
The Five Disciplines 59
Organizational Learning: Adaptive vs. Generative 60
Activities and Processes of Good Learning Organizations 60
Examples of Organizations Striving to be Effective LO’s 61
U.S. Department of Defense & Terrorist Organizations 61
U.S. Navy’s Integrated Learning Environment 63
Potential Benefits to a Learning Organization From Use of Organizational Simulation 65
Applications of OrgSim to the LO 65
Process Modeling 67
Organizational Culture Elements 67
The Learning Management Maturity Model 69
Sample “What If” Questions 73
Conclusion 74
Challenges and Opportunities 74
Recommendations 75
References 76

5 Requirements and Approaches For Modeling Individuals Within Organizational Simulations 79
Eva Hudlicka and Greg Zacharias

Abstract 79
Introduction 79
Contents

Interdependence of the Actions of the Parties 145
Requirements For Effective Coordination in Joint Activity 145
 Interpredictability 145
 Common Ground 146
 Directability 149
The Choreography of Joint Activity 149
 Three-Part Phases 150
 Signaling 151
 Coordination Devices 153
 The Joint Action Ladder 155
 Coordination Costs in Choreography 156
The Fundamental Common Ground Breakdown 157
 The Logic of the Fundamental Common Ground Breakdown 157
 Defections From the Basic Compact 164
Making Automation a Team Player 164
 The Basic Compact 166
 Interpredictability 167
 Goal Negotiation 171
 Coordination Phases 172
 Attention Management 173
 Controlling the Costs of Coordinated Activity 175
 Concluding Remarks About the Challenges 176
Summary 177
Acknowledgements 178
References 178

7 Modeling Team Performance: The Basic Ingredients and Research Needs 185
Eduardo Salas, Joseph W. Guthrie, Jr., Katherine A. Wilson-Donnelly, Heather A. Priest and C. Shawn Burke

Abstract 185
Introduction 185

What Do We Know About Teams and Team Performance? 186
 What Is a Team? 186
 What Is Teamwork? 187
 What Is Team Performance? 187
 What Is Team Performance Modeling? 188

A Framework For Modeling Team Performance 189
 Individual Characteristics 189
 Team Characteristics 193
 Task Characteristics 201
 Work Structure 202
 Modeling Tools 205

Choosing Tools to Model 207

Impacts of Modeling Team Performance 211
 Human Systems Integration 211
 Scenario-Based Training 212
 Decision Support Systems 214

Prospects 215

Conclusions 216

References 216

8 National Differences in Teamwork 229
Helen Altman Klein and Anna Pongonis McHugh

Abstract 229

Introduction 229

Teamwork: Current Models and Limitations 231
 Current Models 231
 Describing Applied Domains With Current Models 234
 Summary 239

National Differences and the Mechanisms of Teams 240
Contents

Relationship-Achievement 242
Power Distance 242
Tolerance For Uncertainty 244
Hypothetical – Concrete Reasoning 245
Casual Attribution 246
Contrasting – Synthesizing 247
The Promise of Organizational Simulation 248
Acknowledgements 249
References 249

9 How Well Did It Work? Measuring Organizational Performance in Simulation Environments 253
Jean MacMillan, Frederick J. Diedrich, Elliot E. Entin and Daniel Serfaty

Abstract 253
The Challenge of Understanding Organizational Performance 254
Network Connectivity Enables New Organizational Structures 255
Human-In-The-Loop Testing of Organizational Structures 256
Models Provide a Framework For Empirical Testing 257
Organizational Modeling Approach 258
Communication Behavior as a Measure of Organizational Performance 259
Empirical Results: Model-Based Predictions of Communication Behavior 261

Experiment 1. Can Organizational Structure Be Optimized for a Mission? 261
Experiment 2. Does the Benefit of Collaborative Planning Vary Under Alternative Organizational Structures? 263
Experiment 3. What Happens When the Structure of an Organization is Incongruent With Its Mission? 265

Conclusions 269
Acknowledgements 270
References 270

10 Technical and Conceptual Challenges in Organizational Simulation 273
Leon F. McGinnis

Abstract 273
Introduction 273
Discrete Event Simulation 274
 Simulating Individual Circuits 275
 Simulating Discrete Event Logistics Systems 276
 Simulating Organizations 279
 Organizational Simulation Issues 280
Warehousing as an Organization Type 281
 Warehouse “Facts” Catalog 282
 Organizing the Facts 282
The Structure of a Warehouse Meta-Model 284
 Organizing Concepts 284
 Meta-Model Component Resources 285
 Meta-Model Components – Flow Processes 287
 Meta-Model Components – Control Processes 292
 Meta-Modeling Issues 295
Conclusion 296
References 297

11 Narrative Abstraction For Organizational Simulations 299
Janet H. Murray

Abstract 299
Narrative and Sensemaking 299
Computational Simulation, Games, and Narrative 303
Abstraction in Narrative Forms 310
Exploiting Narrative Designs For Organizational Simulation 314
12 Agent-Based Modeling and Simulation of Socio-Technical Systems

Anuj P. Shah and Amy R. Pritchett

Abstract

Introduction: Our "World Model"

Background

Agent-Based Modeling and Simulation

Socio-Technical Systems

Modeling Socio-Technical Systems as Agent-Based Systems

Constructing Agent-Based Simulations of Socio-Technical Systems

Agent Models

Environment Models

Putting It All Into a Computer Simulation

Duality Between Model Form and Software Architecture

Software Interface Standards

Time Advance and Timing Agent Interactions

Interacting With the Design Process

Example: The Reconfigurable Flight Simulator as an Agent-Based Simulation Architecture

RFS Architecture

Application of RFS to an Agent-Based Simulation of Air Traffic

Conclusions

Acknowledgements

References

13 Executable Models of Decision Making Organizations

Alexander H. Levis

Abstract

Introduction

The Decisionmaker Model and Organization Design
14 Organizational Design and Assessment in Cyber-Space

Kathleen M. Carley

Abstract

The Nature of Organizations

Organizations as Meta-Matrices

Illustrative Organizations

Assessment and Design

What are the Key Measures of Vulnerability?

What are the Key Indicators of Performance and Adaptability?

Team Design

Team Dynamics

Potential for Dynamic Measures

OrgAhead

Construct

Challenges to Team Assessment and Design in Cyber-Space

What Data Streams are Available?

What Are the Challenges?

Conclusion

Acknowledgment

References
16 Simulating Humans

Irfan Essa and Aaron Bobick

Abstract

Introduction

Overview of Methods for Modeling Humans

Manual and user-Defined Modeling of Humans

Data-Driven Modeling of Humans

Generating New Human Models From Data

Modeling of Surface Mesh

Rendering of Humans

Overview of Methods for Animating Humans

Key Frame-Driven Animation

Data-Driven Animation

Capturing Performances

Using Captured Motions

Physics-Driven Animation

Goal-Driven Animation

Concluding Remarks

References
Contents

Expected Benefits
Acknowledgments
References

18 Application of Immersive Technology For Next Generation Simulation
Richard D. Lindheim and James H. Korris

Abstract
Introduction
Modeling Human Behavior
Lessons From Stagecraft
A Hybrid Approach
The “Willing Collaborator”
Setting Limits
Potential For Analysis
The “Good Borg”
Top-Down Vs. Bottom-Up
Bottom-Up at ICT
Lessons From the Marketplace
Virtual Humans
Beyond Photo-Realism
Sound’s Good …
Case Study: Joint Fires & Effects Trainer
Conclusion
References

19 From Viz-Sim to VR to Games: How We Built a Hit Game-Based Simulation
Michael Zyda, Alex Mayberry, Jesse McCree and Margaret Davis

Abstract
Introduction
Where Did We Start?
20 Distributed Simulation and the High Level Architecture
Richard M. Fujimoto

Abstract
Introduction
Historical Perspective
The High Level Architecture
 HLA Rules
 Object Models
 The Interface Specification
Time Management
 Conservative Time Management
 Optimistic Time Management
 Time Management in the HLA
Conclusions
Acknowledgements
References

21 Harnessing the Hive: Innovation as a Distributed Function in The Online Game Community
J.C. Herz

Abstract
Introduction
R&D Estuaries: Leveraging Community-Driven Design
Constructive Ecologies: Artifacts & Social Currency
Beyond Collaboration: Group-To-Group Interaction
Persistence and Accretion
Conclusion
References

Author Index
Subject Index
Modeling and simulation are not new. They have a long history from before modern advances in mathematics, computers and displays. People have been dealing with creative visualization, wishful thinking, counterfactual thinking, and "what if" for centuries. However, we have not had efficient and effective means to develop immersive environments with different organizational approaches, chains of command, and best practices. We currently develop a vision and a policy that looks good on paper; we implement it, experience the consequences from the new policy, and then make corrective changes over time. Organizational Simulation provides an enabling toolkit for people to view, analyze, and try to understand a current organization through interactive simulation, model the changes to an organization as a result of design and policy changes, and ascertain in this synthetic environment what effects, both intended and unintended, are likely to result from these changes.

The Department of Defense (DoD) has long used modeling and simulation technologies to develop interactive "worlds" and games to meet a variety of goals and objectives. These objectives include training and education of personnel; preparing and refining war plans; evaluating new weapon systems during and after research and development; analyzing military strategies and doctrine and tactics; and determining manpower and logistic requirements. The many broad applications of simulation technologies are constantly used to represent quantitative or qualitative states that depict something that exists or could exist in the real world. Given such use, the Defense Modeling and Simulation Office wanted to go beyond current employment of technologies and practices to examine individual behaviors of large numbers of people in different roles as they influence and are influenced by organizational dynamics, processes, and consequences. The project was termed Organizational Simulation or OrgSim. The goals of OrgSim are to help the DoD and the federal government identify, represent, and understand emergent organizational phenomena found in training, organizational structure, management, and policy. In its most mature form, OrgSim will offer new opportunities to study organizational dynamics before one invests in creating a structure to meet the intended function or goal of an organization.

This goal is quite significant as we view the changes in military and civil force structure occurring after September 11, 2001. As we go forward in the new millennium, the world has become increasingly unpredictable in its response to organizational change whether domestically or abroad. In the past, the United States military/acquisition organizational structure was geared to defeat a Soviet peer competitor. The Soviet structure, tactics, techniques, and procedures, along with the advances in technology, moved at a predictable pace and in an expected direction. Our doctrine, military, and organizational structure could change sufficiently quickly to adapt to the slow and often orderly changes to the Soviet
doctrine and capabilities. Our military industrial complex was well adapted to fight a large military nation state that had its own attendant slow changing bureaucratic structure needed to recruit, train, and equip its personnel. However, in the future, our forces will most likely be dealing with smaller groups and organizations of insurgents and terrorists who are much less predictable, harder to identify and track, and much more agile in the development of their counters to what we believe is our technological advantage.

The United States military will be dealing with combatants who will not be easily recognizable, who will not follow standard military practices, and who will draw our forces into unfamiliar urban environments. This will reduce our military’s overwhelming technological and mobility advantages in narrow streets among a population where the enemy can hide in plain sight within their urban organization. A major approach to defeat this enemy is to win the “hearts and minds” of the population within that environment by first being aware of them as an organization of people and cultures, and secondly accepting the unrestricted threats and how our and their organizations and cultures might adapt. The population can provide the human intelligence needed to distinguish friend from foe. But we still need the ability to model and simulate the relevant organizations whether for combat or for stabilization/reconstruction goals. This includes the full spectrum of military and political missions. Beyond the combat phase, it will take the coordination and cooperation of organizations such as the State Department, intelligence agencies, humanitarian organizations, charities, contractors and other nongovernmental agencies to gain the population’s trust and cooperation. This is an enormous organizational understanding and learning problem and challenge that requires our focus and determination to solve it. We need to ensure that we have (a) more behavioral and social data, as well as the means to make relevant use of it, and (b) basic research and theory development in areas such as decision-making, situation awareness, learning, and multi-organizational/multi-cultural modeling.

In the two decades since the Goldwater-Nichols Act of 1986, the military has been struggling to organize and work as joint, combined armed forces. It has been challenging because each military service has its own traditions, ways of doing things, and organizational structure. Getting multiple agencies with entirely different processes, traditions, and structures to work together effectively will be even more challenging. Modeling and simulation of future possible organizational structures and relationships are desperately needed.

In their organization and editing of Organizational Simulation, Bill Rouse and Ken Boff have brought together in one source an extraordinary collection of thought leaders who review and extend the present state of knowledge on the enabling technologies, methods, and tools for organizational simulation. Collectively, this volume offers new multi-disciplinary insights into potential roles of OrgSim, knowledge of individual and collective behaviors, and alternative approaches to modeling these behaviors. A variety of fascinating simulations and games are highlighted in this book, clearly illustrating the capabilities and limitations of what is already possible. We expect that this volume will be an
invaluable resource for students, scholars, researchers, developers, and policy makers in the modeling and simulation community.

Paul Chatelier
Michael Lilienthal
This Page Intentionally Left Blank
PREFACE

ORGANIZATIONAL SIMULATION
From Modeling and Simulation to Games and Entertainment

Edited By
WILLIAM B. ROUSE AND KENNETH R. BOFF

This book took over two decades to come together. It began when we studied the
design of complex systems and observed many aircraft designers from several
companies wrestling with difficult design issues. It was nurtured by working with
executives and senior managers in a wide range of private and public sector
enterprises. We were often asked something like, “Wouldn’t it be nice if you
could drive the future before you wrote the check?”

That possibility was not unreasonable if you were designing an airplane, but
what if you were designing an airplane company? What if you were designing an
air force? What about a university? The overarching question is how to
experience and evaluate substantial organizational change before committing to
investing in making it happen.

Along the way, we were motivated by Apple’s Knowledge Navigator in 1987
and Sun’s Starfire in 1994. The capabilities presented in these technology visions
were compelling. However, the technology in those times was not up to the task
of supporting the organizational simulation (OrgSim) we had envisioned. What
could be done would be very time consuming, very expensive, and not very
compelling.

More recently, with the Internet, online games, and picture-like computer-
animated movies, our appetites for OrgSim have been whetted. We are now
convinced that many pieces of the puzzle are available, despite the fact that the
picture on the puzzle box is not yet clear. It is also obvious that there are now
many more disciplines, and hence more talent, intrigued by the idea of OrgSim.

We resurfaced our vision in a white paper in early 2003. The Defense
Modeling and Simulation Office was intrigued by this vision and committed
support for conducting a Workshop on Organizational Simulation in December
2003 and partial support for subsequently compiling this book. We are most
grateful for DMSO’s support, without which the workshop and this book would
not have been possible.

We are also indebted to the participants in the workshop and the authors of the
chapters in this book, many of who were involved in both activities. We feel quite
fortunate to be able to draw upon the “best and brightest” from modeling and
simulation, gaming, and entertainment, as well as leading thinkers in behavioral science and computing.

The promise of organizational simulation is immense. OrgSim can enhance what we do now, e.g., in design and training, and enable new ways of working. Strategies can be deployed and evaluated in OrgSim so that designers and investors really can drive the future before they buy it. Similarly, people can be trained to operate in a future that does not yet exist. There are also obvious entertainment opportunities. Perhaps the synthetic characters that act in OrgSim can become actual workers, staffing call centers and providing expert advice in a variety of domains.

We are convinced that this range of capabilities will eventually be available. It will happen slowly, over decades, if the natural evolution of the various disciplines involved proceeds as usual. Or, it could happen much faster – less than ten years – if research investments of sufficient magnitude are targeted at a well thought-out portfolio of challenge problems. This is, of course, what we advocate.

This book is the principal product of a project sponsored by Captain Michael Lilienthal of the Defense Modeling and Simulation Office. Mike has been an unwavering supporter of the OrgSim vision, providing financial and conceptual assistance to move this vision to reality. Of equal criticality to the success of OrgSim, in all phases of the project, has been the energetic intellectual engagement of Paul Chatelier, a senior technical advisor with the Potomac Institute for Policy Studies.

The authors are also grateful to Veridian (now General Dynamics) for their highly effective support in the planning and administration of the OrgSim Workshop. Scott Blevins was our onsite IT/computer professional who orchestrated and installed a highly effective wireless intranet that facilitated collaboration among workshop participants. Dr Tom Hughes, a cognitive engineer, helped facilitate the workshop process and made important contributions to documentation of the proceedings. Our sincere appreciation also goes to Jodi Nix and Renee Blanford who played heroic roles in the planning, coordinating and on-the spot troubleshooting that were vital to achieving the goals of the workshop.

Finally, we are very pleased to acknowledge the assistance of Kristi Kirkland of Georgia Tech who served as managing editor in bringing together and integrating all of the elements of this book.

William B. Rouse
Tennenbaum Institute
Georgia Institute of Technology
Atlanta, Georgia

Kenneth R. Boff
Human Effectiveness Directorate
Air Force Research Laboratory
Dayton, Ohio

October 2004
CONTRIBUTORS

Dee H. Andrews is Senior Scientist (ST) with the Human Effectiveness Directorate of the Air Force Research Laboratory. He is a member of the Science and Technology Professional Corps of the U.S. Air Force. Prior to his current position Andrews was the Technical Director of the Warfighter Training Research Division of the Air Force Research Laboratory. In that position he directed the scientific and technical program of the Division. Previously he worked as a research psychologist for both the Army Research Institute for Behavioral and Social Sciences, and the Naval Training Systems Center. His Ph.D., granted in 1980, is in Instructional Systems from Florida State University, He is a Fellow in the American Psychological Association, the Human Factors and Ergonomics Society, and Royal Aeronautical Society of the United Kingdom.

Dr. Herbert H. Bell is the Technical Advisor for the Warfighter Readiness Research Division of the Air Force Research Laboratory. In that position he coordinates the scientific and technical program of the Division. Previously he was a Senior Scientist within the Division, where he also served as a Branch Chief. Prior to joining the Air Force Research Laboratory, he was a senior ergonomist with Eastman Kodak where he performed a variety of human factors functions. He is a member of IEEE, the Human Factors and Ergonomics Society, and the Psychonomic Society. He received his Ph.D. in experimental psychology from Vanderbilt University.

Aaron Bobick is the Professor and Chair of the IC Division within the College of Computing and the Director of the GVU Center at Georgia Institute of Technology, Atlanta, Georgia. He is also affiliated with the Computational Perception Laboratory (CPL) at Georgia Tech. His research interests are in computer vision and artificial intelligence and he specifically concentrated on modeling and recognition human activities, primarily from video. He earned his BS, MS, and PhD from MIT and he was also on the faculty at the MIT Media Lab from 1990 through 1998, before he joined the faculty at Georgia Tech. He was also on the research staff at SRI from 1987-90.

Kenneth R. Boff, Ph.D., serves as Chief Scientist of the Human Effectiveness Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio. In this position, he has responsibility for the technical direction and quality of a broad multi-disciplinary R&D portfolio encompassing human-engineering of complex systems, training, safety, biotechnology, toxicology, and deployment logistics. He is best known for his work on understanding and remediating problems in the transition of research to applications in the design and acquisition of complex human-systems. Holder of a patent for rapid communication display technology, Boff has authored numerous articles, book chapters and technical
papers, and is co-editor of "System Design" (1987), senior editor of the two-volume "Handbook of Perception and Human Performance" (1986), and the four-volume "Engineering Data Compendium: Human Perception and Performance" (1988). Boff actively consults and provides technical liaison with government agencies, international working groups, universities and professional societies. He is founder and technical director of the Department of Defense Human System Information Analysis Center, and founding member and former Chair of the DoD Reliance Human-Systems Interface Technology Panel. Currently, he is serving part-time on the faculty of the Georgia Institute of Technology, School of Industrial and Systems Engineering as an Edinfield Executive in Residence. Until recently, he was the US National Voting Member and Chair for the NATO RTO human factors technology area. In 2003, he received the NATO Scientific Achievement Award. Boff is a Fellow of the Human Factors & Ergonomics Society and the International Ergonomics Association.

Jeff Bradshaw, Ph.D., is a Senior Research Scientist at the Institute for Human and Machine Cognition where he leads the research group developing the KAoS policy and domain services framework. Formerly, he has led research groups at The Boeing Company and the Fred Hutchinson Cancer Research Center. In research sponsored by DARPA, NASA, ONR, and ARL, he is investigating principles of human-robotic teamwork, human-agent interaction, and trust and security for semantic web and semantic grid services. Dr. Bradshaw received his Ph.D. in cognitive science from the University of Washington in 1996. He has been a Fulbright Senior Scholar at the European Institute for Cognitive Sciences and Engineering (EURISCO) in Toulouse, France, is a member and former chair of the NASA Ames RIACS Science Council, and is former chair of ACM SIGART. Jeff serves on the editorial board of the Journal of Autonomous Agents and Multi-Agent Systems, the International Journal of Human-Computer Studies, the Web Semantics Journal, and the Web Intelligence Journal. Among other publications, he edited the books Knowledge Acquisition as a Modeling Activity (with Ken Ford, Wiley, 1993), Software Agents (AAAI Press/MIT Press, 1997) and the forthcoming Handbook of Agent Technology.

C. Shawn Burke, Ph.D. is a Research Associate at the University of Central Florida, Institute for Simulation and Training. Her primary research interests include teams, team leadership, team training and measurement, and team adaptability. Most recently, her research has focused on understanding, measuring, and training for team adaptability. Within this line of research she is currently investigating the impact of stress, leadership, and multi-cultural teams. She has presented at numerous peer-reviewed conferences, has published in several scientific journals and books on the topics of teams and team training, and serves as an ad-hoc reviewer for the Human Factors journal and Quality Safety in Health Care. She holds a Ph.D. in Industrial/ Organizational Psychology from George Mason University.