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PREFACE TO THE
SECOND EDITION

In the years since the publication of the first edition, there were many
aspects of the book that we wished to improve, to rearrange, or to expand,
but the constraints of reprinting would not allow us to make those changes
between printings. In the new edition, we now get a chance to make some
of these changes, to add problems, and to discuss some topics that we had
omitted from the first edition.

The key changes include a reorganization of the chapters to make
the book easier to teach, and the addition of more than two hundred
new problems. We have added material on universal portfolios, universal
source coding, Gaussian feedback capacity, network information theory,
and developed the duality of data compression and channel capacity. A
new chapter has been added and many proofs have been simplified. We
have also updated the references and historical notes.

The material in this book can be taught in a two-quarter sequence. The
first quarter might cover Chapters 1 to 9, which includes the asymptotic
equipartition property, data compression, and channel capacity, culminat-
ing in the capacity of the Gaussian channel. The second quarter could
cover the remaining chapters, including rate distortion, the method of
types, Kolmogorov complexity, network information theory, universal
source coding, and portfolio theory. If only one semester is available, we
would add rate distortion and a single lecture each on Kolmogorov com-
plexity and network information theory to the first semester. A web site,
http://www.elementsofinformationtheory.com, provides links to additional
material and solutions to selected problems.

In the years since the first edition of the book, information theory
celebrated its 50th birthday (the 50th anniversary of Shannon’s original
paper that started the field), and ideas from information theory have been
applied to many problems of science and technology, including bioin-
formatics, web search, wireless communication, video compression, and

xv



xvi PREFACE TO THE SECOND EDITION

others. The list of applications is endless, but it is the elegance of the
fundamental mathematics that is still the key attraction of this area. We
hope that this book will give some insight into why we believe that this
is one of the most interesting areas at the intersection of mathematics,
physics, statistics, and engineering.

Tom Cover
Joy Thomas

Palo Alto, California
January 2006



PREFACE TO THE
FIRST EDITION

This is intended to be a simple and accessible book on information theory.
As Einstein said, “Everything should be made as simple as possible, but no
simpler.” Although we have not verified the quote (first found in a fortune
cookie), this point of view drives our development throughout the book.
There are a few key ideas and techniques that, when mastered, make the
subject appear simple and provide great intuition on new questions.

This book has arisen from over ten years of lectures in a two-quarter
sequence of a senior and first-year graduate-level course in information
theory, and is intended as an introduction to information theory for stu-
dents of communication theory, computer science, and statistics.

There are two points to be made about the simplicities inherent in infor-
mation theory. First, certain quantities like entropy and mutual information
arise as the answers to fundamental questions. For example, entropy is
the minimum descriptive complexity of a random variable, and mutual
information is the communication rate in the presence of noise. Also,
as we shall point out, mutual information corresponds to the increase in
the doubling rate of wealth given side information. Second, the answers
to information theoretic questions have a natural algebraic structure. For
example, there is a chain rule for entropies, and entropy and mutual infor-
mation are related. Thus the answers to problems in data compression
and communication admit extensive interpretation. We all know the feel-
ing that follows when one investigates a problem, goes through a large
amount of algebra, and finally investigates the answer to find that the
entire problem is illuminated not by the analysis but by the inspection of
the answer. Perhaps the outstanding examples of this in physics are New-
ton’s laws and Schrödinger’s wave equation. Who could have foreseen the
awesome philosophical interpretations of Schrödinger’s wave equation?

In the text we often investigate properties of the answer before we look
at the question. For example, in Chapter 2, we define entropy, relative
entropy, and mutual information and study the relationships and a few

xvii
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interpretations of them, showing how the answers fit together in various
ways. Along the way we speculate on the meaning of the second law of
thermodynamics. Does entropy always increase? The answer is yes and
no. This is the sort of result that should please experts in the area but
might be overlooked as standard by the novice.

In fact, that brings up a point that often occurs in teaching. It is fun
to find new proofs or slightly new results that no one else knows. When
one presents these ideas along with the established material in class, the
response is “sure, sure, sure.” But the excitement of teaching the material
is greatly enhanced. Thus we have derived great pleasure from investigat-
ing a number of new ideas in this textbook.

Examples of some of the new material in this text include the chapter
on the relationship of information theory to gambling, the work on the uni-
versality of the second law of thermodynamics in the context of Markov
chains, the joint typicality proofs of the channel capacity theorem, the
competitive optimality of Huffman codes, and the proof of Burg’s theorem
on maximum entropy spectral density estimation. Also, the chapter on
Kolmogorov complexity has no counterpart in other information theory
texts. We have also taken delight in relating Fisher information, mutual
information, the central limit theorem, and the Brunn–Minkowski and
entropy power inequalities. To our surprise, many of the classical results
on determinant inequalities are most easily proved using information the-
oretic inequalities.

Even though the field of information theory has grown considerably
since Shannon’s original paper, we have strived to emphasize its coher-
ence. While it is clear that Shannon was motivated by problems in commu-
nication theory when he developed information theory, we treat informa-
tion theory as a field of its own with applications to communication theory
and statistics. We were drawn to the field of information theory from
backgrounds in communication theory, probability theory, and statistics,
because of the apparent impossibility of capturing the intangible concept
of information.

Since most of the results in the book are given as theorems and proofs,
we expect the elegance of the results to speak for themselves. In many
cases we actually describe the properties of the solutions before the prob-
lems. Again, the properties are interesting in themselves and provide a
natural rhythm for the proofs that follow.

One innovation in the presentation is our use of long chains of inequal-
ities with no intervening text followed immediately by the explanations.
By the time the reader comes to many of these proofs, we expect that he
or she will be able to follow most of these steps without any explanation
and will be able to pick out the needed explanations. These chains of
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inequalities serve as pop quizzes in which the reader can be reassured
of having the knowledge needed to prove some important theorems. The
natural flow of these proofs is so compelling that it prompted us to flout
one of the cardinal rules of technical writing; and the absence of verbiage
makes the logical necessity of the ideas evident and the key ideas per-
spicuous. We hope that by the end of the book the reader will share our
appreciation of the elegance, simplicity, and naturalness of information
theory.

Throughout the book we use the method of weakly typical sequences,
which has its origins in Shannon’s original 1948 work but was formally
developed in the early 1970s. The key idea here is the asymptotic equipar-
tition property, which can be roughly paraphrased as “Almost everything
is almost equally probable.”

Chapter 2 includes the basic algebraic relationships of entropy, relative
entropy, and mutual information. The asymptotic equipartition property
(AEP) is given central prominence in Chapter 3. This leads us to dis-
cuss the entropy rates of stochastic processes and data compression in
Chapters 4 and 5. A gambling sojourn is taken in Chapter 6, where the
duality of data compression and the growth rate of wealth is developed.

The sensational success of Kolmogorov complexity as an intellectual
foundation for information theory is explored in Chapter 14. Here we
replace the goal of finding a description that is good on the average with
the goal of finding the universally shortest description. There is indeed
a universal notion of the descriptive complexity of an object. Here also
the wonderful number � is investigated. This number, which is the binary
expansion of the probability that a Turing machine will halt, reveals many
of the secrets of mathematics.

Channel capacity is established in Chapter 7. The necessary material
on differential entropy is developed in Chapter 8, laying the groundwork
for the extension of previous capacity theorems to continuous noise chan-
nels. The capacity of the fundamental Gaussian channel is investigated in
Chapter 9.

The relationship between information theory and statistics, first studied
by Kullback in the early 1950s and relatively neglected since, is developed
in Chapter 11. Rate distortion theory requires a little more background
than its noiseless data compression counterpart, which accounts for its
placement as late as Chapter 10 in the text.

The huge subject of network information theory, which is the study
of the simultaneously achievable flows of information in the presence of
noise and interference, is developed in Chapter 15. Many new ideas come
into play in network information theory. The primary new ingredients are
interference and feedback. Chapter 16 considers the stock market, which is
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the generalization of the gambling processes considered in Chapter 6, and
shows again the close correspondence of information theory and gambling.

Chapter 17, on inequalities in information theory, gives us a chance to
recapitulate the interesting inequalities strewn throughout the book, put
them in a new framework, and then add some interesting new inequalities
on the entropy rates of randomly drawn subsets. The beautiful relationship
of the Brunn–Minkowski inequality for volumes of set sums, the entropy
power inequality for the effective variance of the sum of independent
random variables, and the Fisher information inequalities are made explicit
here.

We have made an attempt to keep the theory at a consistent level.
The mathematical level is a reasonably high one, probably the senior or
first-year graduate level, with a background of at least one good semester
course in probability and a solid background in mathematics. We have,
however, been able to avoid the use of measure theory. Measure theory
comes up only briefly in the proof of the AEP for ergodic processes in
Chapter 16. This fits in with our belief that the fundamentals of infor-
mation theory are orthogonal to the techniques required to bring them to
their full generalization.

The essential vitamins are contained in Chapters 2, 3, 4, 5, 7, 8, 9,
11, 10, and 15. This subset of chapters can be read without essential
reference to the others and makes a good core of understanding. In our
opinion, Chapter 14 on Kolmogorov complexity is also essential for a deep
understanding of information theory. The rest, ranging from gambling to
inequalities, is part of the terrain illuminated by this coherent and beautiful
subject.

Every course has its first lecture, in which a sneak preview and overview
of ideas is presented. Chapter 1 plays this role.

Tom Cover
Joy Thomas

Palo Alto, California
June 1990
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CHAPTER 1

INTRODUCTION AND PREVIEW

Information theory answers two fundamental questions in communication
theory: What is the ultimate data compression (answer: the entropy H ),
and what is the ultimate transmission rate of communication (answer: the
channel capacity C). For this reason some consider information theory
to be a subset of communication theory. We argue that it is much more.
Indeed, it has fundamental contributions to make in statistical physics
(thermodynamics), computer science (Kolmogorov complexity or algo-
rithmic complexity), statistical inference (Occam’s Razor: “The simplest
explanation is best”), and to probability and statistics (error exponents for
optimal hypothesis testing and estimation).

This “first lecture” chapter goes backward and forward through infor-
mation theory and its naturally related ideas. The full definitions and study
of the subject begin in Chapter 2. Figure 1.1 illustrates the relationship
of information theory to other fields. As the figure suggests, information
theory intersects physics (statistical mechanics), mathematics (probability
theory), electrical engineering (communication theory), and computer sci-
ence (algorithmic complexity). We now describe the areas of intersection
in greater detail.

Electrical Engineering (Communication Theory). In the early 1940s
it was thought to be impossible to send information at a positive rate
with negligible probability of error. Shannon surprised the communica-
tion theory community by proving that the probability of error could be
made nearly zero for all communication rates below channel capacity.
The capacity can be computed simply from the noise characteristics of
the channel. Shannon further argued that random processes such as music
and speech have an irreducible complexity below which the signal cannot
be compressed. This he named the entropy, in deference to the parallel
use of this word in thermodynamics, and argued that if the entropy of the

Elements of Information Theory, Second Edition, By Thomas M. Cover and Joy A. Thomas
Copyright  2006 John Wiley & Sons, Inc.
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FIGURE 1.2. Information theory as the extreme points of communication theory.

source is less than the capacity of the channel, asymptotically error-free
communication can be achieved.

Information theory today represents the extreme points of the set of
all possible communication schemes, as shown in the fanciful Figure 1.2.
The data compression minimum I (X; X̂) lies at one extreme of the set of
communication ideas. All data compression schemes require description
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rates at least equal to this minimum. At the other extreme is the data
transmission maximum I (X;Y), known as the channel capacity. Thus,
all modulation schemes and data compression schemes lie between these
limits.

Information theory also suggests means of achieving these ultimate
limits of communication. However, these theoretically optimal communi-
cation schemes, beautiful as they are, may turn out to be computationally
impractical. It is only because of the computational feasibility of sim-
ple modulation and demodulation schemes that we use them rather than
the random coding and nearest-neighbor decoding rule suggested by Shan-
non’s proof of the channel capacity theorem. Progress in integrated circuits
and code design has enabled us to reap some of the gains suggested by
Shannon’s theory. Computational practicality was finally achieved by the
advent of turbo codes. A good example of an application of the ideas of
information theory is the use of error-correcting codes on compact discs
and DVDs.

Recent work on the communication aspects of information theory has
concentrated on network information theory: the theory of the simultane-
ous rates of communication from many senders to many receivers in the
presence of interference and noise. Some of the trade-offs of rates between
senders and receivers are unexpected, and all have a certain mathematical
simplicity. A unifying theory, however, remains to be found.

Computer Science (Kolmogorov Complexity). Kolmogorov,
Chaitin, and Solomonoff put forth the idea that the complexity of a string
of data can be defined by the length of the shortest binary computer
program for computing the string. Thus, the complexity is the minimal
description length. This definition of complexity turns out to be universal,
that is, computer independent, and is of fundamental importance. Thus,
Kolmogorov complexity lays the foundation for the theory of descriptive
complexity. Gratifyingly, the Kolmogorov complexity K is approximately
equal to the Shannon entropy H if the sequence is drawn at random from
a distribution that has entropy H . So the tie-in between information theory
and Kolmogorov complexity is perfect. Indeed, we consider Kolmogorov
complexity to be more fundamental than Shannon entropy. It is the ulti-
mate data compression and leads to a logically consistent procedure for
inference.

There is a pleasing complementary relationship between algorithmic
complexity and computational complexity. One can think about computa-
tional complexity (time complexity) and Kolmogorov complexity (pro-
gram length or descriptive complexity) as two axes corresponding to
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program running time and program length. Kolmogorov complexity fo-
cuses on minimizing along the second axis, and computational complexity
focuses on minimizing along the first axis. Little work has been done on
the simultaneous minimization of the two.

Physics (Thermodynamics). Statistical mechanics is the birthplace of
entropy and the second law of thermodynamics. Entropy always increases.
Among other things, the second law allows one to dismiss any claims to
perpetual motion machines. We discuss the second law briefly in Chapter 4.

Mathematics (Probability Theory and Statistics). The fundamental
quantities of information theory—entropy, relative entropy, and mutual
information—are defined as functionals of probability distributions. In
turn, they characterize the behavior of long sequences of random variables
and allow us to estimate the probabilities of rare events (large deviation
theory) and to find the best error exponent in hypothesis tests.

Philosophy of Science (Occam’s Razor). William of Occam said
“Causes shall not be multiplied beyond necessity,” or to paraphrase it,
“The simplest explanation is best.” Solomonoff and Chaitin argued per-
suasively that one gets a universally good prediction procedure if one takes
a weighted combination of all programs that explain the data and observes
what they print next. Moreover, this inference will work in many problems
not handled by statistics. For example, this procedure will eventually pre-
dict the subsequent digits of π . When this procedure is applied to coin flips
that come up heads with probability 0.7, this too will be inferred. When
applied to the stock market, the procedure should essentially find all the
“laws” of the stock market and extrapolate them optimally. In principle,
such a procedure would have found Newton’s laws of physics. Of course,
such inference is highly impractical, because weeding out all computer
programs that fail to generate existing data will take impossibly long. We
would predict what happens tomorrow a hundred years from now.

Economics (Investment). Repeated investment in a stationary stock
market results in an exponential growth of wealth. The growth rate of
the wealth is a dual of the entropy rate of the stock market. The paral-
lels between the theory of optimal investment in the stock market and
information theory are striking. We develop the theory of investment to
explore this duality.

Computation vs. Communication. As we build larger computers
out of smaller components, we encounter both a computation limit and
a communication limit. Computation is communication limited and com-
munication is computation limited. These become intertwined, and thus


