Fat-Tailed and Skewed Asset Return Distributions

Implications for Risk Management, Portfolio Selection, and Option Pricing

SVETLOZAR T. RACHEV
CHRISTIAN MENN
FRANK J. FABOZZI
Fat-Tailed and Skewed Asset Return Distributions
THE FRANK J. FABOZZI SERIES

Fixed Income Securities, Second Edition by Frank J. Fabozzi

Focus on Value: A Corporate and Investor Guide to Wealth Creation by James L. Grant and James A. Abate

Handbook of Global Fixed Income Calculations by Dragomir Krgin

Managing a Corporate Bond Portfolio by Leland E. Crabbe and Frank J. Fabozzi

Real Options and Option-Embedded Securities by William T. Moore

Capital Budgeting: Theory and Practice by Pamela P. Peterson and Frank J. Fabozzi

The Exchange-Traded Funds Manual by Gary L. Gastineau

Professional Perspectives on Fixed Income Portfolio Management, Volume 3 edited by Frank J. Fabozzi

Investing in Emerging Fixed Income Markets edited by Frank J. Fabozzi and Efstathia Pilarinu

Handbook of Alternative Assets by Mark J. P. Anson

The Exchange-Traded Funds Manual by Gary L. Gastineau

The Global Money Markets by Frank J. Fabozzi, Steven V. Mann, and Moorad Choudhry

The Handbook of Financial Instruments edited by Frank J. Fabozzi

Collateralized Debt Obligations: Structures and Analysis by Laurie S. Goodman and Frank J. Fabozzi

Interest Rate, Term Structure, and Valuation Modeling edited by Frank J. Fabozzi

Investment Performance Measurement by Bruce J. Feibel

The Handbook of Equity Style Management edited by T. Daniel Coggin and Frank J. Fabozzi

The Theory and Practice of Investment Management edited by Frank J. Fabozzi and Harry M. Markowitz

Foundations of Economic Value Added: Second Edition by James L. Grant

Measuring and Controlling Interest Rate and Credit Risk: Second Edition by Frank J. Fabozzi, Steven V. Mann, and Moorad Choudhry

Professional Perspectives on Fixed Income Portfolio Management, Volume 4 edited by Frank J. Fabozzi

The Handbook of European Fixed Income Securities edited by Frank J. Fabozzi and Moorad Choudhry

The Handbook of European Structured Financial Products edited by Frank J. Fabozzi and Moorad Choudhry

Short Selling: Strategies, Risks, and Rewards edited by Frank J. Fabozzi

The Real Estate Investment Handbook by G. Timothy Haight and Daniel Singer

Market Neutral Strategies edited by Bruce I. Jacobs and Kenneth N. Levy

Securities Finance: Securities Lending and Repurchase Agreements edited by Frank J. Fabozzi and Steven V. Mann
Contents

Preface xi
About the Authors xiii

CHAPTER 1
Introduction 1
Organization of the Book 5
References 8

PART ONE
Probability and Statistics 11

CHAPTER 2
Discrete Probability Distributions 13
Basic Concepts 14
Discrete Probability Distributions Defined 14
Bernoulli Distribution 15
Binomial Distribution 15
Poisson Distribution 16
References 21

CHAPTER 3
Continuous Probability Distributions 23
Continuous Random Variables and Probability Distributions 23
The Normal Distribution 29
Other Popular Distributions 32
References 46

CHAPTER 4
Describing a Probability Distribution Function: Statistical Moments and Quantiles 47
Location 47
Dispersion 48
Asymmetry 48
PART TWO

Stochastic Processes 119

CHAPTER 9
Stochastic Processes in Discrete Time and Time Series Analysis 121
Stochastic Processes in Discrete Time 121
ARCH and GARCH Models 130
ARMA-GARCH Illustration 133
References 140

CHAPTER 10
Stochastic Processes in Continuous Time 143
The Poisson Process 144
Brownian Motion 147
Stochastic Differential Equations 155
Lévy Processes 156
References 158

PART THREE

Portfolio Selection 161

CHAPTER 11
Equity and Bond Return Distributions 163
Evidence from the U.S. Stock Market 163
Evidence from the U.S. Bond Market 167
References 178

CHAPTER 12
Risk Measures and Portfolio Selection 181
Desirable Features of Investment Risk Measures 181
Alternative Risk Measures for Portfolio Selection 185
References 194

CHAPTER 13
Risk Measures in Portfolio Optimization and Performance Measures 199
Efficient Frontiers and Return Distribution Assumption 200
Portfolio Optimization and Conditional Value-at-Risk versus Value-at-Risk 203
Performance Measures 206
References 210
PART FOUR

Risk Management

CHAPTER 14
Market Risk
Adoption of VaR for Measuring Market Risk
VaR and Bank Capital Requirements
Computation of VaR
Evaluation of VaR Methods: Strengths and Weaknesses
Stable Modeling of VaR
Alternative to VaR: Expected Tail Loss
References
Appendix: Coherent Risk Measures

CHAPTER 15
Credit Risk
Credit Risk Framework for Banks: Basel I and Basel II
Overview of Credit Risk Modeling
Credit Risk Management Tools
An Integrated Market and Credit Risk Management Framework
 Based on the Structural Approach
An Integrated Market and Credit Risk Management Framework
 Based on the Intensity-Based Model
Building An Econometric Model for the Intensity-Based Model
References

CHAPTER 16
Operational Risk
Operational Risk Defined
Capital Requirement for Operational Risk
Comparison of Market, Credit, and Operational Risk Distributions
Aggregated Stochastic Models for Operational Risk
References

PART FIVE

Option Pricing

CHAPTER 17
Introduction to Option Pricing and the Binomial Model
Options Contracts
Basic Components of the Option Price
Boundary Conditions for the Price of an Option 298
Discrete-Time Option Pricing: Binomial Model 300
Convergence of the Binomial Model 312
References 316

CHAPTER 18
Black-Scholes Option Pricing Model 319
Motivation 319
Black-Scholes Formula 322
Computing a Call Option Price 323
Sensitivity of Option Price to a Change in Factors: The Greeks 325
Computing a Put Option Price 331
Assumptions Underlying the Black-Scholes Model and
Basic Extensions 331
Black-Scholes Model Applied to the Pricing of Options on Bonds:
Importance of Assumptions 334
References 336

CHAPTER 19
Extension of the Black-Scholes Model and Alternative Approaches 337
The “Smile Effect” 337
Continuous-Time Models 339
Discrete-Time Models 345
References 349

INDEX 353
he theory and practice of finance draws heavily on probability theory. All MBA programs prepare finance majors for their career in the profession by requiring one generalist course in probability theory and statistics attended by all business majors. While several probability distributions are covered in the course, the primary focus is on the normal or Gaussian distribution.

Students find it easy to understand and apply the normal distribution: Give them the expected value and standard deviation and probability statements about outcomes can be easily made. Moreover, even if a random variable of interest is not normally distributed, students are told that a theorem in statistics called the Central Limit Theorem proves that under certain conditions the sum of independent random variables will be asymptotically normally distributed. Loosely speaking, this means that as the number of random variables are summed, the sum will approach a normal distribution.

Armed with this rudimentary knowledge of probability theory, finance students march into their elective courses in finance that introduce them to the quantitative measures of risk (the standard deviation) and the quantitative inputs needed to implement modern portfolio theory (the expected value or mean and the standard deviation). In listing assumptions for most theories of finance, the first assumption on the list is often: “Assume asset returns are normally distributed.” The problem, however, is that empirical evidence does not support the assumption that many important variables in finance follow a normal distribution. The application of the Central Limit Theorem to such instances is often inappropriate because the conditions necessary for its application are not satisfied.

And this brings us to the purpose of this book. Our purpose is fourfold. First, we explain alternative probability distributions to the normal distributions for describing asset returns as well as defaults. We focus on the stable Paretian (or alpha stable) distribution because of the strong support for that distribution that dates back four decades to the seminal work of Benoit Mandelbrot. Second, we explain how to estimate distributions. Third, we present empirical evidence rejecting the hypothesis that returns for stocks and bonds are normally distributed.
and instead show that they exhibit fat tails and skewness. Finally, we explain the implications of fat tails and skewness to portfolio selection, risk management, and option pricing.

We must admit that our intent at the outset was to provide a “non-technical” treatment of the topic. However, we could not do so. Rather, we believe that we have provided a less technical treatment than is provided in the many excellent books and scholarly articles that deal with probability and statistics applied to finance and risk management. The book is not simple reading. It must be studied to appreciate the pitfalls that result from the application of the normal distribution to real-world financial problems.

Acknowledgments

We thank the following individuals with whom we have worked with on research papers for allowing us to use portions of that research in various writings in this book:

- Almira Biglova
- Anna Chernobai
- Dylan D’Souza
- Michael Grebeck
- Teo Jašić
- Irina Khindanova
- Douglas Martin
- Stefan Mittnik
- Sergio Ortobelli
- Borjana Racheva-Iotova
- Gennady Samorodnitsky
- Eduardo Schwartz
- Stoyan Stoyanov
- Yesim Tokat

Svetlozar Rachev’s research was supported by grants from Division of Mathematical, Life and Physical Sciences, College of Letters and Science, University of California, Santa Barbara and the Deutschen Forschungsgemeinschaft.

Christian Menn gratefully acknowledges research support received by the German Academic Exchange Service (Deutsche Akademische Austausch Dienst, DAAD).

Frank Fabozzi received various forms of assistance from the International Center for Finance at Yale University.

We thank Megan Orem for her skillful typesetting of this book.

Svetlozar T. Rachev
Christian Menn
Frank J. Fabozzi
About the Authors

Professor Dr. Svetlozar T. (Zari) Rachev is Chair-Professor at the University of Karlsruhe in the School of Economics and Business Engineering and Professor Emeritus at the University of California, Santa Barbara in the Department of Statistics and Applied Probability. He completed his PhD. in 1979 from Moscow State University and his Doctor of Science Degree in 1986 from the Steklov Mathematical Institute in Moscow. He has published six monographs and more than 250 research articles. His research areas include mathematical and empirical finance, econometrics, probability, and statistics. He is a Fellow of the Institute of Mathematical Statistics, Elected Member of the International Statistical Institute, Foreign Member of the Russian Academy of Natural Science, and holds an honorary doctorate degree from St. Petersburg Technical University. Professor Rachev is cofounder of Bravo Risk Management Group, specializing in financial risk-management software. Bravo Group was recently acquired by FinAnalytica for which he currently serves as Chief-Scientist.

Dr. Christian Menn is Hochschulassistent at the Chair of Statistics, Econometrics and Mathematical Finance at the University of Karlsruhe. Currently, he is Visiting Scientist at the School of Operations Research and Industrial Engineering at Cornell University as a post-doctorate fellow. In 1998, he received a degree in mathematics (Maîtrise des mathématiques) from the University J. Fourier in Grenoble, France and in 2000 a degree in mathematics (Diplom in Wirtschaftsmathematik) from the University of Karlsruhe, Germany. Recently, Christian earned his doctorate in economics at the University of Karlsruhe, Germany.

Dr. Frank J. Fabozzi, CFA, CPA is the Frederick Frank Adjunct Professor of Finance in the School of Management at Yale University. Prior to joining the Yale faculty, he was a Visiting Professor of Finance in the Sloan School at MIT. Professor Fabozzi is a Fellow of the International Center for Finance at Yale University and the editor of the Journal of Portfolio Management. He earned a doctorate in economics from the City University of New York in 1972. In 1994 he received an honorary doctorate of Humane Letters from Nova Southeastern University and in 2002 was inducted into the Fixed Income Analysts Society’s Hall of Fame.
Most of the concepts in theoretical and empirical finance that have been developed over the last 50 years rest upon the assumption that the return or price distribution for financial assets follows a normal distribution. Yet, with rare exception, studies that have investigated the validity of this assumption since the 1960s fail to find support for the normal distribution—or Gaussian distribution as it is also called. Moreover, there is ample empirical evidence that many, if not most, financial return series are heavy-tailed and possibly skewed.

The “tails” of the distribution are where the extreme values occur. Empirical distributions for stock prices and returns have found that the extreme values are more likely than would be predicted by the normal distribution. This means that, between periods where the market exhibits relatively modest changes in prices and returns, there will be periods where there are changes that are much higher (i.e., crashes and booms) than predicted by the normal distribution. This is not only of concern to financial theorists, but also to practitioners who are, in view of the frequency of sharp market down turns in the equity markets, troubled by the “... compelling evidence that something is rotten in the foundation of the statistical edifice ...” used, for example, to produce probability estimates for financial risk assessment.¹ Heavy or fat tails can help explain larger price fluctuations for stocks over short time periods than can be explained by changes in fundamental economic variables as observed by Robert Shiller (1981).

Mathematical models of the stock market developed through the joint efforts of economists and physicists have provided support for price and return distributions with heavy tails. This has been done by

¹Hope 1999, p. 16.
modeling the interaction of market agents. While these mathematical models by their nature are a gross simplification of real-world financial markets, they provide sufficient structure to analyze return distributions. Computer simulations of these models have been found to generate fat tails and other statistical characteristics that have been observed in real-world financial markets.

The first fundamental attack on the assumption that price or return distribution are not normally distributed was in the 1960s by Benoit Mandelbrot (1963). He strongly rejected normality as a distributional model for asset returns. Examining various time series on commodity returns and interest rates, Mandlebrot conjectured that financial returns are more appropriately described by a nonnormal stable distribution. To distinguish between Gaussian and non-Gaussian stable distributions, the latter are often referred to as “stable Pareto” distributions or “Lévy stable” distributions. His early investigations on asset returns were carried further by Eugene Fama (1965a, 1965b), among others, and led to a consolidation of the hypothesis that asset returns can be better described as a stable Pareto distribution.

There was obviously considerable concern in the finance profession by the findings of Mandelbrot and Fama. Shortly after the publication of the Mandelbrot paper, Paul Cootner (1964) expressed his concern regarding the implications of those findings for the statistical tests that had been published in prominent scholarly journals in economics and finance. He warned that:

Almost without exception, past econometric work is meaningless. Surely, before consigning centuries of work to the ash pile, we should like to have some assurance that all our work is truly useless. If we have permitted ourselves to be fooled for as long as this

2 Probably the most well-known model is the Santa Fe Stock Market Model (see Arthur et al., 1997). There are others. Bak, Paczuski, and Shubik (1996) and Lux (1999) analyze the interaction between two categories of market agents: “rational investors” and “noise traders.” Rational agents act on fundamental information in order to analyze risk-return opportunities and then act to optimize their utility function. “Noise” traders are market agents whose behavior is governed only by their analysis of market dynamics. Their choice at which to transact (buy or sell) may imitate the choice of other market agents. Cont and Bouchaud (2000) develop a model based on herding or crowd behavior that has been observed in financial markets.

3 The reason for this name is to emphasize the fact that the tails of the non-Gaussian stable distribution have Pareto power-type decay.

4 This name honors Paul Lévy for his seminal work introducing and characterizing the class of non-Gaussian stable distributions.
into believing that the Gaussian assumption is a workable one, is it not possible that the Paretian revolution is similarly illusory? (Cootner 1964, 337)

While that evidence has been supplied in numerous studies, the “normality” assumption remains the cornerstone of many leading theories used in finance.

There was also concern at a theoretical level because one feature of the stable Paretian distribution is that there is an infinite variance. The variance of a return distribution for a highly diversified portfolio was just beginning to be accepted as the appropriate measure of risk in finance. It was one of the only two parameters needed in the theory of portfolio selection that had been developed by Harry Markowitz (1952, 1959). Moreover, the key feature of the framework developed by Markowitz, commonly referred to as “mean-variance analysis,” is the notion of how to diversification benefits investors. The underlying principle is that the risk (as measured by the variance) of a portfolio of returns consisting of stocks whose returns did not have perfect positive correlation would be less than the weighted average of the risk of the individual stocks comprising the portfolio. This quantification of diversification became known as “Markowitz diversification.”

Fama (1965c) revisited the notion of diversification if stock returns followed a stable Paretian distribution rather than a normal distribution. As we will see in Chapter 7, there are four parameters that describe a stable Paretian distribution. One of those parameters, the characteristic exponent of the distribution (also called the “tail index”), is critical in analyzing the benefits of diversification—reducing the dispersion of stock returns as the number of holdings increases. Fama derived the boundaries for the parameter so that an increase in the number of holdings in a portfolio provides the benefit of diversification. However, if the parameter was not within the narrow range he derived, increasing holdings could result in a greater dispersion of stock returns.

As one would expect in the development of ideas in any field, defendants of the prevailing theories went on the offensive. One attack on the stable Paretian distribution was that there is no closed-form solution to obtain the necessary information about the distribution—probability density, distribution functions, and quantile, concepts of a probability distribution that we will describe in Chapter 3. While this may have been a valid criticism at one time, advances in computational finance make it fairly straightforward to fit observed returns to determine the parameters of a stable Paretian distribution. Thus, this criticism is no longer valid.

5 For a more general derivation, see Chapter 9 in Rachev and Mittnik (2000).
The major attack in the 1970s and 1980s centered around the claim that while the empirical evidence does not support the normal distribution, it is also not consistent with the stable Paretian distribution. For example, it was observed that asset return distributions are not as heavy tailed as the stable Paretian distribution would predict and furthermore they did not remain constant under temporal aggregation. That is, while there was no disagreement that the distribution of returns for assets were found to have heavier tails relative to the normal distribution, it was thinner than a stable Paretian distribution. Studies that came to such conclusions were typically based on a statistical test of the tail of the empirical distributions. However, the test that has been typically used to estimate the tails is highly unreliable for testing whether a distribution follows a stable Paretian distribution because sample sizes in excess of 100,000 are required to obtain reasonably accurate estimates. In other words, even if we were generating a small sample of a true stable Paretian distribution and then estimate the tail thickness with the estimator that has been used, we would most probably generate tail thickness estimates which contradict the stable assumption. There are other technical problems with these studies.

Partly in response to these empirical “inconsistencies,” various alternatives to the stable Paretian distribution that had a finite variance were proposed in the literature. One alternative is the Student-\(t\) distribution, a distribution that under certain conditions not only has a finite variance but also allows for tails with more observations than the normal distribution. Battberg and Gonedes (1974) presented evidence supporting the Student-\(t\)-distribution. Yet another distribution that has been proposed is a finite mixture of normal distributions. Kon (1984) found that this alternative explains daily returns for stocks better than the Student-\(t\) distribution.

A major drawback of all these alternative models is their lack of stability. As has been stressed by Mandelbrot and argued by Rachev and Mittnik (2000), among others, the stability property is highly desirable for asset returns. This is particularly evident in the context of portfolio analysis and risk management. Only for stable (which includes the Gaussian as a special case) distributed returns of independent assets does one obtain the property that the linear combination of the returns (portfolio returns) follow again a stable distribution. The independence assumption

6 See Officer (1972), Akgiray and Booth (1988), and Akgiray and Lamoureux (1989).
7 The procedure for estimating the tail that has been used is the Hill estimator.
8 See Rachev and Mittnik (2000).
9 Specifically, the degrees of freedom must be greater than 2. With 2 degrees of freedom or less, a Student-\(t\) distribution has infinite variance as well.
of the returns can be replaced by assuming that the returns are jointly stable distributed (similar to the multivariate Gaussian case). Then again any portfolio return has a stable distribution, while the returns of the assets in the portfolios are jointly dependent with multivariate stable distribution. While the Gaussian distribution shares this feature, it is only one particular member of a large and flexible class of distributions, which also allows for skewness and heavy-tailedness.

This stability feature of the stable Paretian distribution that is not shared by other non-Gaussian distributions allows the generalization of the cornerstone normal-based financial theories and, thus, to build a coherent and more general framework for financial modeling. The generalizations are only possible because of specific probabilistic properties that are unique to stable (Gaussian and non-Gaussian) distributions, namely, the stability property, the Central Limit Theorem, and the Invariance Principle that we will describe in Chapter 7.

ORGANIZATION OF THE BOOK

The book is divided into five parts. Part One of the book includes six chapters that provide an introduction to the essential elements of probability theory and statistics for understanding the analysis of financial times series, risk management, and option pricing. In Chapters 2, 3, and 4 we explain how a probability distribution is used to describe the potential outcomes of a random variable, the general properties of probability distributions (including statistical moments), and the different types of probability distributions. In Chapter 3 we look at the normal probability distribution and its appeal.

In Chapter 5 we move from the probability distribution of a single random variable to that of multiple random variables, introducing the concept of a joint probability distribution, marginal probability distribution, and correlation and covariance that is commonly used to measure how random variables move together. We also discuss the multivariate normal distribution and a special class of distributions, the elliptical distribution. The limitations of correlation as a measure of the dependence between two random variables and how that limitation can be overcome by using copulas is provided in Chapter 6.

The stable distribution is the focus of Chapter 7. We explain the properties of stable distributions and considerations in the application of the distribution. We conclude the chapter with a brief introduction to smoothly truncated stable distributions that have been suggested for various applications in finance. In Chapter 8, we explain methodologies
for testing whether the probability distribution for a time series of returns for a particular asset follows a specific distribution and then present methodologies to fit a stable distribution from an empirical distribution.

The two chapters in Part Two of the book cover stochastic processes. The theory of stochastic processes in discrete time is an important tool when examining the characteristics of financial time series data. An introduction to this tool is provided in Chapter 9. One of the simplest time series models is provided by the linear models of the autoregressive moving average (ARMA). However, when the focus is on modeling financial return data, it is sometimes necessary to incorporate time-varying conditional volatility. Statistical models for doing so are the autoregressive conditional heteroskedasticity (ARCH) model and generalized ARCH (GARCH) model and they are described in the chapter. Our approach in Chapter 9 is to motivate the reader as to why an understanding of this theory is important, rather than set forth a rigorous analytical presentation.

In some applications it might be more useful if we had the opportunity to model stochastic phenomena on a continuous-time scale rather than in discrete time. An example is the valuation of options (Black-Scholes option pricing model). The tool used in this case is continuous-time stochastic processes. In Chapter 10, we describe this tool and the most prominent representatives of the class of continuous-time stochastic processes: Brownian motion, Geometric Brownian motion, and the Poisson process.

Part Three provides the first of the three applications to finance. Application to portfolio selection is covered in this part, beginning in Chapter 11 with a description of recent empirical evidence on the return distribution for common stock and bonds that supports the stable Pareto hypothesis and clearly refutes the normal (Gaussian) hypothesis. Some desirable features of investment risk measures, the limitations of using the most popular measure of risk in finance and risk management, the variance, and a discussion of alternative risk measures are covered in Chapter 12. Also in that chapter, we describe two disjointed categories of risk measures, dispersion measures and safety risk measures, and review some of the most well known of each along with their properties.

There are two basic approaches to the problem of portfolio selection under uncertainty—one based on utility theory and the other based on reward-risk analysis. The former approach offers a mathematically rigorous treatment of the portfolio selection problem but appears sometimes detached from the world because it requires that asset managers specify their utility function and choose a distributional assumption for the returns. The latter approach is one that is more practical to implement. According to this approach, portfolio choice is made with respect
to two criteria—the expected portfolio return and portfolio risk—with the preferred portfolio being the one that has higher expected return and lower risk. The most popular reward-risk measure is the Sharpe ratio (see Sharpe 1966). In Chapter 13, we describe some new reward-risk measures that take into account the observed phenomena that assets returns distributions are fat tailed and skewed.

Applications to the management of market, credit, and operational risk are the subject of Part 4. Chapter 14 which covers market risk management begins with a review of the adoption of Value at Risk (VaR) by bank regulators for determining risk-based capital requirements and various methodologies for measuring VaR. We then discuss the stable VaR approach and present empirical evidence comparing VaR modeling based on the normal distribution with that of the stable Paretian distribution. We conclude with an explanation of an alternative market risk measure to VaR, Expected Tail Loss (or Conditional VaR) and the advantage of using this risk measure in portfolio optimization.

Credit risk management is the subject of Chapter 15, where we provide a description of credit risk (which consists of credit default risk, credit spread risk, and downgrade risk), an overview of the credit risk framework for banks as set forth in the Basel Accord II, credit risk models (structural models and reduced form models), and commercially available credit risk tools. We also present a framework for integrating market and credit risk management.

Our coverage of operational risk in Chapter 16 starts with a discussion of the distributions suggested by the Basel Committee for Regulatory Supervision for measuring exposure to operational risk. We then present evidence against the measure suggested by regulators for measuring exposure to operational risk by showing that the stable Paretian distribution may provide the best fit to the frequency and severity data.

Option pricing models depend on the assumption regarding the distribution of returns. In the three chapters in Part 5 we look at the most popular model for pricing options, the Black-Scholes model and how it can be extended. Chapter 17 covers the basic features of options, how options can be valued using the binomial model, and how one can obtain a continuous-time option pricing model by iteratively refining the binomial model. In Chapter 18 we then introduce the most popular continuous-time model for option valuation, the Black-Scholes model, looking at the assumptions and their importance. In Chapter 19 we look at several topics related to option pricing: the smile effect, continuous-time generalizations of the geometric Brownian motion for option pricing (stochastic volatility models and so-called “local volatility models”), models with jumps, models with heavy-tailed returns, and generalization of the discrete time model for pricing options.
REFERENCES

Probability and Statistics
Will Microsoft’s stock return over the next year exceed 10%? Will the 1-month London Interbank Offered Rate (LIBOR) three months from now exceed 4%? Will Ford Motor Company default on its debt obligations sometime over the next five years? Microsoft’s stock return over the next year, 1-month LIBOR three months from now, and the default of Ford Motor Company on its debt obligations are each variables that exhibit randomness. Hence these variables are referred to as random variables. In the chapters in Part One, we will see how probability distributions are used to describe the potential outcomes of a random variable, the general properties of probability distributions, and the different types of probability distributions. Random variables can be classified as either discrete or continuous. In this chapter, our focus is on discrete probability distributions.

1 The precise mathematical definition is that a random variable is a measurable function from a probability space into the set of real numbers. In the following the reader will repeatedly be confronted with imprecise definitions. The authors have intentionally chosen this way for a better general understandability and for sake of an intuitive and illustrative description of the main concepts of probability theory. The reader already familiar with these concepts is invited to skip this and some of the following chapters. In order to inform about every occurrence of looseness and lack of mathematical rigor, we have furnished most imprecise definitions with a footnote giving a reference to the exact definition.

2 For more detailed and/or complementary information, the reader is referred to the textbook by Larsen and Marx (1986) or Billingsley (1995).
BASIC CONCEPTS

An outcome for a random variable is the mutually exclusive potential result that can occur. A sample space is a set of all possible outcomes. An event is a subset of the sample space. For example, consider Microsoft’s stock return over the next year. The sample space contains outcomes ranging from –100% (all the funds invested in Microsoft’s stock will be lost) to an extremely high positive return. The sample space can be partitioned into two subsets: outcomes where the return is less than or equal to 10% and a subset where the return exceeds 10%. Consequently, a return greater than 10% is an event since it is a subset of the sample space. Similarly, a 1-month LIBOR three months from now that exceeds 4% is an event.

DISCRETE PROBABILITY DISTRIBUTIONS DEFINED

As the name indicates, a discrete random variable limits the outcomes where the variable can only take on discrete values. For example, consider the default of a corporation on its debt obligations over the next five years. This random variable has only two possible outcomes: default or nondefault. Hence, it is a discrete random variable. Consider an option contract where, for an upfront payment (i.e., the option price) of $50,000, the buyer of the contract receives the following payment from the seller of the option depending on the return on the S&P 500 index:

<table>
<thead>
<tr>
<th>If S&P 500 return is</th>
<th>Payment received by option buyer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than or equal to zero</td>
<td>$0</td>
</tr>
<tr>
<td>Greater than zero but less than 5%</td>
<td>$10,000</td>
</tr>
<tr>
<td>Greater than 5% but less than 10%</td>
<td>$20,000</td>
</tr>
<tr>
<td>Greater than or equal to 10%</td>
<td>$100,000</td>
</tr>
</tbody>
</table>

In this case, the random variable is a discrete random variable but on the limited number of outcomes.

The probabilistic treatment of discrete random variables is comparatively easy: Once a probability is assigned to all different outcomes, the probability of an arbitrary event can be calculated by simply adding the

3Precisely, only certain subsets of the sample space are called events. In the case that the sample space is represented by a subinterval of the real numbers, the events consist of the so-called “Borel sets.” For all practical applications, we can think of Borel sets as containing all subsets of the sample space.