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Preface

The purpose of this book is to present in a comprehensive manner the analysis and
design of phased array antennas and systems. The book includes recent analyti-
cal developments in the phased array arena published in journals and conference
proceedings. Efforts have been made to develop the concept in a logical manner
starting from fundamental principles. Detailed derivations of theorems and concepts
are provided to make the book as self-contained as possible. Several design exam-
ples and design guidelines are included in the book. The book should be useful for
antenna engineers and researchers, especially those involved in the detailed design
of phased arrays. The reader is assumed to have a basic knowledge of engineering
mathematics and antenna engineering at a graduate level. The book can be used
either as a text in an advanced graduate-level course or as a reference book for
array professionals.

The book contains 14 chapters that may be broadly divided into three sections.
The first section, which includes Chapters 1–6, is mostly devoted to the development
of the Floquet modal-based approach of phased array antennas starting with an
introductory chapter. The second section, which includes Chapters 7–10, presents
applications of the approach to important phased array structures. The third section,
which includes Chapters 11–14, is not directly related to the Floquet modal analysis
as such; however, it covers several important aspects of a phased array design. This
section includes beam array synthesis, array beam forming networks, active phased
array systems, and statistical analysis of phased arrays. Several practice problems
are included at the end of each chapter to provide a reader an interactive experience.
Information on the solution manual and selective software may be available at
http://hometown.aol.com/painta9/.

Chapter 1 presents a brief discussion on phased array fundamentals. There are two
goals of this chapter. First, it gives a basic overview of phased array characteristics.
Second, the limitations of conventional first-order analysis of phased array antennas
are spelled out. In this way, the reader can comprehend the limitations of the
traditional approach and appreciate the need for a higher order analysis (which
is developed in the next few chapters). The chapter begins with the definition of
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the element pattern followed by the array pattern and array factor. The maximum-
gain theorem of a general array antenna is presented next. Scan characteristics
of a pencil beam array is discussed in light of gain, grating lobe, and beam-
width considerations. The phase-quantization effects are discussed. Prevalent array
synthesis procedures for pencil beam arrays are presented. The scope and limitation
of this first-order approach is discussed at the end.

Chapter 2 initiates the development of Floquet modal analysis for array antennas,
which is one of the main objectives of the book. Using simple analytic means, we
show that Floquet modal expansion evolves from Fourier expansion. The relation-
ship between a Floquet mode and observable antenna parameters, such as radiation
direction, is then established. Derivation of Floquet modal functions for an arbitrary
array grid structure is presented next. Finally, the coupling of a Floquet mode with
a guided mode is considered and interesting consequences are discussed.

In Chapter 3 expressions for normalized Floquet modal functions are deduced.
The Floquet modal expansion method is illustrated through an example of an infinite
array of electric current sources. Two parameters of an array antenna are defined,
namely the Floquet impedance and active element pattern, and their significance
is discussed in the context of array performance. A detailed discussion of array
blindness is also presented. A scattering matrix formulation for an infinite array of
rectangular horn apertures is presented.

Chapter 4 demonstrates that the “results of an infinite array analysis” can be
utilized to analyze a finite array with arbitrary excitation. In the first part, important
theorems and concepts relevant for the development of finite array analysis are
presented. It is well known that the most important factor to consider in a finite array
analysis is the mutual coupling. It is demonstrated that the mutual coupling between
the elements can be determined using infinite array data obtained through a Floquet
modal analysis. Next, the active impedances of the elements and the radiation
pattern of a finite array with respect to arbitrary amplitude taper are obtained.
The chapter concludes with an alternate approach for finite array analysis. This
alternate approach relates infinite array characteristics to finite array characteristics
through convolution.

It is often beneficial to divide the entire array into a number of identical groups.
Such a group, called a subarray, consists of few elements that are excited by a
single feed. In Chapter 5, a systematic procedure is presented to analyze an array
of subarrays. Using matrix theory it is shown that a subarray impedance matrix
can be constructed from the Floquet impedance of a single element. Important
characteristic features of an array of subarrays are presented.

Chapter 6 presents the generalized scattering matrix (GSM) approach to analyze
multilayer array structures. The chapter begins with the definition of a GSM fol-
lowed by the cascading rule of two GSMs. Advantages of the GSM approach over
a transmission matrix approach are discussed from a numerical stability standpoint.
Using the method of moments and modal matching, the GSMs of several important
“building blocks” are deduced. The stationary character of the present approach is
then established. Convergence of the solution is discussed in detail. The chapter
concludes with a discussion of advantages and disadvantages of the GSM approach.
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Chapter 7 applies the GSM approach to analyze probe-fed and slot-fed multi-
layer patch arrays. The radiation and impedance characteristics of patch arrays are
presented. The analysis of an electromagnetically coupled (EMC) patch array and
stripline-fed patch array with mode suppressing vias are discussed. Results of finite
arrays are presented at the end.

Chapter 8 primarily focuses on horn radiators as array elements. It begins with
the linearly flared rectangular horns. It is shown that under certain conditions a horn
array structure may support surface and leaky waves. The dips and nulls present
in active element patterns are explained via surface and leaky wave coupling. The
wide-angle impedance matching aspect of a horn array is discussed. Characteristics
of step horns, which may be used for enhanced radiation efficiency, are presented.
Design guidelines of “high efficiency horns” are presented at the end.

In Chapter 9, the analyses of three important passive printed array structures
are presented. They include frequency-selective surfaces (FSSs), screen polarizers,
and printed reflect arrays. In the first part of the chapter, features of a single-
and two-layer FSS are presented in terms of return loss, copolar, and cross-polar
characteristics. The analysis of a horn antenna loaded with an FSS is considered.
In the second part, the analysis of a meander line polarizer screen is presented. The
chapter concludes with an analysis of a printed reflect-array antenna for linear and
circular polarizations. The gain enhancement method of reflect-array antennas is
also discussed.

Chapter 10 presents a method for analyzing complex multilayer array structures
that have many useful applications. The analysis is very general to handle layers
with different lattice structures, periodicities, and axes orientations. In order to
perform the analysis, a mapping relation between the modes associated with a local
lattice and the global lattice is established. The mapping relation in conjunction with
the GSM cascading rule is utilized to obtain the overall GSM of the structure. The
methodology is demonstrated by considering two examples of multilayer structures
that have practical applications.

Chapter 11 presents various synthesis methods for shaped beam array antennas.
The chapter begins with an analysis of a linear array to study the effects of array
size and element size on the array pattern. This is followed by Woodward’s beam
superposition method for obtaining a shaped beam. Next, different optimization
algorithms that are commonly employed for beam shaping are presented. Examples
of shaped beams using various optimization schemes are provided.

One of the most important tasks in a phased array design is designing the beam
forming network (BFN). Chapter 12 presents comprehensive treatments of the most
common types of BFNs. The chapter begins with the simplest type of BFN using
passive power divider circuits. The Butler matrix BFN that operates on the principle
of the FFT (fast Fourier transform) algorithm is considered. Implementations of
Butler BFNs using power dividers and hybrids are shown. The operational principle
of a Blass matrix BFN is presented next, followed by the Rotman lens design and
analysis. The chapter ends with a discussion of digital beam formers and optical
beam formers, including their principles of operations, advantages, and limitations.
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In Chapter 13, the basic structures and subsystems of active array antennas are
presented. The chapter begins with a generic block diagram of an active array. Typi-
cal circuit configurations of each block are considered. Important system parameters
are defined and discussed in the context of antenna performance. The intermodula-
tion (IM) products caused by the amplifier nonlinearity are studied. Locations and
power levels of IM beams are obtained. To aid the array system analysis, the noise
temperature and noise figure of active array components are deduced. A typical
example of an array system analysis is presented. Various active array calibration
methods are presented at the end.

Chapter 14 presents a statistical analysis of an array antenna with respect to
the amplitude and phase uncertainties of the amplifiers and phase shifters. The
analysis is developed from the fundamental principles of probability theory. The
first part deduces the statistics of the array factor in terms of the amplitude and
phase errors. To that end, the statistical parameters of the real and imaginary parts
of the array factor are obtained. This is followed by a deduction of the probability
density function for the far-field intensity. Also obtained are the simplified closed-
form expressions of the probability density functions for the far-field intensity at
the beam peak, null, and peak side-lobe locations. Approximate expressions for the
95% confidence boundaries are deduced. Finally, the effect of element failure on
the array statistics is introduced. The numerical results with and without element
failure are presented. Effects of amplitude and phase uncertainties and element
failure on side-lobe levels and null depths are shown.

I express my sincere appreciation to the antenna professionals and friends Owen
Fordham, Guy Goyette, Eng Ha, Philip Law, Stephen Kawalko, Gordon Rollins,
James Sor, Murat Veysoglu, and Paul Werntz for devoting their personal time
to review the chapters. Their expert comments and constructive suggestions were
invaluable for improving the text. I express my sincere thanks to Kai Chang for
his encouragement and recommendation for publication of the book. Thanks are
also due to anonymous reviewers for their suggestions. I am thankful to Rachel
Witmer and George Telecki of the editorial department and the production editor
Lisa VanHorn for their cooperations during the course of the project. I am grateful
to my wife, Arundhuti, and daughters, Atreyi and Agamoni, for their encouragement
and moral support in writing the book and for their help in proofreading. I express
my profound love and gratitude to my mother, who has been a constant inspiration
for me. I am indebted to my teachers for teaching me the fundamentals at various
stages of my career. This book is dedicated to them as a token of my appreciation
of their love and devotions for teaching.

ARUN K. BHATTACHARYYA

El-Sugendo, California
January 2006



CHAPTER ONE

Phased Array Fundamentals:
Pattern Analysis and Synthesis

1.1 INTRODUCTION

In this chapter we present an overview of the basic electromagnetic properties
of phased array antennas. We begin with the basics and develop useful concepts
for the analysis of phased arrays. Important array terminology is introduced to
familiarize the reader with the topic. The element pattern, array pattern, and array
factor are introduced, leading to a discussion of how element gain and array gain
are tied together. Copolarization and cross-polarization as proposed by Ludwig are
presented, and the maximum-gain theorem of an array antenna is deduced. Scan
characteristics of a pencil beam array are presented with consideration to gain,
grating lobes, and beam deviation due to different types of phase shifters. Prevalent
aperture synthesis procedures for sum and difference patterns are presented with
theoretical details. Emphasis is placed on the foundation and conceptual develop-
ment of these methods, and a few words on the scope and limitation of this chapter
are included at the end.

1.2 ARRAY FUNDAMENTALS

A phased array antenna consists of an array of identical radiating elements in regular
order, as shown in Figure 1.1. In a typical array antenna, all the elements radiate
coherently along a desired direction. This is particularly true for a pencil beam
array where a linear phase progression between the elements is set to accomplish

Phased Array Antennas. By Arun K. Bhattacharyya
© 2006 John Wiley & Sons, Inc.



2 PHASED ARRAY FUNDAMENTALS: PATTERN ANALYSIS AND SYNTHESIS

(a)

(b)

FIGURE 1.1 (a) Linear array of dipoles. (b) Two-dimensional array of rectangular horns
in triangular lattice.

this coherent radiation. For a shaped beam array, however, all the elements do not
radiate coherently at a given direction. The shape of the beam decides the amplitude
and phase distribution of the array, which is usually nonlinear. In the following
sections we will define a few terms that are necessary to understand the radiation
of an array antenna.

1.2.1 Element Pattern, Directivity, and Gain

In order to estimate the radiated power of an array antenna in the far-field region,
one needs to understand the radiated field intensity of an element in the far-field
region. The element pattern is defined as the field intensity distribution of a radiating
element as a function of two far-field coordinates, while the radial distance remains
constant. In a spherical coordinate system the radiated electric field in the far-field
location can be expressed as

�E�r� ����= A
exp�−jk0r�

r
�e����� (1.1)

In the above A is a constant which is related to the input excitation of the antenna,
�e����� is the element pattern, (r� ���) is the spherical coordinates of the far-field
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point, also known as the observation point, and k0 is the wave number in free
space. It should be pointed out that unless otherwise stated, the radiation pattern
is defined at the far-field region where r >> �0��0 being the wavelength in free
space. In (1.1) �e����� is a complex vector function having components along
�̂- and �̂-directions only. The radial component does not exist in the far-field
region.

The complex directive pattern of an element is the far-field intensity pattern
normalized with respect to the square root of the average radiated power per unit
solid angle. The total radiated power is determined by integrating the Poynting
vector on a spherical surface covering the antenna element as

Pr =
∫∫
�

� �E�2
�

r2d�= �A�2
�

2	∫
0

	∫
0

��e������2 sin �d�d� (1.2)

In (1.2) � represents free-space impedance, which is equal to 120	 (or 377) ohms.
The average power per unit solid angle is

Pav
r = Pr

4	
(1.3)

Thus the complex directive pattern of the element becomes

�D�����=
√

1
�

√
4	
Pr

A �e����� (1.4)

Observe that in order to make �D�����dimensionless the factor
√
1/� is introduced

in (1.4). Substituting the expression of Pr from (1.2) in (1.4), we obtain

�D�����=
√
4	 �e�����√

2	∫
0

	∫
0

��e������2 sin �d�d�
(1.5)

In deducing (1.5) we assume �A� = A, which we justify by accommodating the
complex exponent part of A into the element pattern �e�����.

The directivity of an element signifies the relative power flux per solid angle
with respect to that of an isotropic radiator that radiates an equal amount of power.
The directivity at (���) is the square of the magnitude of �D�����. Usually the
directivity is expressed in dBi, where i stands for isotropic. The complex gain
pattern of an element is the far-field intensity pattern normalized with respect to
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the incident power at the antenna input instead of the total radiated power. Thus
the complex gain pattern with respect to the field intensity can be expressed as

�G�����= A

√
4	
�Pinc

�e����� (1.6)

In (1.6) Pinc is the incident power and A is related to Pinc. The gain at a far-field point
is given by � �G������2 [however, at places we use the word “gain” to indicate either
�G����� or � �G������2, which can be understood from the context]. Since the total
radiated power is reduced by the antenna mismatch loss and other radio-frequency
(RF) losses, the gain does not exceed the directivity.

1.2.2 Copolarization and Cross-Polarization

As mentioned before, the radiated field emanating from a radiating source has two
mutually orthogonal components along �̂ and �̂, respectively. For linearly polarized
radiation, the copolarization vector essentially is the preferred electric field vector.
The cross-polarization vector is orthogonal to both the copolarization vector and the
direction of radiation. One can define the preferred polarization direction according
to one’s preference. However, we will follow Ludwig’s third definition [1] as it is
well accepted by the antenna community and has practical significance. According
to this definition, the copolarization and cross-polarization components at a far-field
point (���) of an electric current source (or electric field source for an aperture
antenna) polarized along the x-direction are defined as

eco�����= �e����� · 
�̂ cos�− �̂ sin�� (1.7a)

ecr�����= �e����� · 
�̂ sin�+ �̂ cos�� (1.7b)

where �e����� represents the far electric field pattern of the source. The above
definition is consistent with the standard pattern measurement method where aper-
ture of the antenna under test (AUT) is placed on the z = 0 plane and the probe
antenna is mounted on a rigid rod such that the probe always remains perpendic-
ular to the rod. The probe end of the rod is free to move along the great circles
on �-constant planes (Figure 1.2) without any twist, while the other end is fixed
at a reference point on the AUT. For the copolarization measurement, the probe
must be aligned with the principal polarization direction when it is situated at
the bore sight (� = 0) of the AUT. Under these conditions, the orientation of the
probe for an arbitrary probe location defines the copolarization vector. The cross-
polarization vector is perpendicular to the copolarization vector and the radius
vector.

The copolarization gain is of practical importance because it is used for estimating
the amount of power received by a receiving antenna, which is polarized at the same
sense of the transmitting antenna. The copolarization gain can be calculated by
taking the copolarization component of �e����� in (1.6). The cross-polarization gain
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Initial probe
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at (θ, φ)
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φ
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φ

FIGURE 1.2 Antenna copolar pattern measurement scheme following Ludwig’s third defi-
nition. Notice that the probe maintains an angle � with the tangent of the circle (�-direction)
shown by the dotted line, which is consistent with (1.7a). The principal polarization of the
AUT is along x.
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FIGURE 1.3 Copolarization and cross-polarization patterns of a square horn of length 3�0

and of aperture size 1.6�0×1�6�0. The input waveguide dimension is 0.6�0×0�3�0 and is
excited by the TE01 mode.

can be obtained similarly. Figure 1.3 shows the copolarization and cross-polarization
gain patterns of a linearly flared horn. The cross-polarization field intensity vanishes
along the two principal plane cuts (E- and H-plane cuts); therefore we choose the
diagonal plane cut for the plot.
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It is worth mentioning that there is no preferred direction for a circularly polarized
radiation. The right and left circular polarization unit vectors (rcp and lcp) for
exp(jt) time dependence are defined as

êrcp�����=
1√
2

�̂− j�̂� (1.8a)

êlcp�����=
1√
2

�̂+ j�̂� (1.8b)

Notice, the polarization vectors are mutually orthogonal because êrcp · ê∗lcp = 0.

1.2.3 Array Pattern

The radiated field of an array essentially is the summation of the individual element
fields. It can be shown that the far-field pattern of an array of identical elements can
be represented by a product of two quantities, namely the element pattern and the
array factor. The element pattern signifies the radiation behavior of an individual
element and the array factor signifies the arraying effect, including array architecture
and relative excitations of the elements. To establish this relation we consider a
linear array of N identical elements along the x-axis with element spacing a as
shown in Figure 1.4. The excitation coefficient An�n= 1�2� ����N� is assumed to be
a complex number incorporating amplitude and phase in a single entity. Invoking
(1.1) and applying superposition of the individual fields, the array field can be
expressed as

�Earray =A1

exp�−jk0r1�

r1
�e�����+A2

exp�−jk0r2�

r2
�e�����+· · ·

+AN

exp�−jk0rN �

rN
�e����� (1.9)

In (1.9) rn�n = 1�2� ����N� is the distance from the nth element to the obser-
vation point located at the far field. For rn >> Na we can have the following
approximation:

rn ≈ r1− �n−1�a sin � cos� n= 1�2� � � � �N (1.10)

A1 A2 A3 A4 AN – 1 AN

a

θ

z

FIGURE 1.4 Linear array of N elements. The elements are situated along the x-axis.
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The above approximation should be used for the rn that lies inside the argument of
the complex exponential function, because complex exponential functions are highly
oscillatory. For the rn in the denominator, however, a more crude approximation,
namely rn ≈ r1, is admissible because 1/r is a slow-varying function for large r.
Thus (1.9) becomes

�Earray = �e�����exp�−jk0r1�

r1

A1+A2 exp�jk0a sin � cos��+· · ·

+AN exp�jk0�N −1�a sin � cos��� (1.11)

The quantity inside the square bracket is known as the array factor (AF) for a linear
array. Ignoring the radial dependence part we observe that the array pattern reduces
to a product of the element pattern and the array factor. For a two-dimensional
array a similar development results in the following array factor:

AF�����=
N∑

n=1

An exp
jkxxn+ jkyyn� (1.12)

In (1.12), (xn� yn) represents the coordinate of the nth element and kx� ky are

kx = k0 sin � cos� ky = k0 sin � sin� (1.13)

Figure 1.5 depicts a typical pattern of a linear array. For this plot 20 elements that
are uniformly exited and spaced at 1�0 apart are used. The plot shows the relative

–30
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dB

Element pattern
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FIGURE 1.5 Radiation pattern of a uniformly excited linear array with 20 elements. Element
spacing �0.
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field intensity (with respect to the peak field intensity) versus � on � = 0� plane.
To examine the arraying effect, the element pattern is also plotted. Evidently, the
array beam width is much smaller than the element beam width, implying a high
level of beam focusing capability of the array.

The array pattern deduced in (1.11) assumes identical element patterns for all the
elements. This is not rigorously valid because even if the elements have identical
shapes they have different surroundings.1 For instance, the edge element of an array
will have a different radiation pattern than that of the center element. However,
in most applications the identical radiation pattern assumption may be reasonable,
particularly in the bore-sight region where small variations in the element patterns
do not introduce an error beyond the acceptable limit.

1.2.4 Array Gain

The gain of an array can be determined after normalizing the field intensity in
(1.11) with respect to the total incident power of the array. It is convenient to use
the element gain pattern as the element pattern in (1.11) because the field intensity
is already normalized with respect to its incident power. The array pattern thus can
be written as

�Earray = �G�����
A1+A2 exp�jk0a sin � cos��+· · ·
+AN exp�jk0�N −1�a sin � cos��� (1.14)

In (1.14) the element gain pattern, �G�����, is normalized so that

2	∫
0

	∫
0

� �G������2 sin �d�d�= 4	�1−L� (1.15)

where L is the antenna loss factor. We must emphasize here that for the array gain
determination we consider An as the normalized incident voltage or current [not to
be confused with the A in (1.6)] for the nth element such that �An�2 becomes its
incident power. Thus the total incident power of the array is given by

Pinc =
N∑

n=1

�An�2 (1.16)

Thus the complex gain pattern of the array can be written as

�Garray�����= �G�����

∑N
n=1An exp�jk0na sin � cos��√∑N

n=1 �An�2
(1.17)

1 The radiation pattern of an element, including the effects of surrounding elements, is known as the
active element pattern. Analysis of the active element pattern will be considered in a later chapter.
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The co- and cross-polarization gain patterns simply are the corresponding compo-
nents of �Garray�����.

The above array gain pattern expression is rigorously valid if the following
two conditions are satisfied: (a) The element gain pattern �G����� is measured or
computed in array environment with all other elements match terminated, that is
�G����� represents active element gain pattern, and (b) elements have identical
active element patterns. In reality condition (b) is not generally satisfied because the
active element pattern differs from element to element. For such situations (1.17)
can be modified as

�Garray�����=
∑N

n=1An
�Gn����� exp�jk0na sin � cos��√∑N

n=1 �An�2
(1.18)

In (1.18) �Gn����� represents the active element gain pattern for the nth element of
the array. Figure 1.6 is a pictorial definition of the active element pattern.

1.2.5 Maximum-Array-Gain Theorem

The maximum-gain theorem yields the optimum excitation condition of the array
to achieve maximum gain along a desired direction. The statement and the proof
of the theorem follow.

Statement The maximum gain (magnitude) of an array at a desired direction occurs
if the incident voltage (or current) is proportional to the complex conjugate of the
active element gain along the desired direction.

Pinc

FIGURE 1.6 Pictorial definition of the active element pattern of an element in a seven-
element array. The element under consideration is excited while the other elements are match
terminated.
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Proof In order to prove the above theorem we consider (1.18). Without loss of
generality we can assume that the total incident power is unity, implying

N∑
n=1

�An�2 = 1 (1.19)

Then the array gain pattern becomes

�Garray�����=
N∑

n=1

An
�Gn����� exp�jk0na sin � cos�� (1.20)

We will consider the copolar gain at (���); therefore we extract the copolar com-
ponent in both sides of (1.20), leaving

Gco
array�����=

N∑
n=1

AnG
co
n ����� exp�jk0na sin � cos�� (1.21)

From triangular inequality [2] we know that the magnitude of the sum of complex
numbers is less than or equal to the sum of their magnitudes. Applying this in (1.21)
we write

�Gco
array������ = �

N∑
n=1

AnG
co
n ����� exp�jk0na sin � cos���

≤
N∑

n=1

�AnG
co
n ����� exp�jk0na sin � cos��� =

N∑
n=1

�An��Gco
n ������

(1.22)

The equality holds if

AnG
co
n ����� exp�jk0na sin � cos��= �An� · �Gco

n ������ (1.23)

for all n. To satisfy (1.23), the phase of An must be negative of the phase of
Gco

n ����� exp�jk0na sin � cos��. Symbolically,

∠An =−∠Gco
n −k0na sin � cos� (1.24)

If (1.24) is satisfied, then the magnitude of the copolar gain of the array along the
(���) direction becomes

�Gco
array������ =

N∑
n=1

�An� · �Gco
n ������ (1.25)

Equation (1.24) yields the phase of the excitations; however, the magnitude of An

for maximum gain is yet to be found. Toward that effort we maximize (1.25) subject


