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Preface

With technology advancements in semiconductor devices such as insulated gate
bipolar transistors (IGBTs) and gate commutated thyristors (GCTs), modern high-
power medium voltage (MV) drives are increasingly used in petrochemical, min-
ing, steel and metals, transportation and other industries to conserve electric energy,
increase productivity and improve product quality.

Although research and development of the medium voltage (2.3 KV to 13.8 KV)
drive in the 1-MW to 100-MW range are continuously growing, books dedicated to
this technology seem unavailable. This book provides a comprehensive analysis on
a variety of high-power converter topologies, drive system configurations, and ad-
vanced control schemes.

This book presents the latest technology in the field, provides design guidance
with tables, charts and graphs, addresses practical problems and their mitigation
methods, and illustrates important concepts with computer simulations and experi-
ments. It serves as a reference for academic researchers, practicing engineers, and
other professionals. This book also provides adequate technical background for
most of its topics such that it can be adopted as a textbook for a graduate-level
course in power electronics and ac drives.

This book is presented in five parts with fourteen chapters. Part One, Introduc-
tion, provides an overview of high-power MV drives, which includes market analy-
sis, drive system configurations, typical industrial applications, power converter
topologies and semiconductor devices. The technical requirements and challenges
for the MV drive are highlighted; these are different in many aspects from those for
low-voltage drives.

Part Two, Multipulse Diode and SCR Rectifiers, covers 12-, 18- and 24-pulses
rectifier topologies commonly used in the MV drive for the reduction of line current
distortion. The configuration of phase-shifting (zigzag) transformers and principle
of harmonic cancellation are discussed.

Part Three, Multilevel Voltage Source Inverters, presents detailed analysis on
various multilevel voltage source inverter (VSI) topologies, including neutral point
clamped and cascaded H-bridge inverters. Carrier-based and space-vector modula-
tion schemes for the multilevel inverters are elaborated.

Part Four, PWM Current Source Converters, deals with a number of current
source inverters (CSI) and rectifiers for the MV drive. Several modulation tech-
niques such as trapezoidal pulse width modulations, selective harmonics elimina-

xiii
.
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tion and space vector modulations are analyzed. Unity-power factor control and ac-
tive damping control for the current source rectifiers are also included.

Part Five, High-Power ac Drives, focuses on various configurations of VSI- and
CSI-fed MV drives marketed by major drive manufacturers. The features and limi-
tations of these drives are discussed. Two advanced drive control schemes, field
oriented control and direct torque control, are analyzed. Efforts are made to present
these complex schemes in a simple, easy to understand manner.

The Appendix at the end of the book provides a list of 12 simulation based pro-
jects for use in a graduate course. The detailed instruction for the projects and their
answers are included in Instructor’s Manual (published separately). Since the book
is rich in illustrations, Power Point slides for each of the chapters are included in the
manual.

Finally, I would like to express my deep gratitude to my colleagues at Rockwell
Automation Canada; in particular, Steve Rizzo, Navid Zargari, and Frank DeWin-
ter, for numerous discussions and 12 years of working together in developing ad-
vanced MV-drive technologies. I sincerely thank my supervisors, Drs. Shashi
Dowan and Gordon Slemon for their valuable advice on high-power drive research
during my graduate studies at the University of Toronto. I am also indebted to Dr.
Robert Hanna at RPM Engineering Ltd. for his review of the manuscript and con-
structive comments. I am grateful to my postdoctoral fellows and graduate students
in the Laboratory for Electric Drive Applications and Research (LEDAR) at Ryer-
son University for their assistance in preparing the manuscript of this book. I am
thankful to my colleagues at ASI Robicon, ABB, Siemens AG, and Rockwell Au-
tomation for providing the photos of the MV drives. I also wish to acknowledge the
support and inspiration of my wife, Janice, and my daughter, Linda, during the
preparation of this book.

BIN WU

Toronto, Canada
December 2005

xiv Preface
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Chapter 1

Introduction

1.1 INTRODUCTION

The development of high-power converters and medium-voltage (MV) drives start-
ed in the mid-1980s when 4500-V gate turn off (GTO) thyristors became commer-
cially available [1]. The GTO was the standard for the MV drive until the advent of
high-power insulated gate bipolar transistors (IGBTs) and gate commutated thyris-
tors (GCTs) in the late 1990s [2, 3]. These switching devices have rapidly pro-
gressed into the main areas of high-power electronics due to their superior switch-
ing characteristics, reduced power losses, ease of gate control, and snubberless
operation.

The MV drives cover power ratings from 0.4 MW to 40 MW at the medium-
voltage level of 2.3 kV to 13.8 kV. The power rating can be extended to 100 MW,
where synchronous motor drives with load commutated inverters are often used [4].
However, the majority of the installed MV drives are in the 1- to 4-MW range with
voltage ratings from 3.3 kV to 6.6 kV as illustrated in Fig. 1.1-1.

The high-power MV drives have found widespread applications in industry.
They are used for pipeline pumps in the petrochemical industry [5], fans in the ce-
ment industry [6], pumps in water pumping stations [7], traction applications in the
transportation industry [8], steel rolling mills in the metals industry [9], and other
applications [10,11]. A summary of the MV drive applications is given in the ap-
pendix of this chapter [12]. 

Since the beginning of the 21st century a few thousands of MV drives have been
commissioned worldwide. Market research has shown that around 85% of the total
installed drives are for pumps, fans, compressors and conveyors [13], where the
drive system may not require high dynamic performance. As shown in Fig. 1.1-2,
only 15% of the installed drives are nonstandard drives. 

One of the major markets for the MV drive is for retrofit applications. It is re-
ported that 97% of the currently installed MV motors operate at a fixed speed and
only 3% of them are controlled by variable-speed drives [13]. When fans or pumps
are driven by a fixed-speed motor, the control of air or liquid flow is normally
achieved by conventional mechanical methods, such as throttling control, inlet
dampers, and flow control valves, resulting in a substantial amount of energy loss.
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The installation of the MV drive can lead to a significant savings on energy cost. It
was reported that the use of the variable-speed MV drive resulted in a payback time
of the investment from one to two and a half years [7]. 

The use of the MV drive can also increase productivity in some applications. A
case was reported from a cement plant where the speed of a large fan was made ad-
justable by an MV drive [11]. The collected dust on the fan blades operated at a
fixed speed had to be cleaned regularly, leading to a significant downtime per year
for maintenance. With variable-speed operation, the blades only had to be cleaned
at the standstill of the production once a year. The increase in productivity together
with the energy savings resulted in a payback time of the investment within six
months.

Figure 1.1-3 shows a general block diagram of the MV drive. Depending on the
system requirements and the type of the converters employed, the line- and motor-
side filters are optional. A phase shifting transformer with multiple secondary wind-
ings is often used mainly for the reduction of line current distortion.

The rectifier converts the utility supply voltage to a dc voltage with a fixed or ad-
justable magnitude. The commonly used rectifier topologies include multipulse

4 Chapter 1 Introduction

Voltage

Range

2.3 kV 3.3 kV 4.16 kV 6.6 kV 11 kV 13.8 kV

Power

Range
0.4 MW 4 MW 10 MW 40 MW1 MW 2 MW

Figure 1.1-1 Voltage and power ranges of the MV drive. Source: Rockwell Automation.

Variable-speed MV drives

3%

Pumps

40%

Fans

30%

Compressors,

extruders, conveyors

15%

Nonstandard or

engineered drives

15%

Fixed-speed MV motors

97%

(a)  Load types for the MV drive (b)  MV drives versus MV motors

Figure 1.1-2 MV drive market survey. Source: ABB.
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diode rectifiers, multipulse SCR rectifiers, or pulse-width-modulated (PWM) recti-
fiers. The dc filter can simply be a capacitor that provides a stiff dc voltage in volt-
age source drives or an inductor that smoothes the dc current in current source dri-
ves.

The inverter can be generally classified into voltage source inverter (VSI) and
current source inverter (CSI). The VSI converts the dc voltage to a three-phase ac
voltage with adjustable magnitude and frequency whereas the CSI converts the dc
current to an adjustable three-phase ac current. A variety of inverter topologies
have been developed for the MV drive, most of which will be analyzed in this
book.

1.2 TECHNICAL REQUIREMENTS AND CHALLENGES 

The technical requirements and challenges for the MV drive differ in many aspects
from those for the low-voltage (� 600 V) ac drives. Some of them that must be ad-
dressed in the MV drive may not even be an issue for the low-voltage drives. These
requirements and challenges can be generally divided into four groups: the require-
ments related to the power quality of line-side converters, the challenges associated
with the design of motor-side converters, the constraints of the switching devices,
and the drive system requirements. 

1.2.1 Line-Side Requirements

(a) Line Current Distortion. The rectifier normally draws distorted line cur-
rent from the utility supply, and it also causes notches in voltage waveforms. The
distorted current and voltage waveforms can cause numerous problems such as nui-
sance tripping of computer-controlled industrial processes, overheating of trans-
formers, equipment failure, computer data loss, and malfunction of communica-
tions equipment. Nuisance tripping of industrial assembly lines often leads to
expensive downtime and ruined product. There exist certain guidelines for harmon-
ic regulation, such as IEEE Standard 519-1992 [14]. The rectifier used in the MV
drive should comply with these guidelines. 

1.2 Technical Requirements and Challenges 5

Supply

M

Transformer Rectifier dc Filter Inverter

~~

L
d

C
d

L

C

L

C

Line-side

filter

Motor-side

filter

Optional Optional

Motor

Figure 1.1-3 General block diagram of the MV drive. 
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(b) Input Power Factor. High input power factor is a general requirement for
all electric equipment. Most of the electric utility companies require their customers
to have a power factor of 0.9 or above to avoid penalties. This requirement is espe-
cially important for the MV drive due to its high power rating. 

(c) LC Resonance Suppression. For the MV drives using line-side capaci-
tors for current THD reduction or power factor compensation, the capacitors form
LC resonant circuits with the line inductance of the system. The LC resonant modes
may be excited by the harmonic voltages in the utility supply or harmonic currents
produced by the rectifier. Since the utility supply at the medium voltage level nor-
mally has very low line resistance, the lightly damped LC resonances may cause se-
vere oscillations or overvoltages that may destroy the switching devices and other
components in the rectifier circuits. The LC resonance issue should be addressed
when the drive system is designed.

1.2.2 Motor-Side Challenges

(a) dv/dt and Wave Reflections. Fast switching speed of the semicon-
ductor devices results in high dv/dt at the rising and falling edges of the inverter
output voltage waveform. Depending on the magnitude of the inverter dc bus volt-
age and speed of the switching device, the dv/dt can well exceed 10,000 V/�s.
The high dv/dt in the inverter output voltage can cause premature failure of the
motor winding insulation due to partial discharges. It induces rotor shaft voltages
through stray capacitances between the stator and rotor. The shaft voltage pro-
duces a current flowing into the shaft bearing, leading to early bearing failure. The
high dv/dt also causes electromagnetic emission in the cables connecting the mo-
tor to the inverter, affecting the operation of nearby sensitive electronic equip-
ment.

To make the matter worse, the high dv/dt may cause a voltage doubling effect at
the rising and falling edges of the motor voltage waveform due to wave reflections
in long cables. The reflections are caused by the mismatch between the wave im-
pedance of the cable and the impedances at its inverter and motor ends, and they
can double the voltage on the motor terminals at each switching transient if the ca-
ble length exceeds a certain limit. The critical cable length for 500 V/�s is in the
100-m range, for 1000 V/�s in the 50-m range, and for 10,000 V/�s in the 5-m
range [15].

(b) Common-Mode Voltage Stress. The switching action of the rectifier
and inverter normally generates common-mode voltages [16]. The common-mode
voltages are essentially zero-sequence voltages superimposed with switching noise.
If not mitigated, they will appear on the neutral of the stator winding with respect to
ground, which should be zero when the motor is powered by a three-phase balanced
utility supply. Furthermore, the motor line-to-ground voltage, which should be
equal to the motor line-to-neutral (phase) voltage, can be substantially increased

6 Chapter 1 Introduction
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due to the common-mode voltages, leading to the premature failure of the motor
winding insulation system. As a consequence, the motor life expectancy is short-
ened.

It is worth noting that the common-mode voltages are generated by the rectifica-
tion and inversion process of the converters. This phenomenon is different from the
high dv/dt caused by the switching transients of the high speed switches. It should
be further noted that the common-mode voltage issue is often ignored in the low-
voltage drives. This is partially due to the conservative design of the insulation sys-
tem for low-voltage motors. In the MV drives, the motor should not be subject to
any common-mode voltages. Otherwise, the replacement of the damaged motor
would be very costly in addition to the loss of production. 

(c) Motor Derating. High-power inverters may generate a large amount of
current and voltage harmonics. These harmonics cause additional power losses in
the motor winding and magnetic core. As a consequence, the motor is derated and
cannot operate at its full capacity. 

(d) LC Resonances. For the MV drives with a motor-side filter capacitor, the
capacitor forms an LC resonant circuit with the motor inductances. The resonant
mode of the LC circuit may be excited by the harmonic voltages or currents pro-
duced by the inverter. Although the motor winding resistances may provide some
damping, this problem should be addressed at the design stage of the drive.

(e) Torsional Vibration. Torsional vibrations may occur in the MV drive due
to the large inertias of the motor and its mechanical load. The drive system may
vary from a simple two-inertia system consisting of only the motor and the load in-
ertias to very complex systems such as a steel rolling-mill drive with more than 20
inertias. The torsional vibrations may be excited when the natural frequency of the
mechanical system is coincident with the frequency of torque pulsations caused by
distorted motor currents. Excessive torsional vibrations can result in broken shafts
and couplings, and also cause damages to the other mechanical components in the
system.

1.2.3 Switching Device Constraints

(a) Device Switching Frequency. The device switching loss accounts for
a significant amount of the total power loss in the MV drive. The switching loss
minimization can lead to a reduction in the operating cost when the drive is com-
missioned. The physical size and manufacturing cost of the drive can also be re-
duced due to the reduced cooling requirements for the switching devices. The other
reason for limiting the switching frequency is related to the device thermal resis-
tance that may prevent efficient heat transfer from the device to its heatsink. In
practice, the device switching frequency is normally around 200 Hz for GTOs and
500 Hz for IGBTs and GCTs. 

1.2 Technical Requirements and Challenges 7
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The reduction of switching frequency generally causes an increase in harmonic
distortion of the line- and motor-side waveforms of the drive. Efforts should be
made to minimize the waveform distortion with limited switching frequencies. 

(b) Series Connection. Switching devices in the MV drive are often connect-
ed in series for medium-voltage operation. Since the series connected devices and
their gate drivers may do not have identical static and dynamic characteristics, they
may not equally share the total voltage in the blocking mode or during switching
transients. A reliable voltage equalization scheme should be implemented to protect
the switching devices and enhance the system reliability. 

1.2.4 Drive System Requirements

The general requirements for the MV drive system include high efficiency, low
manufacturing cost, small physical size, high reliability, effective fault protection,
easy installation, self-commissioning, and minimum downtime for repairs. Some of
the application-specific requirements include high dynamic performance, regenera-
tive braking capability, and four-quadrant operation.

1.3 CONVERTER CONFIGURATIONS

Multipulse rectifiers are often employed in the MV drive to meet the line-side har-
monic requirements. Figure 1.3-1 illustrates a block diagram of 12-, 18- and 24-
pulse rectifiers. Each multipulse rectifier is essentially composed of a phase-shift-
ing transformer with multiple secondary windings feeding a set of identical
six-pulse rectifiers. 

8 Chapter 1 Introduction

(a) 12-Pulse rectifier (c)  24-Pulse rectifier(b) 18-Pulse rectifier

Phase-shifting
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rectifier

Utility

grid
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rectifier

Figure 1.3-1 Multipulse diode/SCR rectifiers.
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Both diode and SCR devices can be used as switching devices. The multipulse
diode rectifiers are suitable for VSI-fed drives while the SCR rectifiers are normal-
ly for CSI drives. Depending on the inverter configuration, the outputs of the six-
pulse rectifiers can be either connected in series to form a single dc supply or con-
nected directly to a multilevel inverter that requires isolated dc supplies. In addition
to the diode and SCR rectifiers, PWM rectifiers using IGBT or GCT devices can
also be employed, where the rectifier usually has the same topology as the inverter. 

To meet the motor-side challenges, a variety of inverter topologies can be adopt-
ed for the MV drive. Figure 1.3-2 illustrates per-phase diagram of commonly used

1.3 Converter Configurations 9
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dCdC dC

dC

dC

~

~

~

~~

Figure 1.3-2 Per-phase diagram of VSI topologies.

Two-level Neutral-point Cascaded Flying capacitor

inverter clamped inverter H-bridge inverter inverter

Load-commutated PWM SCI Parallel PWM CSI

inverter

c01.qxd  12/29/2005  3:44 PM  Page 9



three-phase multilevel VSI topologies, which include a conventional two-level in-
verter, a three-level neutral-point clamped (NPC) inverter, a seven-level cascaded
H-bridge inverter and a four-level flying-capacitor inverter. Either IGBT or GCT
can be employed in these inverters as a switching device. 

Current source inverter technology has been widely accepted in the drive indus-
try. Figure 1.3-3 shows the per-phase diagram of the CSI topologies for the MV
drive. The SCR-based load-commutated inverter (LCI) is specially suitable for very
large synchronous motor drives, while the PWM current source inverter is a pre-
ferred choice for most industrial applications. The parallel PWM CSI is composed
of two or more single-bridge inverters connected in parallel for super-high-power
applications. Symmetrical GCTs are normally used in the PWM current source in-
verters.

1.4 MV INDUSTRIAL DRIVES 

A number of MV drive products are available on the market today. These drives
come with different designs using various power converter topologies and control
schemes. Each design offers some unique features but also has some limitations.
The diversified offering promotes the advancement in the drive technology and the
market competition as well. A few examples of the MV industrial drives are as fol-
lows.

Figure 1.4-1 illustrates the picture of an MV drive rated at 4.16 kV and 1.2 MW.
The drive is composed of a 12-pulse diode rectifier as a front end and a three-level

10 Chapter 1 Introduction

Figure 1.4-1 GCT-based three-level NPC inverter-fed MV drive. Courtesy of ABB
(ACS1000).
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NPC inverter using GCT devices. The drive’s digital controller is installed in the
left cabinet. The cabinet in the center houses the diode rectifier and air-cooling sys-
tem of the drive. The inverter and its output filters are mounted in the right cabinet.
The phase-shifting transformer for the rectifier is normally installed outside the
drive cabinets. 

Figure 1.4-2 shows an MV drive using an IGBT-based three-level NPC inverter.
The IGBT–heatsink assemblies in the central cabinet are constructed in a modular
fashion for easy assembly and replacement. The front end converter is a standard
12-pulse diode rectifier for line current harmonic reduction. The phase-shifting
transformer for the rectifier is not included in the drive cabinet. 

A 4.16-kV 7.5-MW cascaded H-bridge inverter-fed drive is illustrated in Fig.
1.4-3. The inverter is composed of 15 identical IGBT power cells, each of which
can be slid out for quick repair or replacement. The waveform of the inverter line-
to-line voltage is composed of 21 levels, leading to near-sinusoidal waveforms
without using LC filters. The drive employs a 30-pulse diode rectifier powered by a
phase-shifting transformer with 15 secondary windings. The transformer is installed
in the left cabinets to reduce the installation cost of the cables connecting its sec-
ondary windings to the power cells. 

Figure 1.4-4 shows a current source inverter-fed MV drive with a power range
from 2.3 MW to 7 MW. The drive comprises two identical PWM GCT current
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Figure 1.4-2 IGBT-based three-level NPC inverter-fed MV drive. Courtesy of Siemens
(SIMOVERT MV).
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Figure 1.4-4 CSI-fed MV drive using symmetrical GCTs. Courtesy of Rockwell
Automation (PowerFlex 7000).

Figure 1.4-3 IGBT cascaded H-bridge inverter-fed MV drive. Courtesy of ASI Robicon
(Perfect Harmony).
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source converters, one for the rectifier and the other for the inverter. The converters
are installed in the second cabinet from the left. The dc inductor required by the cur-
rent source drive is mounted in the fourth cabinet. The fifth (right most) cabinet
contains drive’s liquid cooling system. With the use of a special integrated dc in-
ductor having both differential- and common-mode inductances, the drive does not
require an isolation transformer for the common-mode voltage mitigation, leading
to a reduction in manufacturing cost. 

Table 1.4-1 provides a summary of the MV drive products offered by major
drive manufacturers in the world, where the inverter configuration, switching de-
vice, and power range of the drive are listed. 

1.5 SUMMARY

This chapter provides an overview of high-power converters and medium-voltage
(MV) drives, including market analysis, drive system configurations, power con-
verter topologies, drive product analysis, and major manufacturers. The technical
requirements and challenges for the MV drive are also summarized. These require-
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Table 1.4-1 Summary of the MV Drive Products Marketed by Major Drive Manufacturers

Switching Power Range 
Inverter Configuration Device (MVA) Manufacturer

Two-level voltage IGBT 1.4–7.2 Alstom (VDM5000)
source inverter

Three-level neutral point GCT 0.3–5 ABB (ACS1000)
clamped inverter 3–27 (ACS6000)

GCT 3–20 General Electric 
(Innovation Series MV-SP)

IGBT 0.6–7.2 Siemens (SIMOVERT-MV)
IGBT 0.3–2.4 General Electric-Toshiba 

(Dura-Bilt5 MV)
Multilevel cascaded IGBT 0.3–22 ASI Robicon (Perfect 

H-bridge inverter Harmony)
0.5–6 Toshiba (TOSVERT-MV)

0.45–7.5 General Electric (Innovation 
MV-GP Type H)

NPC/H-bridge inverter IGBT 0.4–4.8 Toshiba (TOSVERT 
300 MV)

Flying-capacitor inverter IGBT 0.3–8 Alstom (VDM6000 
Symphony)

PWM current source Symmetrical 0.2–20 Rockwell Automation
inverter GCT (PowerFlex 7000)

Load commutated inverter SCR >10 Siemens (SIMOVERT S)
>10 ABB (LCI)
>10 Alstom (ALSPA SD7000)
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ments and challenges will be addressed in the subsequent chapters, where various
power converters and MV drive systems are analyzed. 
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