

Building the Data Warehouse, Fourth Edition

W. H. Inmon

Building the Data Warehouse, Fourth Edition

Building the Data Warehouse, Fourth Edition

W. H. Inmon

Building the Data Warehouse, Fourth Edition Published by Wiley Publishing, Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256 www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

ISBN-13: 978-0-7645-9944-6 ISBN-10: 0-7645-9944-5

Manufactured in the United States of America

10987654321

4B/SS/QZ/QV/IN

Credits

Executive Editor Robert Elliott

Development Editor Kevin Shafer

Production Editor Pamela Hanley

Copy Editor Kathi Duggan

Editorial Manager Mary Beth Wakefield

Production Manager Tim Tate

Vice President & Executive Group Publisher Richard Swadley

Vice President and Publisher Joseph B. Wikert **Project Coordinator** Erin Smith

Graphics and Production Specialists Jonelle Burns Kelly Emkow Carrie A. Foster Joyce Haughey Jennifer Heleine Stephanie D. Jumper

Quality Control Technician Leeann Harney

Proofreading and Indexing TECHBOOKS Production Services

To Jeanne Friedman and Kevin Gould – friends for all times.

About the Author

Bill Inmon, the father of the data warehouse concept, has written 40 books on data management, data warehouse, design review, and management of data processing. Bill has had his books translated into Russian, German, French, Japanese, Portuguese, Chinese, Korean, and Dutch. Bill has published more than 250 articles in many trade journals. Bill founded and took public Prism Solutions. His latest company — Pine Cone Systems — builds software for the management of the data warehouse/data mart environment. Bill holds two software patents. Articles, white papers, presentations, and much more material can be found on his Web site, www.billinmon.com.

Contents

Preface		xix
Acknowledgments		xxvii
Chapter 1	Evolution of Decision Support Systems	1
	The Evolution	2
	The Advent of DASD	4
	PC/4GL Technology	4
	Enter the Extract Program	5
	The Spider Web	6
	Problems with the Naturally Evolving Architecture	7
	Lack of Data Credibility	7
	Problems with Productivity	9
	From Data to Information	12
	A Change in Approach	14
	The Architected Environment	16
	Data Integration in the Architected Environment	18
	Who Is the User?	20
	The Development Life Cycle	20
	Patterns of Hardware Utilization	22
	Setting the Stage for Re-engineering	23
	Monitoring the Data Warehouse Environment	25
	Summary	28
Chapter 2	The Data Warehouse Environment	29
-	The Structure of the Data Warehouse	33
	Subject Orientation	34
	Day 1 to Day <i>n</i> Phenomenon	39

	Granularity	41
	The Benefits of Granularity	42
	An Example of Granularity	43
	Dual Levels of Granularity	46
	Exploration and Data Mining	50
	Living Sample Database	50
	Partitioning as a Design Approach	53
	Partitioning of Data	53
	Structuring Data in the Data Warehouse	56
	Auditing and the Data Warehouse	61
	Data Homogeneity and Heterogeneity	61
	Purging Warehouse Data	64
	Reporting and the Architected Environment	64
	The Operational Window of Opportunity	65
	Incorrect Data in the Data Warehouse	67
	Summary	69
Chapter 3	The Data Warehouse and Design	71
-	Beginning with Operational Data	71
	Process and Data Models and the Architected Environment	78
	The Data Warehouse and Data Models	79
	The Data Warehouse Data Model	81
	The Midlevel Data Model	84
	The Physical Data Model	88
	The Data Model and Iterative Development	91
	Normalization and Denormalization	94
	Snapshots in the Data Warehouse	100
	Metadata	102
	Managing Reference Tables in a Data Warehouse	103
	Cyclicity of Data — The Wrinkle of Time	105
	Complexity of Transformation and Integration	108
	Triggering the Data Warehouse Record	112
	Events	112
	Components of the Snapshot	113
	Some Examples	113
	Profile Records	114
	Managing Volume	115
	Creating Multiple Profile Records	117
	Going from the Data Warehouse to the	117
	Operational Environment	117
	Direct Operational Access of Data Warehouse Data	118 110
	Indirect Access of Data Warehouse Data	119 110
	An Airline Commission Calculation System	119 121
	A Retail Personalization System	121 122
	Credit Scoring Indirect Use of Data Warehouse Data	123 125
	muneci Use oi Data warenouse Data	125

	Star Joins Supporting the ODS Requirements and the Zachman Framework Summary	126 133 134 136
Chapter 4	Granularity in the Data Warehouse Raw Estimates Input to the Planning Process Data in Overflow Overflow Storage What the Levels of Granularity Will Be Some Feedback Loop Techniques Levels of Granularity — Banking Environment Feeding the Data Marts Summary	139 140 141 142 144 147 148 150 157 157
Chapter 5	The Data Warehouse and Technology Managing Large Amounts of Data Managing Multiple Media Indexing and Monitoring Data Interfaces to Many Technologies Programmer or Designer Control of Data Placement Parallel Storage and Management of Data Metadata Management Language Interface Efficient Loading of Data Efficient Index Utilization Compaction of Data Compound Keys Variable-Length Data Lock Management Index-Only Processing Fast Restore Other Technological Features DBMS Types and the Data Warehouse Changing DBMS Technology Multidimensional DBMS and the Data Warehouse Data Warehousing across Multiple Storage Media The Role of Metadata in the Data Warehouse Environment Context and Content Three Types of Contextual Information	159 159 161 162 162 163 164 165 166 166 168 169 169 169 169 171 171 171 172 172 172 174 175 182 182 185 186
	Capturing and Managing Contextual Information Looking at the Past Refreshing the Data Warehouse Testing Summary	187 187 188 190 191

Chapter 6	The Distributed Data Warehouse	193
-	Types of Distributed Data Warehouses	193
	Local and Global Data Warehouses	194
	The Local Data Warehouse	197
	The Global Data Warehouse	198
	Intersection of Global and Local Data	201
	Redundancy	206
	Access of Local and Global Data	207
	The Technologically Distributed Data Warehouse	211
	The Independently Evolving Distributed Data Warehouse	213
	The Nature of the Development Efforts	213
	Completely Unrelated Warehouses	215
	Distributed Data Warehouse Development	217
	Coordinating Development across Distributed Locations	218
	The Corporate Data Model — Distributed	219
	Metadata in the Distributed Warehouse	223
	Building the Warehouse on Multiple Levels	223
	Multiple Groups Building the Current Level of Detail	226
	Different Requirements at Different Levels	228
	Other Types of Detailed Data	232
	Metadata Multiple Platforms for Common Datail Data	234
	Multiple Platforms for Common Detail Data	235 236
	Summary	250
Chapter 7	Executive Information Systems and the Data Warehouse	239
	EIS — The Promise	240
	A Simple Example	240
	Drill-Down Analysis	243
	Supporting the Drill-Down Process	245
	The Data Warehouse as a Basis for EIS	247
	Where to Turn	248
	Event Mapping	251
	Detailed Data and EIS	253
	Keeping Only Summary Data in the EIS	254
	Summary	255
Chapter 8	External Data and the Data Warehouse	257
-	External Data in the Data Warehouse	260
	Metadata and External Data	261
	Storing External Data	263
	Different Components of External Data	264
	Modeling and External Data	265
	Secondary Reports	266
	Archiving External Data	267
	Comparing Internal Data to External Data	267
	Summary	268

Chapter 9	Migration to the Architected Environment A Migration Plan The Feedback Loop Strategic Considerations Methodology and Migration A Data-Driven Development Methodology Data-Driven Methodology System Development Life Cycles	269 270 278 280 283 283 283 286 286 286
	A Philosophical Observation Summary	286 287
Chapter 10	The Data Warehouse and the Web Supporting the eBusiness Environment Moving Data from the Web to the Data Warehouse Moving Data from the Data Warehouse to the Web Web Support Summary	289 299 300 301 302 302
Chapter 11	Unstructured Data and the Data Warehouse Integrating the Two Worlds Text — The Common Link A Fundamental Mismatch Matching Text across the Environments A Probabilistic Match Matching All the Information A Themed Match Industrially Recognized Themes Naturally Occurring Themes Linkage through Themes and Themed Words Linkage through Abstraction and Metadata A Two-Tiered Data Warehouse Dividing the Unstructured Data Warehouse Visualizing Unstructured Data A Self-Organizing Map (SOM) The Unstructured Data Warehouse Volumes of Data and the Unstructured Data Warehouse Fitting the Two Environments Together Summary	305 307 308 310 310 311 312 313 313 313 313 316 317 318 320 321 322 323 324 325 326 327 330
Chapter 12	The Really Large Data Warehouse Why the Rapid Growth? The Impact of Large Volumes of Data Basic Data-Management Activities The Cost of Storage The Real Costs of Storage The Usage Pattern of Data in the Face of Large Volumes	331 332 333 334 335 336 336

	A Simple Calculation	337
	Two Classes of Data	338
	Implications of Separating Data into Two Classes	339
	Disk Storage in the Face of Data Separation	340
	Near-Line Storage	341
	Access Speed and Disk Storage	342
	Archival Storage	343
	Implications of Transparency	345
	Moving Data from One Environment to Another	346
	The CMSM Approach	347
	A Data Warehouse Usage Monitor	348
	The Extension of the Data Warehouse	
	across Different Storage Media	349
	Inverting the Data Warehouse	350
	Total Cost	351
	Maximum Capacity	352
	Summary	354
Chapter 13	The Relational and the Multidimensional Models	
•	as a Basis for Database Design	357
	The Relational Model	357
	The Multidimensional Model	360
	Snowflake Structures	361
	Differences between the Models	362
	The Roots of the Differences	363
	Reshaping Relational Data	364
	Indirect Access and Direct Access of Data	365
	Servicing Future Unknown Needs	366
	Servicing the Need to Change Gracefully	367
	Independent Data Marts	370
	Building Independent Data Marts	371
	Summary	375
Chapter 14	Data Warehouse Advanced Topics	377
	End-User Requirements and the Data Warehouse	377
	The Data Warehouse and the Data Model	378
	The Relational Foundation	378
	The Data Warehouse and Statistical Processing	379
	Resource Contention in the Data Warehouse	380
	The Exploration Warehouse	380
	The Data Mining Warehouse	382
	Freezing the Exploration Warehouse	383
	External Data and the Exploration Warehouse	384
	Data Marts and Data Warehouses in the Same Processor	384
	The Life Cycle of Data	386
	Mapping the Life Cycle to the Data Warehouse Environment	387
	Testing and the Data Warehouse	388

	Tracing the Flow of Data through the Data Warehouse	390
	Data Velocity in the Data Warehouse	391
	"Pushing" and "Pulling" Data	393
	Data Warehouse and the Web-Based eBusiness Environment	393
	The Interface between the Two Environments	394
	The Granularity Manager	394
	Profile Records	396
	The ODS, Profile Records, and Performance	397
	The Financial Data Warehouse	397
	The System of Record	399
	A Brief History of Architecture — Evolving	
	to the Corporate Information Factory	402
	Evolving from the CIF	404
	Obstacles	406
	CIF — Into the Future	406
	Analytics	406
	ERP/SAP	407
	Unstructured Data	408
	Volumes of Data	409
	Summary	410
Chapter 15	Cost-Justification and Return on Investment	
chapter 15	for a Data Warehouse	413
	Copying the Competition	413
	The Macro Level of Cost-Justification	414
	A Micro Level Cost-Justification	415
	Information from the Legacy Environment	418
	The Cost of New Information	419
	Gathering Information with a Data Warehouse	419
	Comparing the Costs	420
	Building the Data Warehouse	420
	A Complete Picture	421
	Information Frustration	422
	The Time Value of Data	422
	The Speed of Information	423
	Integrated Information	424
	The Value of Historical Data	425
	Historical Data and CRM	426
	Summary	426
Chapter 16	The Data Warehouse and the ODS	429
Suapter 10	Complementary Structures	429 430
	Updates in the ODS	430
	Historical Data and the ODS	430 431
	Profile Records	432
	Different Classes of ODS	434
	Database Design — A Hybrid Approach	434
	Dumbusc Doign - Miny Dim Appibach	H 00

	Drawn to Proportion	436
	Transaction Integrity in the ODS	437
	Time Slicing the ODS Day	438
	Multiple ODS	439
	ODS and the Web Environment	439
	An Example of an ODS	440
	Summary	441
Chapter 17	Corporate Information Compliance and	
	Data Warehousing	443
	Two Basic Activities	445
	Financial Compliance	446
	The "What"	447
	The "Why"	449
	Auditing Corporate Communications	452
	Summary	454
Chapter 18	The End-User Community	457
	The Farmer	458
	The Explorer	458
	The Miner	459
	The Tourist	459
	The Community	459
	Different Types of Data	460
	Cost-Justification and ROI Analysis	461
	Summary	462
Chapter 19	Data Warehouse Design Review Checklist	463
	When to Do a Design Review	464
	Who Should Be in the Design Review?	465
	What Should the Agenda Be?	465
	The Results	465
	Administering the Review	466
	A Typical Data Warehouse Design Review	466
	Summary	488
Glossary		489
References		507
	Articles	507
	Books	510
	White Papers	512
Index		517

Preface for the Second Edition

Databases and database theory have been around for a long time. Early renditions of databases centered around a single database serving every purpose known to the information processing community—from transaction to batch processing to analytical processing. In most cases, the primary focus of the early database systems was operational—usually transactional—processing. In recent years, a more sophisticated notion of the database has emerged—one that serves operational needs and another that serves informational or analytical needs. To some extent, this more enlightened notion of the database is due to the advent of PCs, 4GL technology, and the empowerment of the end user.

The split of operational and informational databases occurs for many reasons:

- The data serving operational needs is physically different data from that serving informational or analytic needs.
- The supporting technology for operational processing is fundamentally different from the technology used to support informational or analytical needs.
- The user community for operational data is different from the one served by informational or analytical data.
- The processing characteristics for the operational environment and the informational environment are fundamentally different.

Because of these reasons (and many more), the modern way to build systems is to separate the operational from the informational or analytical processing and data. This book is about the analytical [or the decision support systems (DSS)] environment and the structuring of data in that environment. The focus of the book is on what is termed the "data warehouse" (or "information warehouse"), which is at the heart of informational, DSS processing.

The discussions in this book are geared to the manager and the developer. Where appropriate, some level of discussion will be at the technical level. But, for the most part, the book is about issues and techniques. This book is meant to serve as a guideline for the designer and the developer.

When the first edition of Building the Data Warehouse was printed, the database theorists scoffed at the notion of the data warehouse. One theoretician stated that data warehousing set back the information technology industry 20 years. Another stated that the founder of data warehousing should not be allowed to speak in public. And yet another academic proclaimed that data warehousing was nothing new and that the world of academia had known about data warehousing all along although there were no books, no articles, no classes, no seminars, no conferences, no presentations, no references, no papers, and no use of the terms or concepts in existence in academia at that time.

When the second edition of the book appeared, the world was mad for anything of the Internet. In order to be successful it had to be "e" something e-business, e-commerce, e-tailing, and so forth. One venture capitalist was known to say, "Why do we need a data warehouse when we have the Internet?"

But data warehousing has surpassed the database theoreticians who wanted to put all data in a single database. Data warehousing survived the dot.com disaster brought on by the short-sighted venture capitalists. In an age when technology in general is spurned by Wall Street and Main Street, data warehousing has never been more alive or stronger. There are conferences, seminars, books, articles, consulting, and the like. But mostly there are companies doing data warehousing, and making the discovery that, unlike the overhyped New Economy, the data warehouse actually delivers, even though Silicon Valley is still in a state of denial.

Preface for the Third Edition

The third edition of this book heralds a newer and even stronger day for data warehousing. Today data warehousing is not a theory but a fact of life. New technology is right around the corner to support some of the more exotic needs of a data warehouse. Corporations are running major pieces of their business on data warehouses. The cost of information has dropped dramatically because of data warehouses. Managers at long last have a viable solution to the ugliness of the legacy systems environment. For the first time, a corporate "memory" of historical information is available. Integration of data across the corporation is a real possibility, in most cases for the first time. Corporations

are learning how to go from data to information to competitive advantage. In short, data warehousing has unlocked a world of possibility.

One confusing aspect of data warehousing is that it is an architecture, not a technology. This frustrates the technician and the venture capitalist alike because these people want to buy something in a nice clean box. But data warehousing simply does not lend itself to being "boxed up." The difference between an architecture and a technology is like the difference between Santa Fe, New Mexico, and adobe bricks. If you drive the streets of Santa Fe you know you are there and nowhere else. Each home, each office building, each restaurant has a distinctive look that says "This is Santa Fe." The look and style that makes Santa Fe distinctive are the architecture. Now, that architecture is made up of such things as adobe bricks and exposed beams. There is a whole art to the making of adobe bricks and exposed beams. And it is certainly true that you could not have Santa Fe architecture without having adobe bricks and exposed beams. But adobe bricks and exposed beams by themselves do not make an architecture. They are independent technologies. For example, you have adobe bricks throughout the Southwest and the rest of the world that are not Santa Fe architecture.

Thus it is with architecture and technology, and with data warehousing and databases and other technology. There is the architecture, then there is the underlying technology, and they are two very different things. Unquestionably, there is a relationship between data warehousing and database technology, but they are most certainly not the same. Data warehousing requires the support of many different kinds of technology.

With the third edition of this book, we now know what works and what does not. When the first edition was written, there was some experience with developing and using warehouses, but truthfully, there was not the broad base of experience that exists today. For example, today we know with certainty the following:

- Data warehouses are built under a different development methodology than applications. Not keeping this in mind is a recipe for disaster.
- Data warehouses are fundamentally different from data marts. The two do not mix—they are like oil and water.
- Data warehouses deliver on their promise, unlike many overhyped technologies that simply faded away.
- Data warehouses attract huge amounts of data, to the point that entirely new approaches to the management of large amounts of data are required.

But perhaps the most intriguing thing that has been learned about data warehousing is that data warehouses form a foundation for many other forms of processing. The granular data found in the data warehouse can be reshaped and reused. If there is any immutable and profound truth about data warehouses, it is that data warehouses provide an ideal foundation for many other forms of information processing. There are a whole host of reasons why this foundation is so important:

- There is a single version of the truth.
- Data can be reconciled if necessary.
- Data is immediately available for new, unknown uses.

And, finally, data warehousing has lowered the cost of information in the organization. With data warehousing, data is inexpensive to get to and fast to access.

Databases and database theory have been around for a long time. Early renditions of databases centered around a single database serving every purpose known to the information processing community—from transaction to batch processing to analytical processing. In most cases, the primary focus of the early database systems was operational—usually transactional—processing. In recent years, a more sophisticated notion of the database has emerged—one that serves operational needs and another that serves informational or analytical needs. To some extent, this more enlightened notion of the database is due to the advent of PCs, 4GL technology, and the empowerment of the end user. The split of operational and informational databases occurs for many reasons:

- The data serving operational needs is physically different data from that serving informational or analytic needs.
- The supporting technology for operational processing is fundamentally different from the technology used to support informational or analytical needs.
- The user community for operational data is different from the one served by informational or analytical data.
- The processing characteristics for the operational environment and the informational environment are fundamentally different.

For these reasons (and many more), the modern way to build systems is to separate the operational from the informational or analytical processing and data.

This book is about the analytical or the DSS environment and the structuring of data in that environment. The focus of the book is on what is termed the data warehouse (or information warehouse), which is at the heart of informational, DSS processing.

What is analytical, informational processing? It is processing that serves the needs of management in the decision-making process. Often known as DSS processing, analytical processing looks across broad vistas of data to detect trends. Instead of looking at one or two records of data (as is the case in operational processing), when the DSS analyst does analytical processing, many records are accessed. It is rare for the DSS analyst to update data. In operational systems, data is constantly being updated at the individual record level. In analytical processing, records are constantly being accessed, and their contents are gathered for analysis, but little or no alteration of individual records occurs.

In analytical processing, the response time requirements are greatly relaxed compared to those of traditional operational processing. Analytical response time is measured from 30 minutes to 24 hours. Response times measured in this range for operational processing would be an unmitigated disaster.

The network that serves the analytical community is much smaller than the one that serves the operational community. Usually there are far fewer users of the analytical network than of the operational network.

Unlike the technology that serves the analytical environment, operational environment technology must concern itself with data and transaction locking, contention for data, deadlock, and so on.

There are, then, many major differences between the operational environment and the analytical environment. This book is about the analytical, DSS environment and addresses the following issues:

- Granularity of data
- Partitioning of data
- Meta data
- Lack of credibility of data
- Integration of DSS data
- The time basis of DSS data
- Identifying the source of DSS data-the system of record
- Migration and methodology

This book is for developers, managers, designers, data administrators, database administrators, and others who are building systems in a modern data processing environment. In addition, students of information processing will find this book useful. Where appropriate, some discussions will be more technical. But, for the most part, the book is about issues and techniques, and it is meant to serve as a guideline for the designer and the developer.

This book is the first in a series of books relating to data warehouse. The next book in the series is Using the Data Warehouse (Wiley, 1994). Using the Data Warehouse addresses the issues that arise once you have built the data warehouse. In addition, Using the Data Warehouse introduces the concept of a larger architecture and the notion of an operational data store (ODS). An operational data store is a similar architectural construct to the data warehouse, except the ODS applies only to operational systems, not informational systems. The third book in the series is Building the Operational Data Store (Wiley, 1999), which addresses the issues of what an ODS is and how an ODS is built. The next book in the series is Corporate Information Factory, Third Edition (Wiley, 2002). This book addresses the larger framework of which the data warehouse is the center. In many regards the CIF book and the DW book are companions. The CIF book provides the larger picture and the DW book provides a more focused discussion. Another related book is Exploration Warehousing (Wiley, 2000). This book addresses a specialized kind of process-ing-pattern analysis using statistical techniques on data found in the data warehouse.

Building the Data Warehouse, however, is the cornerstone of all the related books. The data warehouse forms the foundation of all other forms of DSS processing.

There is perhaps no more eloquent testimony to the advances made by data warehousing and the corporate information factory than the References at the back of this book. When the first edition was published, there were no other books, no white papers, and only a handful of articles that could be referenced. In this third edition, there are many books, articles, and white papers that are mentioned. Indeed the references only start to explore some of the more important works.

Preface for the Fourth Edition

In the beginning was a theory of database that held that all data should be held in a common source. It was easy to see how this notion came about. Prior to database, there were master files. These master files resided on sequential media and were built for every application that came along. There was absolutely no integration among master files. Thus, the idea of integrating data into a single source — a database — held great appeal.

It was into this mindset that data warehouse was born. Data warehousing was an intellectual threat to those who subscribed to conventional database theory because data warehousing suggested that there ought to be different kinds of databases. And the thought that there should be different kinds of databases was not accepted by the database theoreticians.

Today, data warehousing has achieved the status of conventional wisdom. For a variety of reasons, data warehousing is just what you do. Recently a survey showed that corporate spending on data warehouse and business intelligence surpassed spending on transactional processing and OLTP, something unthinkable a few years back.

The day of data warehouse maturity has arrived.

It is appropriate, then, that the Fourth Edition of the book that began the data warehousing phenomenon has been written.

In addition to the time-honored concepts of data warehousing, this edition contains the data warehouse basics. But it also contains many topics current to today's information infrastructure.

Following are some of the more important new topics in this edition:

- Compliance (dealing with Sarbanes Oxley, HIPAA, Basel II, and more)
- Near line storage (extending the data warehouse to infinity)
- Multi dimensional database design
- Unstructured data
- End users (who they are and what their needs are)
- ODS and the data warehouse

In addition to having new topics, this edition reflects that larger architecture that surrounds a data warehouse.

Technology has grown up with data warehousing. In the early days of data warehousing, 50 GB to 100 GB of data was considered a large warehouse. Today, some data warehouses are in the petabyte range. Other technology includes advances made in multi-dimensional technology — in data marts and star joins. Yet other technology advances have occurred in the storage of data on storage media other than disk storage.

In short, technology advances have made possible the technological achievements of today. Without modern technology, there would be no data warehouse.

This book is for architects and system designers. The end user may find this book useful as an explanation of what data warehousing is all about. And managers and students will also find this book to be useful.

Acknowledgments

The following people have influenced—directly and indirectly—the material found in this book. The author is grateful for the long-term relationships that have been formed and for the experiences that have provided a basis for learning.

Guy Hildebrand, a partner like no other

Lynn Inmon, a wife and helpmate like no other

Ryan Sousa, a free thinker for the times

Jim Shank and Nick Johnson, without whom there would be nothing

Ron Powell and Shawn Rogers, friends and inspirations for all times

Joyce Norris Montanari, Intelligent Solutions, an inspiration throughout the ages

John Zachman, Zachman International, a friend and a world class architect

Dan Meers, BillInmon.com, a real visionary and a real friend

Cheryl Estep, independent consultant, who was there at the beginning

Claudia Imhoff, Intelligent Solutions

Jon Geiger, Intelligent Solutions

John Ladley, Meta Group

Bob Terdeman, EMC Corporation Lowell Fryman, independent consultant David Fender, SAS Japan Jim Davis, SAS Peter Grendel, SAP Allen Houpt, CA