
~ ~~ ~~ ~ ~

RTL HARDWARE DESIGN
USING VHDL
Coding for Efficiency, Portability,
and Scalability

PONG P. CHU
Cleveland State University

A JOHN WlLEY & SONS, INC., PUBLICATION

This Page Intentionally Left Blank

RTL HARDWARE DESIGN
USING VHDL

This Page Intentionally Left Blank

~ ~~ ~~ ~ ~

RTL HARDWARE DESIGN
USING VHDL
Coding for Efficiency, Portability,
and Scalability

PONG P. CHU
Cleveland State University

A JOHN WlLEY & SONS, INC., PUBLICATION

Copyright 0 2006 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 1 11 River Street, Hoboken, NJ
07030, (201) 748-601 1, fax (201) 748-6008, or online at http://www.wiley.com/go/pennission.

Limit of LiabilityiDisclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on OUT other products and services or for technical support, please contact OUT

Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic format. For information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Chu, Pong P., 1959-

p. cm.
RTL hardware design using VHDL I by Pong P. Chu.

Includes bibliographical references and index.
“A Wiley-Interscience publication.”
ISBN-13: 978-0-471-72092-8 (alk. paper)
ISBN-10: 0-471-72092-5 (alk. paper)

1. Digital electronics-Data processing. 2. VHDL (Computer hardware description
language). I. Title.

TK7868.D5C46 2006
621.39‘2-4~22

Printed in the United States of America.

2005054234

1 0 9 8 7 6 5 4 3 2 1

To my parents Chia-Chi and Chi-Te, my wife Lee, and my daughter Patricia

This Page Intentionally Left Blank

CONTENTS

Preface

Acknowledgments

1 Introduction to Digital System Design

1.1 Introduction
1.2 Device technologies

1.2.1 Fabrication of an IC
1.2.2 Classification of device technologies
1.2.3 Comparison of technologies

1.3 System representation
1.4 Levels of Abstraction

1.4.1 Transistor-level abstraction
1.4.2 Gate-level abstraction
1.4.3 Register-transfer-level (RT-level) abstraction
1.4.4 Processor-level abstraction
Development tasks and EDA software
1.5.1 Synthesis
1 S .2 Physical design
1 S.3 Verification
1 S.4 Testing
1.5.5

1.5

EDA software and its limitations

xix

xxiii

1

1
2
2
2
5
8
9

10
10
11
12
12
13
14
14
16
16

vil

V\i\ CONTENTS

1.6 Development flow
1.6.1
1.6.2
1.6.3

1.7 Overview of the book
1.7.1 Scope
1.7.2 Goal

1.8 Bibliographic notes
Problems

Flow of a medium-sized design targeting FPGA
Flow of a large design targeting FPGA
Flow of a large design targeting ASIC

2 Overview of Hardware Description Languages

2.1 Hardware description languages
Limitations of traditional programming languages
Use of an HDL program
Design of a modem HDL

2.1.1
2.1.2
2.1.3
2.1.4 VHDL
Basic VHDL concept via an example
2.2.1 General description
2.2.2 Structural description
2.2.3 Abstract behavioral description
2.2.4 Testbench
2.2.5 Configuration

2.3 VHDL in development flow
2.3.1 Scope of VHDL
2.3.2 Coding for synthesis

Problems

2.2

2.4 Bibliographic notes

3 Basic Language Constructs of VHDL

3.1 Introduction
3.2 Skeleton of a basic VHDL program

3.2.1
3.2.2 Entity declaration
3.2.3 Architecture body
3.2.4 Design unit and library
3.2.5 Processing of VHDL code
Lexical elements and program format
3.3,l Lexical elements
3.3.2 VHDL program format

Example of a VHDL program

3.3

3.4 Objects
3.5 Data types and operators

17
17
19
19
20
20
20
21
22

23

23
23
24
25
25
26
27
30
33
35
37
38
38
40
40
41

43

43
44
44
44
46
46
47
47
47
49
51
53

CONTENTS IX

3.5.1
3.5.2
3.5.3
3.5.4
3.5.5

3.6.1 Guidelines for general VHDL
3.6.2 Guidelines for VHDL formatting

Problems

Predefined data types in VHDL
Data types in the IEEE stdlogic-1164 package
Operators over an array data type
Data types in the IEEE numeric-std package
The stdlogic-arith and related packages

3.6 Synthesis guidelines

3.7 Bibliographic notes

53
56
58
60
64
65
65
66
66
66

4 Concurrent Signal Assignment Statements of VHDL 69

4.1 Combinational versus sequential circuits
4.2 Simple signal assignment statement

4.2.1 Syntax and examples
4.2.2 Conceptual implementation
4.2.3

4.3 Conditional signal assignment statement
4.3.1 Syntax and examples
4.3.2 Conceptual implementation
4.3.3 Detailed implementation examples

4.4.1 Syntax and examples
4.4.2 Conceptual implementation
4.4.3 Detailed implementation examples
Conditional signal assignment statement versus selected signal assignment
statement
4.5.1

4.5.2

Signal assignment statement with a closed feedback loop

4.4 Selected signal assignment statement

4.5

Conversion between conditional signal assignment and selected
signal assignment statements
Comparison between conditional signal assignment and selected
signal assignment statements

4.6 Synthesis guidelines
4.7 Bibliographic notes

Problems

5 Sequential Statements of VHDL

5.1.1 Introduction
5.1.2
5.1.3

5.1 VHDL process

Process with a sensitivity list
Process with a wait statement

5.2 Sequential signal assignment statement

69
70
70
70
71
72
72
76
78
85
85
88
90

93

93

94
95
95
95

97

97
97
98
99

100

X CONTENTS

5.3 Variable assignment statement
5.4 If statement

5.4.1 Syntax and examples
5.4.2
5.4.3
5.4.4 Conceptual implementation
5.4.5 Cascading single-branched if statements

5.5.1 Syntax and examples
5.5.2
5.5.3 Incomplete signal assignment
5.5.4 Conceptual implementation

5.6.1 Syntax
5.6.2 Examples
5.6.3 Conceptual implementation

Comparison to a conditional signal assignment statement
Incomplete branch and incomplete signal assignment

5.5 Case statement

Comparison to a selected signal assignment statement

5.6 Simple for loop statement

5.7 Synthesis of sequential statements
5.8 Synthesis guidelines

5.8.1
5.8.2 Guidelines for combinational circuits

Problems

Guidelines for using sequential statements

5.9 Bibliographic notes

6 Synthesis Of VHDL Code

6.1 Fundamental limitations of EDA software
6.1.1 Computability
6.1.2 Computation complexity
6.1.3 Limitations of EDA software

6.2.1 Realization of logical operators
6.2.2 Realization of relational operators
6.2.3 Realization of addition operators
6.2.4
6.2.5
6.2.6 An example implementation
Realization of VHDL data types
6.3.1
6.3.2
6.3.3

6.4.1 RT-level synthesis
6.4.2 Module generator

6.2 Realization of VHDL operators

Synthesis support for other operators
Realization of an operator with constant operands

6.3
Use of the std-logic data type
Use and realization of the ’Z’ value
Use of the ’-’ value

6.4 VHDL synthesis flow

101
103
103
105
1 07
109
110
112
112
114
115
116
118
118
118
119
120
120
120
121
121
121

125

125
126
126
128
129
129
129
130
130
130
131
133
133
133
137
139
139
141

CONTENTS Xi

6.4.3 Logic synthesis
6.4.4 Technology mapping
6.4.5

6.5.1 Propagation delay
6.5.2 Synthesis with timing constraints
6.5.3 Timing hazards
6.5.4

Effective use of synthesis software
6.5 Timing considerations

Delay-sensitive design and its dangers
6.6 Synthesis guidelines
6.7 Bibliographic notes

Problems

7 Combinational Circuit Design: Practice

Derivation of efficient HDL description

7.2.1 Sharing example 1
7.2.2 Sharing example 2
7.2.3 Sharing example 3
7.2.4 Sharing example 4
7.2.5 Summary

7.3.1 Addition-subtraction circuit
7.3.2 Signed-unsigned dual-mode comparator
7.3.3 Difference circuit
7.3.4 Full comparator
7.3.5 Three-function barrel shifter

7.4.1 Reduced-xor circuit
7.4.2 Reduced-xor-vector circuit
7.4.3 Tree priority encoder
7.4.4 Barrel shifter revisited

7.5.1 Gray code incrementor
7.5.2 Programmable priority encoder
7.5.3 Signed addition with status
7.5.4 Combinational adder-based multiplier
7.5.5 Hamming distance circuit

7.1
7.2 Operator sharing

7.3 Functionality sharing

7.4 Layout-related circuits

7.5 General circuits

7.6 Synthesis guidelines
7.7 Bibliographic notes

Problems

142
143
148
149
150
154
156
158
160
160
160

163

163
164
165
166
168
169
170
170
171
173
175
177
178
180
181
183
187
192
196
196
199
20 1
203
206
208
208
208

8 Sequential Circuit Design: Principle 21 3

Xii CONTENTS

8.1

8.2

8.3
8.4

8.5

8.6

8.7

8.8
8.9

Overview of sequential circuits
8.1.1 Sequential versus combinational circuits
8.1.2 Basic memory elements
8.1.3 Synchronous versus asynchronous circuits
Synchronous circuits
8.2.1
8.2.2
8.2.3 m e s of synchronous circuits
Danger of synthesis that uses primitive gates
Inference of basic memory elements
8.4.1 D latch
8.4.2 DFF
8.4.3 Register
8.4.4 RAM
Simple design examples
8.5.1 Other types of FFs
8.5.2 Shift register
8.5.3 Arbitrary-sequence counter
8.5.4 Binary counter
8.5.5 Decade counter
8.5.6 Programmable mod-rn counter
Timing analysis of a synchronous sequential circuit
8.6.1 Synchronized versus unsynchronized input
8.6.2 Setup time violation and maximal clock rate
8.6.3 Hold time violation
8.6.4 Output-related timing considerations
8.6.5 Input-related timing considerations
Alternative one-segment coding style
8.7.1 Examples of one-segment code
8.7.2 Summary
Use of variables in sequential circuit description
Synthesis of sequential circuits

Basic model of a synchronous circuit
Synchronous circuits and design automation

8.10 Synthesis guidelines
8.1 1 Bibliographic notes

Problems

9 Sequential Circuit Design: Practice

9.1 Poor design practices and their remedies
9.1.1 Misuse of asynchronous signals
9.1.2 Misuse of gated clocks
9.1.3 Misuse of derived clocks

9.2 Counters

213
213
214
216
217
217
218
219
219
221
22 1
222
225
225
226
226
229
232
233
236
237
239
239
240
243
243
244
245
245
250
250
253
253
253
254

257

257
258
260
262
265

CONTENTS Xiii

9.3

9.4

9.5
9.6

9.2.1 Gray counter
9.2.2 Ring counter
9.2.3
9.2.4 Decimal counter
9.2.5 Pulse width modulation circuit
Registers as temporary storage
9.3.1 Register file
9.3.2 Register-based synchronous FIFO buffer
9.3.3 Register-based content addressable memory
Pipelined design
9.4.1 Delay versus throughput
9.4.2 Overview on pipelined design
9.4.3
9.4.4
Synthesis guidelines
Bibliographic notes
Problems

LFSR (linear feedback shift register)

Adding pipeline to a combinational circuit
Synthesis of pipelined circuits and retiming

10 Finite State Machine: Principle and Practice

10.1 Overview of FSMs
10.2 FSM representation

10.2.1 State diagram
10.2.2 ASM chart

10.3 Timing and performance of an FSM
10.3.1 Operation of a synchronous FSM
10.3.2 Performance of an FSM
10.3.3 Representative timing diagram

10.4 Moore machine versus Mealy machine
10.4.1 Edge detection circuit
10.4.2 Comparison of Moore output and Mealy output

10.5 VHDL description of an FSM
10.5.1 Multi-segment coding style
10.5.2 Two-segment coding style
10.5.3 Synchronous FSM initialization
10.5.4 One-segment coding style and its problem
10.5.5 Synthesis and optimization of FSM

10.6.1 Overview of state assignment
10.6.2 State assignment in VHDL
10.6.3 Handling the unused states

10.7.1 Buffering by clever state assignment

10.6 State assignment

10.7 Moore output buffering

265
266
269
272
275
276
276
279
287
293
294
294
297
307
308
309
309

31 3

3 13
314
315
317
32 1
321
324
325
325
326
328
329
330
333
335
336
337
338
338
339
341
342
342

XiV CONTENTS

10.7.2 Look-ahead output circuit for Moore output
10.8 FSM design examples

10.8.1 Edge detection circuit
10.8.2 Arbiter
10.8.3 DRAM strobe generation circuit
10.8.4 Manchester encoding circuit
10.8.5 FSM-based binary counter

Problems
10.9 Bibliographic notes

11 Register Transfer Methodology: Principle

1 1.1 Introduction
11.1.1 Algorithm
1 1.1.2 Structural data flow implementation
1 1.1.3 Register transfer methodology

11.2.1 Basic RT operation
11.2.2 Multiple RT operations and data path
11.2.3 FSM as the control path
11.2.4 ASMDchart
1 1.2.5 Basic FSMD block diagram

11.3 FSMD design of a repetitive-addition multiplier
1 1.3.1 Converting an algorithm to an ASMD chart
11.3.2 Construction of the FSMD
11.3.3 Multi-segment VHDL description of an FSMD
11.3.4 Use of a register value in a decision box
11.3.5 Four- and two-segment VHDL descriptions of FSMD
11.3.6 One-segment coding style and its deficiency

11.4 Alternative design of a repetitive-addition multiplier
11.4.1 Resource sharing via FSMD
1 1.4.2 Mealy-controlled RT operations

11.5 Timing and performance analysis of FSMD
1 1.5.1 Maximal clock rate
11.5.2 Performance analysis

1 1.6 Sequential add-and-shift multiplier
1 1.6.1 Initial design
11.6.2 Refined design
1 1.6.3 Comparison of three ASMD designs

1 1.2 Overview of FSMD

11.7 Synthesis of FSMD
1 1.8 Synthesis guidelines
11.9 Bibliographic notes

Problems

344
348
348
353
358
363
367
369
369

373

373
373
374
375
376
376
378
379
379
380
382
382
385
386
3 89
39 1
394
396
396
400
404
404
407
407
408
412
417
417
418
418
418

CONTENTS XV

12 Register Transfer Methodology: Practice

12.1 Introduction
12.2 One-shot pulse generator

12.2.1 FSM implementation
12.2.2 Regular sequential circuit implementation
12.2.3 Implementation using RT methodology
12.2.4 Comparison

12.3.1 Overview of SRAM
12.3.2 Block diagram of an SRAM controller
12.3.3 Control path of an SRAM controller

12.4 GCD circuit
12.5 UART receiver
12.6 Square-root approximation circuit
12.7 High-level synthesis
12.8 Bibliographic notes

12.3 SRAM controller

Problems

13 Hierarchical Design in VHDL

13.1

13.2

13.3
13.4

13.5

13.6

13.7

Introduction
13.1.1 Benefits of hierarchical design
13.1.2 VHDL constructs for hierarchical design
Components
13.2.1 Component declaration
13.2.2 Component instantiation
13.2.3 Caveats in component instantiation
Generics
Configuration
13.4.1 Introduction
13.4.2 Configuration declaration
13.4.3 Configuration specification
13.4.4 Component instantiation and configuration in VHDL 93
Other supporting constructs for a large system
13.5.1 Library
13.5.2 Subprogram
13.5.3 Package
Partition
13.6.1 Physical partition
13.6.2 Logical partition
Synthesis guidelines

13.8 Bibliographic notes

421

42 1
422
422
424
425
427
430
430
434
436
445
455
460
469
470
470

473

473
474
474
475
475
477
480
48 1
485
485
486
488
488
489
489
49 1
492
495
495
496
497
497

XVi CONTENTS

Problems 497

14 Parameterized Design: Principle

14.1 Introduction
14.2 q p e s of parameters

14.2.1 Width parameters
14.2.2 Fearue parameters

14.3 Specifying parameters
14.3.1 Generics
14.3.2 Array attribute
14.3.3 Unconstrained array
14.3.4 Comparison between a generic and an unconstrained array

14.4 Clever use of an array
14.4.1 Description without fixed-size references
14.4.2 Examples

14.5 For generate statement
14.5.1 Syntax
14.5.2 Examples

14.6.1 Syntax
14.6.2 Examples
14.6.3 Comparisons with other feature-selection methods

14.7.1 Introduction
14.7.2 Examples of a simple for loop statement
14.7.3 Examples of a loop body with multiple signal assignment

statements
14.7.4 Examples of a loop body with variables
14.7.5 Comparison of the for generate and for loop statements

14.8.1 Syntax of the exit statement
14.8.2 Examples of the exit statement
14.8.3 Conceptual implementation of the exit statement
14.8.4 Next statement

14.9 Synthesis of iterative structure
14.10 Synthesis guidelines
14.1 1 Bibliographic notes

14.6 Conditional generate statement

14.7 For loop statement

14.8 Exit and next statements

Problems

499

499
500
500
50 1
50 1
501
502
503
506
506
507
509
512
513
513
517
517
518
525
528
528
528

530
533
536
537
537
537
539
540
54 1
542
542
542

15 Parameterized Design: Practice

15.1 Introduction

545

545

CONTENTS XVii

15.2 Data types for two-dimensional signals
15.2.1 Genuine two-dimensional data type
15.2.2 Array-of-arrays data type
15.2.3 Emulated two-dimensional array
15.2.4 Example
15.2.5 Summary

15.3 Commonly used intermediate-sized RT-level components
15.3.1 Reduced-xor circuit
15.3.2 Binary decoder
15.3.3 Multiplexer
15.3.4 Binary encoder
15.3.5 Barrel shifter

15.4 More sophisticated examples
15.4.1 Reduced-xor-vector circuit
15.4.2 Multiplier
15.4.3 Parameterized LFSR
15.4.4 Priority encoder
15.4.5 FIFO buffer

15.5 Synthesis of parameterized modules
15.6 Synthesis guidelines
15.7 Bibliographic notes

Problems

16 Clock and Synchronization: Principle and Practice

16.1 Overview of a clock distribution network
16.1.1 Physical implementation of a clock distribution network
16.1.2 Clock skew and its impact on synchronous design

16.2 Timing analysis with clock skew
16.2.1 Effect on setup time and maximal clock rate
16.2.2 Effect on hold time constraint

16.3 Overview of a multiple-clock system
16.3.1 System with derived clock signals
16.3.2 GALS system

16.4 Metastability and synchronization failure
16.4.1 Nature of metastability
16.4.2 Analysis of MTBF(T!)
16.4.3 Unique characteristics of MTBF(T,)

16.5.1 The danger of no synchronizer
16.5.2 One-FF synchronizer and its deficiency
16.5.3 Wo-FF synchronizer
16.5.4 Three-FF synchronizer

16.5 Basic synchronizer

546
546
548
550
552
554
555
555
558
560
564
566
569
570
572
586
588
59 1
599
599
600
600

603

603
603
605
606
606
609
610
61 1
612
612
613
614
616
617
617
617
619
620

XVi i i CONTENTS

16.5.5 Proper use of a synchronizer
16.6 Single enable signal crossing clock domains

16.6.1 Edge detection scheme
16.6.2 Level-alternation scheme

16.7.1 Four-phase handshaking protocol
16.7.2 Two-phase handshaking protocol

16.8 Data transfer crossing clock domains
16.8.1 Four-phase handshaking protocol data transfer
16.8.2 Two-phase handshaking data transfer
16.8.3 One-phase data transfer

16.9 Data transfer via a memory buffer
16.9.1 FIFO buffer
16.9.2 Shared memory

16.7 Handshaking protocol

16.10 Synthesis of a multiple-clock system
16.1 1 Synthesis guidelines

16.1 1.1 Guidelines for general use of a clock
16.1 1.2 Guidelines for a synchronizer
16.1 1.3 Guidelines for an interface between clock domains

Problems
16.12 Bibliographic notes

62 1
623
623
627
630
630
637
639
641
650
65 1
652
652
660
661
662
662
662
662
663
663

References 665

Topic Index 667

PREFACE

With the maturity and availability of hardware description language (HDL) and synthesis
software, using them to design custom digital hardware has become a mainstream practice.
Because of the resemblance of an HDL code to a traditional program (such as a C program),
some users believe incorrectly that designing hardware in HDL involves simply writing syn-
tactically correct software code, and assume that the synthesis software can automatically
derive the physical hardware. Unfortunately, synthesis software can only perform trans-
formation and local optimization, and cannot convert a poor description into an efficient
implementation. Without an understanding of the hardware architecture, the HDL code
frequently leads to unnecessarily complex hardware, or may not even be synthesizable.

This book provides in-depth coverage on the systematical development and synthesis
of efficient, portable and scalable register-transfer-level (RT-level) digital circuits using the
VHDL hardware description language. RT-level design uses intermediate-sized compo-
nents, such as adders, comparators, multiplexers and registers, to construct a digital system.
It is the level that is most suitable and effective for today’s synthesis software.

RT-level design and VHDL are two somewhat independent subjects. VHDL code is
simply one of the methods to describe a hardware design. The same design can also be
described by a schematic or code in other HDLs. VHDL and synthesis software will not
lead automatically to a better or worse design. However, they can shield designers from
low-level details and allow them to explore and research better architectures.

The emphasis of the book is on hardware rather than language. Instead of treating
synthesis software as a mysterious black box and listing “recipe-like” codes, we explain
the relationship between the VHDL constructs and the underlying hardware structure and
illustrate how to explore the design space and develop codes that can be synthesized into
efficient cell-level implementation. The discussion is independent of technology and can

xix

XX PREFACE

be applied to both ASIC and FPGA devices. The VHDL codes listed in the book largely
follow the IEEE 1076.6 RTL synthesis standard and can be accepted by most synthesis
software. Most codes can be synthesized without modification by the free “demo-version’’
synthesis software provided by FPGA vendors.

Scope The book focuses primarily on the design and synthesis of RT-level circuits. A
subset of VHDL is used to describe the design. The book is not intended to be a com-
prehensive ASIC or FPGA book. All other issues, such as device architecture, placement
and routing, simulation and testing, are discussed exclusively from the context of RT-level
design.

Unique features The book is a hardware design text. VHDL and synthesis software are
used as tools to realize the intended design. Several unique features distinguish the book:

0 Suggest a coding style that shows a clear relationship between VHDL constructs and

0 Use easy-to-understand conceptual diagrams, rather than cell-level netlists, to explain

0 Emphasize the reuse aspect of the codes throughout the book.
0 Consider RT-level design as an integral part of the overall development process and

introduce good design practices and guidelines to ensure that an RT-level description
can accommodate future simulation, verification and testing needs.

0 Make the design “technology neutral” so that the developed VHDL code can be
applied to both ASIC and FPGA devices.

0 Follow the IEEE 1076.6 RTL synthesis standard to make the codes independent of
synthesis software.

0 Provide a set of synthesis guidelines at the end of each chapter.
0 Contain a large number of non-trivial, practical examples to illustrate and reinforce

the design concepts, procedures and techniques.
0 Include two chapters on realizing sequential algorithms in hardware (known as “reg-

ister transfer methodology”) and on designing control path and data path.
0 Include two chapters on the scalable and parameterized designs and coding.
0 Include a chapter on the synchronization and interface between multiple clock do-

Book organization The book is basically divided into three major parts. The first part,
Chapters 1 to 6 , provides a comprehensive overview of VHDL and the synthesis process, and
examines the hardware implementation of basic VHDL language constructs. The second
part, Chapters 7 to 12, covers the core of the RT-level design, including combinational
circuits, “regular” sequential circuits, finite state machine and circuits designed by register
transfer methodology, The third part, Chapters 13 to 16, covers the system issues, including
the hierarchy, parameterized and scalable design, and interface between clock domains.
More detailed descriptions of the chapters follow.

0 Chapter 1 presents a “big picture” of digital system design, including an overview on
device technologies, system representation, development flow and software tools.

0 Chapter 2 provides an overview on the design, usage and capability of a hardware
description language. A series of simple codes is used to introduce the basic modeling
concepts of VHDL.

0 Chapter 3 provides an overview of the basic language constructs of VHDL, including
lexical elements, objects, data types and operators. Because VHDL is a strongly
typed language, the data types and operators are discussed in more detail.

hardware components.

the realization of VHDL codes.

mains.

PREFACE XXi

0 Chapter 4 covers the syntax, usage and implementation of concurrent signal assign-
ment statements of VHDL. It shows how to realize these constructs by multiplexing
and priority routing networks.

0 Chapter 5 examines the syntax, usage and implementation of sequential statements of
VHDL. It shows the realization of the sequential statements and discusses the caveats
of using these statements.

0 Chapter 6 explains the realization of VHDL operators and data types, provides an
in-depth overview on the synthesis process and discusses the timing issue involved
in synthesis.

0 Chapter 7 covers the construction and VHDL description of more sophisticated com-
binational circuits. Examples show how to transform conceptual ideas into hardware,
and illustrate resource-sharing and circuit-shaping techniques to reduce circuit size
and increase performance.

0 Chapter 8 introduces the synchronous design methodology and the construction and
coding of synchronous sequential circuits. Basic “regular” sequential circuits, such
as counters and shift registers, in which state transitions exhibit a regular pattern, are
examined.

0 Chapter 9 explores more sophisticated regular sequential circuits. The design exam-
ples show the implementation of a variety of counters, the use of registers as fast,
temporary storage, and the construction of pipelined combinational circuits.

0 Chapter 10 covers finite state machine (FSM), which is a sequential circuit with
“random” transition patterns. The representation, timing and implementation issues
of FSMs are studied with an emphasis on its use as the control circuit for a large,
complex system.

0 Chapter 11 introduces the register transfer methodology, which describes system
operation by a sequence of data transfers and manipulations among registers, and
demonstrates the construction of the data path (a regular sequential circuit) and the
control path (an FSM) used in this methodology.

0 Chapter 12 uses a variety of design examples to illustrate how the register transfer
methodology can be used in various types of problems and to highlight the design
procedure and relevant issues.

0 Chapter 13 features the design hierarchy, in which a system is gradually divided into
smaller parts. Mechanisms and language constructs of VHDL used to specify and
configure a hierarchy are examined.

0 Chapter 14 introduces parameterized design, in which the width and functionality of
a circuit are specified by explicit parameters. Simple examples illustrate the mecha-
nisms used to pass and infer parameters and the language constructs used to describe
the replicated structures.

0 Chapter 15 provides more sophisticated parameterized design examples. The main
focus is on the derivation of efficient parameterized RT-level modules that can be
used as building blocks of larger systems.

0 Chapter 16 covers the effect of a non-ideal clock signal and discusses the synchro-
nization of an asynchronous signal and the interface between two independent clock
domains.

Audience The intended audience for the book is students in advanced digital system
design course and practicing engineers who wish to sharpen their design skills or to learn
the effective use of today’s synthesis software. Readers need to have basic knowledge of
digital systems. The material is normally covered in an introductory digital design course,

XXii PREFACE

which is a standard part in all electrical engineering and computer engineering curricula.
No prior experience on HDL or synthesis is needed.

Verilog is another popular HDL. Since the book emphasizes hardware and methodology
rather than language constructs, readers with prior Verilog experience can easily follow the
discussion and learn VHDL along the way. Most VHDL codes can easily be translated into
the Verilog language.

Web site Anaccompanying web site (http: //academic. csuohio. edu/chu-p/rtl)
provides additional information, including the following materials:

0 Errata.
0 Summary of coding guidelines.
0 Code listing.
0 Links to demo-version synthesis software.
0 Links to some referenced materials.
0 Frequently asked questions (FAQ) on RTL synthesis.
0 Lecture slides for instructors.

Errata The book is “self-prepared,” which means the author has prepared all materials,
including the illustrations, tables, code listing, indexing and formatting, by himself. As the
errors are always bound to happen, the accompanying web site provides an updated errata
sheet and a place to report errors.

P. P. CHU

Cleveland, Ohio

January 2006

ACKNOWLEDGMENTS

The author would like to express his gratitude to Professor George L. Kramerich for his
encouragement and help during the course of this project. The work was partially supported
by educational material development grant 0126752 from the National Science Foundation
and a Teaching Enhancement grant from Cleveland State University.

P. P. Chu

xxiii

This Page Intentionally Left Blank

CHAPTER 1

INTRODUCTION TO DIGITAL SYSTEM
DESIGN

Developing and producing a digital system is a complicated process and involves many
tasks. The design and synthesis of a register transfer level circuit, which is the focus of
this book, is only one of the tasks. In this chapter, we present an overview of device
technologies, system representation, development flow and software tools. This helps us to
better understand the role of the design and synthesis task in the overall development and
production process.

1.1 INTRODUCTION

Digital hardware has experienced drastic expansion and improvement in the past 40 years.
Since its introduction, the number of transistors in a single chip has grown exponentially, and
a silicon chip now routinely contains hundreds of thousands or even hundreds of millions
of transistors. In the past, the major applications of digital hardware were computational
systems. However, as the chip became smaller, faster, cheaper and more capable, many
electronic, control, communication and even mechanical systems have been "digitized"
internally, using digital circuits to store, process and transmit information.

As applications become larger and more complex, the task of designing digital circuits
becomes more difficult. The best way to handle the complexity is to view the circuit at
a more abstract level and utilize software tools to derive the low-level implementation.
This approach shields us from the tedious details and allows us to concentrate and explore
high-level design alternatives. Although software tools can automate certain tasks, they
are capable of performing only limited transformation and optimization. They cannot, and

RTL Hardware Design Using VHDL: Coding for EfJfciency, Portability, and Scalabili@. By Pong I? Chu 1
Copyright @ 2006 John Wiley & Sons, Inc.

2 INTRODUCTION TO DIGITAL SYSTEM DESIGN

will not, do the design or convert a poor design to a good one. The ultimate efficiency
still comes from human ingenuity and experience. The goal of this book is to show how
to systematically develop an efficient, portable design description that is both abstract, yet
detailed enough for effective software synthesis.

Developing and producing a digital circuit is a complicated process, and the design
and synthesis are only two of the tasks. We should be aware of the “big picture” so that
the design and synthesis can be efficiently integrated into the overall development and
production process. The following sections provide an overview of device technologies,
system representation, abstraction, development flow, and the use and limitations of software
tools.

1.2 DEVICE TECHNOLOGIES

If we want to build a custom digital system, there are varieties of device technologies to
choose, from off-the-shelf simple field-programmable components to full-custom devices
that tailor the application down to the transistor level. There is no single best technology,
and we have to consider the trade-offs among various factors, including chip area, speed,
power and cost.

1.2.1 Fabrication of an IC

To better understand the differences between the device technologies, it is helpful to have
a basic idea of the fabrication process of an integrated circuit (IC). An IC is made from
layers of doped silicon, polysilicon, metal and silicon dioxide, built on top of one another,
on a thin silicon wafer. Some of these layers form transistors, and others form planes of
connection wires.

The basic step in IC fabrication is to construct a layer with a customized pattern, a process
known as lithography. The pattern is defined by a mask. Today’s IC device technology
typically consists of 10 to 15 layers, and thus the lithography process has to be repeated 10
to 15 times during the fabrication of an IC, each time with a unique mask.

One important aspect of a device technology is the silicon area used by a circuit. It is
expressed by the length of a smallest transistor that can be fabricated, usually measured in
microns (a millionth of a meter). As the device fabrication process improved, the transistor
size continued to shrink and now approaches a tenth of a micron.

1.2.2 Classification of device technologies

There is an array of device technologies that can be used to construct a custom digital
circuit. One major characteristic of a technology is how the customization is done. In
certain technologies, all the layers of a device are predetermined, and thus the device can
be prefabricated and manufactured as a standard off-the-shelf part. The customization of
a circuit can be performed “in the field,” normally by downloading a connection pattern
to the device’s internal memory or by “burning the internal silicon fuses.” On the other
hand, some device technologies need one or more layers to be customized for a particular
application. The customization involves the creation of tailored masks and fabrication of
the patterned layers. This process is expensive and complex and can only be done in a
fabrication plant (known as afoundry or afub). Thus, whether a device needed to be
fabricated in a fab is the most important characteristic of a technology. In this book, we use

DEVICE TECHNOLOGIES 3

the term application-speciJic ZC (ASZC) to represent device technologies that require a fab
to do customization.

With an understanding of the difference between ASIC and non-ASK, we can divide
the device technologies further into the following types:

0 Full-custom ASIC
0 Standard-cell ASIC
0 Gate array ASIC
0 Complex field-programmable logic device
0 Simple field-programmable logic device
0 Off-the-shelf small- and medium-scaled IC (SSVMSI) components

Full-custom ASlC Infi l lastom ASZC technology, all aspects of a digital circuit are
tailored for one particular application. We have complete control of the circuit and can even
craft the layout of a transistor to meet special area or performance needs. The resulting
circuit is fully optimized and has the best possible performance. Unfortunately, designing
a circuit at the transistor level is extremely complex and involved, and is only feasible for
a small circuit. It is not practical to use this approach to design a complete system, which
now may contain tens and even hundreds of millions of transistors. The major application
of full-custom ASIC technology is to design the basic logic components that can be used as
building blocks of a larger system. Another application is to design special-purpose “bit-
slice” typed circuits, such as a 1-bit memory or 1-bit adder. These circuits have a regular
structure and are constructed through a cascade of identical slices. To obtain optimal
performance, full-custom ASIC technology is frequently used to design a single slice. The
slice is then replicated a number of times to form a complete circuit.

The layouts of a full-custom ASIC chip are tailored to a particular application. All layers
are different and a mask is required for every layer. During fabrication, all layers have to
be custom constructed, and nothing can be done in advance.

Standard-cell ASlC In standard-cell A S K (also simply known as standard-cell) tech-
nology, a circuit is constructed by using a set of predefined logic components, known as
standard cells. These cells are predesigned and their layouts are validated and tested.
Standard-cell ASIC technology allows us to work at the gate level rather than at the tran-
sistor level and thus greatly simplifies the design process. The device manufacturer usually
provides a library of standard cells as the basic building blocks. The library normally con-
sists of basic logic gates, simple combinational components, such as an and-or-inverter,
2-to-1 multiplexer and 1-bit full adder, and basic memory elements, such as a D-type latch
and D-type flip-flop. Some libraries may also contain more sophisticated function blocks,
such as an adder, barrel shifter and random access memory (RAM).

In standard-cell technology, a circuit is made of cells. The types of cells and the intercon-
nection depend on the individual application. Whereas the layout of a cell is predetermined,
the layout of the complete circuit is unique for a particular application and nothing can be
constructed in advance. Thus, fabrication of a standard-cell chip is identical to that of a
full-custom ASIC chip, and all layers have to be custom constructed.

Gate array ASlC In gate array ASIC (also simply known as gate array) technology, a
circuit is built from an array of predefined cells. Unlike standard-cell technology, a gate
array chip consists of only one type of cell, known as a base cell. The base cell is fairly
simple, resembling a logic gate. Base cells are prearranged and placed in fixed positions,
aligned as a one- or two-dimensional array. Since the location and type are predetermined,

4 INTRODUCTION TO DIGITAL SYSTEM DESIGN

the base cells can be prefabricated. The customization of a circuit is done by specifying the
interconnect between these cells. A gate array vendor also provides a library of predesigned
components, known as macro cells, which are built from base cells. The macro cells have
a predefined interconnect and provide the designer with more sophisticated logic blocks.

Compared to standard-cell technology, the fabrication of a gate array device is much
simpler, due to its fixed array structure. Since the array is common to all applications, the
cell (and transistors) can be fabricated in advance. During construction of a chip, only the
masks of metal layers, which specify the interconnect, are unique for an application and
therefore must be customized. This reduces the number of custom layers from 10 to 15
layers to 3 to 5 layers and simplifies the fabrication process significantly.

Complex field-programmable device We now examine several non-ASIC technolo-
gies. The most versatile non-ASIC technology is the complex field-programmable device.
In this technology, a device consists of an array of generic logic cells and general intercon-
nect structure. Although the logic cells and interconnect structure are prefabricated, both
are programmable. The programmability is obtained by utilizing semiconductor “fuses” or
“switches,” which can be set as open- or short-circuit. The customization is done by config-
uring the device with a specific fuse pattern. This process can be accomplished by a simple,
inexpensive device programmer, normally constructed as an add-on card or an adaptor cable
of a PC. Since the customization is done “in the field” rather than “in a fab,” this technology
is known as field programmable. (In contrast, ASIC technologies are “programmed” via
one or more tailored masks and thus are mask programmable.)

The basic structures of gate array ASKS and complex field-programmable devices are
somewhat similar. However, the interconnect structure of field-programmable devices is
predetermined and thus imposes more constraints on signal routing. To reduce the amount of
connection, more functionality is built into the logic cells of a field-programmable device,
making a logic cell much more complex than a base cell or a standard cell of ASIC.
According to the complexity and structure of logic cells, complex field-programmable
devices can be divided roughly into two broad categories: complex programmable logic
device (CPLD) and field programmable gate array (FPGA).

The logic cell of a CPLD device is more sophisticated, normally consisting of a D-type
flip-flop and a PAL-like unit with configurable product terms. The interconnect structure of
a CPLD device tends to be more centralized, with few groups of concentrated routing lines.
On the other hand, the logic cell of an FPGA device is usually smaller, typically including a
D-type flip-flop and a small look-up table or a set of multiplexers. The interconnect structure
between the cells tends to be distributed and more flexible. Because of its distributive nature,
FPGA is better suited for large, high-capacity complex field-programmable devices,

Simple field-programmable device Simple field-programmable logic devices, as
the name indicates, are programmable devices with simpler internal structure. Historically,
these devices are generically called programmable logic devices (PLDs). We add the word
simple to distinguish them from FPGA and CPLD devices. Simple field-programmable
devices are normally constructed as a two-level array, with an and plane and an or plane.
The interconnect of one or both planes can be programmed to perform a logic function
expressed in sum-of-product format. The devices include programmable read only memory
(PROM), in which the or plane can be programmed; programmable array logic (PAL), in
which the and plane can be programmed; and programmable logic array (PLA), in which
both planes can be programmed.

Unlike FPGA and CPLD devices, simple field-programmable logic devices do not have
a general interconnect structure, and thus their functionality is severely limited. They are

