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PREFACE 

With the maturity and availability of hardware description language (HDL) and synthesis 
software, using them to design custom digital hardware has become a mainstream practice. 
Because of the resemblance of an HDL code to a traditional program (such as a C program), 
some users believe incorrectly that designing hardware in HDL involves simply writing syn- 
tactically correct software code, and assume that the synthesis software can automatically 
derive the physical hardware. Unfortunately, synthesis software can only perform trans- 
formation and local optimization, and cannot convert a poor description into an efficient 
implementation. Without an understanding of the hardware architecture, the HDL code 
frequently leads to unnecessarily complex hardware, or may not even be synthesizable. 

This book provides in-depth coverage on the systematical development and synthesis 
of efficient, portable and scalable register-transfer-level (RT-level) digital circuits using the 
VHDL hardware description language. RT-level design uses intermediate-sized compo- 
nents, such as adders, comparators, multiplexers and registers, to construct a digital system. 
It is the level that is most suitable and effective for today’s synthesis software. 

RT-level design and VHDL are two somewhat independent subjects. VHDL code is 
simply one of the methods to describe a hardware design. The same design can also be 
described by a schematic or code in other HDLs. VHDL and synthesis software will not 
lead automatically to a better or worse design. However, they can shield designers from 
low-level details and allow them to explore and research better architectures. 

The emphasis of the book is on hardware rather than language. Instead of treating 
synthesis software as a mysterious black box and listing “recipe-like” codes, we explain 
the relationship between the VHDL constructs and the underlying hardware structure and 
illustrate how to explore the design space and develop codes that can be synthesized into 
efficient cell-level implementation. The discussion is independent of technology and can 

xix 



XX PREFACE 

be applied to both ASIC and FPGA devices. The VHDL codes listed in the book largely 
follow the IEEE 1076.6 RTL synthesis standard and can be accepted by most synthesis 
software. Most codes can be synthesized without modification by the free “demo-version’’ 
synthesis software provided by FPGA vendors. 

Scope The book focuses primarily on the design and synthesis of RT-level circuits. A 
subset of VHDL is used to describe the design. The book is not intended to be a com- 
prehensive ASIC or FPGA book. All other issues, such as device architecture, placement 
and routing, simulation and testing, are discussed exclusively from the context of RT-level 
design. 

Unique features The book is a hardware design text. VHDL and synthesis software are 
used as tools to realize the intended design. Several unique features distinguish the book: 

0 Suggest a coding style that shows a clear relationship between VHDL constructs and 

0 Use easy-to-understand conceptual diagrams, rather than cell-level netlists, to explain 

0 Emphasize the reuse aspect of the codes throughout the book. 
0 Consider RT-level design as an integral part of the overall development process and 

introduce good design practices and guidelines to ensure that an RT-level description 
can accommodate future simulation, verification and testing needs. 

0 Make the design “technology neutral” so that the developed VHDL code can be 
applied to both ASIC and FPGA devices. 

0 Follow the IEEE 1076.6 RTL synthesis standard to make the codes independent of 
synthesis software. 

0 Provide a set of synthesis guidelines at the end of each chapter. 
0 Contain a large number of non-trivial, practical examples to illustrate and reinforce 

the design concepts, procedures and techniques. 
0 Include two chapters on realizing sequential algorithms in hardware (known as “reg- 

ister transfer methodology”) and on designing control path and data path. 
0 Include two chapters on the scalable and parameterized designs and coding. 
0 Include a chapter on the synchronization and interface between multiple clock do- 

Book organization The book is basically divided into three major parts. The first part, 
Chapters 1 to 6 ,  provides a comprehensive overview of VHDL and the synthesis process, and 
examines the hardware implementation of basic VHDL language constructs. The second 
part, Chapters 7 to 12, covers the core of the RT-level design, including combinational 
circuits, “regular” sequential circuits, finite state machine and circuits designed by register 
transfer methodology, The third part, Chapters 13 to 16, covers the system issues, including 
the hierarchy, parameterized and scalable design, and interface between clock domains. 
More detailed descriptions of the chapters follow. 

0 Chapter 1 presents a “big picture” of digital system design, including an overview on 
device technologies, system representation, development flow and software tools. 

0 Chapter 2 provides an overview on the design, usage and capability of a hardware 
description language. A series of simple codes is used to introduce the basic modeling 
concepts of VHDL. 

0 Chapter 3 provides an overview of the basic language constructs of VHDL, including 
lexical elements, objects, data types and operators. Because VHDL is a strongly 
typed language, the data types and operators are discussed in more detail. 

hardware components. 

the realization of VHDL codes. 

mains. 
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0 Chapter 4 covers the syntax, usage and implementation of concurrent signal assign- 
ment statements of VHDL. It shows how to realize these constructs by multiplexing 
and priority routing networks. 

0 Chapter 5 examines the syntax, usage and implementation of sequential statements of 
VHDL. It shows the realization of the sequential statements and discusses the caveats 
of using these statements. 

0 Chapter 6 explains the realization of VHDL operators and data types, provides an 
in-depth overview on the synthesis process and discusses the timing issue involved 
in synthesis. 

0 Chapter 7 covers the construction and VHDL description of more sophisticated com- 
binational circuits. Examples show how to transform conceptual ideas into hardware, 
and illustrate resource-sharing and circuit-shaping techniques to reduce circuit size 
and increase performance. 

0 Chapter 8 introduces the synchronous design methodology and the construction and 
coding of synchronous sequential circuits. Basic “regular” sequential circuits, such 
as counters and shift registers, in which state transitions exhibit a regular pattern, are 
examined. 

0 Chapter 9 explores more sophisticated regular sequential circuits. The design exam- 
ples show the implementation of a variety of counters, the use of registers as fast, 
temporary storage, and the construction of pipelined combinational circuits. 

0 Chapter 10 covers finite state machine (FSM), which is a sequential circuit with 
“random” transition patterns. The representation, timing and implementation issues 
of FSMs are studied with an emphasis on its use as the control circuit for a large, 
complex system. 

0 Chapter 11 introduces the register transfer methodology, which describes system 
operation by a sequence of data transfers and manipulations among registers, and 
demonstrates the construction of the data path (a regular sequential circuit) and the 
control path (an FSM) used in this methodology. 

0 Chapter 12 uses a variety of design examples to illustrate how the register transfer 
methodology can be used in various types of problems and to highlight the design 
procedure and relevant issues. 

0 Chapter 13 features the design hierarchy, in which a system is gradually divided into 
smaller parts. Mechanisms and language constructs of VHDL used to specify and 
configure a hierarchy are examined. 

0 Chapter 14 introduces parameterized design, in which the width and functionality of 
a circuit are specified by explicit parameters. Simple examples illustrate the mecha- 
nisms used to pass and infer parameters and the language constructs used to describe 
the replicated structures. 

0 Chapter 15 provides more sophisticated parameterized design examples. The main 
focus is on the derivation of efficient parameterized RT-level modules that can be 
used as building blocks of larger systems. 

0 Chapter 16 covers the effect of a non-ideal clock signal and discusses the synchro- 
nization of an asynchronous signal and the interface between two independent clock 
domains. 

Audience The intended audience for the book is students in advanced digital system 
design course and practicing engineers who wish to sharpen their design skills or to learn 
the effective use of today’s synthesis software. Readers need to have basic knowledge of 
digital systems. The material is normally covered in an introductory digital design course, 
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which is a standard part in all electrical engineering and computer engineering curricula. 
No prior experience on HDL or synthesis is needed. 

Verilog is another popular HDL. Since the book emphasizes hardware and methodology 
rather than language constructs, readers with prior Verilog experience can easily follow the 
discussion and learn VHDL along the way. Most VHDL codes can easily be translated into 
the Verilog language. 

Web site Anaccompanying web site (http: //academic. csuohio. edu/chu-p/rtl) 
provides additional information, including the following materials: 

0 Errata. 
0 Summary of coding guidelines. 
0 Code listing. 
0 Links to demo-version synthesis software. 
0 Links to some referenced materials. 
0 Frequently asked questions (FAQ) on RTL synthesis. 
0 Lecture slides for instructors. 

Errata The book is “self-prepared,” which means the author has prepared all materials, 
including the illustrations, tables, code listing, indexing and formatting, by himself. As the 
errors are always bound to happen, the accompanying web site provides an updated errata 
sheet and a place to report errors. 

P. P. CHU 

Cleveland, Ohio 

January 2006 
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CHAPTER 1 

INTRODUCTION TO DIGITAL SYSTEM 
DESIGN 

Developing and producing a digital system is a complicated process and involves many 
tasks. The design and synthesis of a register transfer level circuit, which is the focus of 
this book, is only one of the tasks. In this chapter, we present an overview of device 
technologies, system representation, development flow and software tools. This helps us to 
better understand the role of the design and synthesis task in the overall development and 
production process. 

1.1 INTRODUCTION 

Digital hardware has experienced drastic expansion and improvement in the past 40 years. 
Since its introduction, the number of transistors in a single chip has grown exponentially, and 
a silicon chip now routinely contains hundreds of thousands or even hundreds of millions 
of transistors. In the past, the major applications of digital hardware were computational 
systems. However, as the chip became smaller, faster, cheaper and more capable, many 
electronic, control, communication and even mechanical systems have been "digitized" 
internally, using digital circuits to store, process and transmit information. 

As applications become larger and more complex, the task of designing digital circuits 
becomes more difficult. The best way to handle the complexity is to view the circuit at 
a more abstract level and utilize software tools to derive the low-level implementation. 
This approach shields us from the tedious details and allows us to concentrate and explore 
high-level design alternatives. Although software tools can automate certain tasks, they 
are capable of performing only limited transformation and optimization. They cannot, and 
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will not, do the design or convert a poor design to a good one. The ultimate efficiency 
still comes from human ingenuity and experience. The goal of this book is to show how 
to systematically develop an efficient, portable design description that is both abstract, yet 
detailed enough for effective software synthesis. 

Developing and producing a digital circuit is a complicated process, and the design 
and synthesis are only two of the tasks. We should be aware of the “big picture” so that 
the design and synthesis can be efficiently integrated into the overall development and 
production process. The following sections provide an overview of device technologies, 
system representation, abstraction, development flow, and the use and limitations of software 
tools. 

1.2 DEVICE TECHNOLOGIES 

If we want to build a custom digital system, there are varieties of device technologies to 
choose, from off-the-shelf simple field-programmable components to full-custom devices 
that tailor the application down to the transistor level. There is no single best technology, 
and we have to consider the trade-offs among various factors, including chip area, speed, 
power and cost. 

1.2.1 Fabrication of an IC 

To better understand the differences between the device technologies, it is helpful to have 
a basic idea of the fabrication process of an integrated circuit (IC). An IC is made from 
layers of doped silicon, polysilicon, metal and silicon dioxide, built on top of one another, 
on a thin silicon wafer. Some of these layers form transistors, and others form planes of 
connection wires. 

The basic step in IC fabrication is to construct a layer with a customized pattern, a process 
known as lithography. The pattern is defined by a mask. Today’s IC device technology 
typically consists of 10 to 15 layers, and thus the lithography process has to be repeated 10 
to 15 times during the fabrication of an IC, each time with a unique mask. 

One important aspect of a device technology is the silicon area used by a circuit. It is 
expressed by the length of a smallest transistor that can be fabricated, usually measured in 
microns (a millionth of a meter). As the device fabrication process improved, the transistor 
size continued to shrink and now approaches a tenth of a micron. 

1.2.2 Classification of device technologies 

There is an array of device technologies that can be used to construct a custom digital 
circuit. One major characteristic of a technology is how the customization is done. In 
certain technologies, all the layers of a device are predetermined, and thus the device can 
be prefabricated and manufactured as a standard off-the-shelf part. The customization of 
a circuit can be performed “in the field,” normally by downloading a connection pattern 
to the device’s internal memory or by “burning the internal silicon fuses.” On the other 
hand, some device technologies need one or more layers to be customized for a particular 
application. The customization involves the creation of tailored masks and fabrication of 
the patterned layers. This process is expensive and complex and can only be done in a 
fabrication plant (known as afoundry or afub). Thus, whether a device needed to be 
fabricated in a fab is the most important characteristic of a technology. In this book, we use 
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the term application-speciJic ZC (ASZC) to represent device technologies that require a fab 
to do customization. 

With an understanding of the difference between ASIC and non-ASK, we can divide 
the device technologies further into the following types: 

0 Full-custom ASIC 
0 Standard-cell ASIC 
0 Gate array ASIC 
0 Complex field-programmable logic device 
0 Simple field-programmable logic device 
0 Off-the-shelf small- and medium-scaled IC (SSVMSI) components 

Full-custom ASlC Infi l lastom ASZC technology, all aspects of a digital circuit are 
tailored for one particular application. We have complete control of the circuit and can even 
craft the layout of a transistor to meet special area or performance needs. The resulting 
circuit is fully optimized and has the best possible performance. Unfortunately, designing 
a circuit at the transistor level is extremely complex and involved, and is only feasible for 
a small circuit. It is not practical to use this approach to design a complete system, which 
now may contain tens and even hundreds of millions of transistors. The major application 
of full-custom ASIC technology is to design the basic logic components that can be used as 
building blocks of a larger system. Another application is to design special-purpose “bit- 
slice” typed circuits, such as a 1-bit memory or 1-bit adder. These circuits have a regular 
structure and are constructed through a cascade of identical slices. To obtain optimal 
performance, full-custom ASIC technology is frequently used to design a single slice. The 
slice is then replicated a number of times to form a complete circuit. 

The layouts of a full-custom ASIC chip are tailored to a particular application. All layers 
are different and a mask is required for every layer. During fabrication, all layers have to 
be custom constructed, and nothing can be done in advance. 

Standard-cell ASlC In standard-cell A S K  (also simply known as standard-cell) tech- 
nology, a circuit is constructed by using a set of predefined logic components, known as 
standard cells. These cells are predesigned and their layouts are validated and tested. 
Standard-cell ASIC technology allows us to work at the gate level rather than at the tran- 
sistor level and thus greatly simplifies the design process. The device manufacturer usually 
provides a library of standard cells as the basic building blocks. The library normally con- 
sists of basic logic gates, simple combinational components, such as an and-or-inverter, 
2-to-1 multiplexer and 1-bit full adder, and basic memory elements, such as a D-type latch 
and D-type flip-flop. Some libraries may also contain more sophisticated function blocks, 
such as an adder, barrel shifter and random access memory (RAM). 

In standard-cell technology, a circuit is made of cells. The types of cells and the intercon- 
nection depend on the individual application. Whereas the layout of a cell is predetermined, 
the layout of the complete circuit is unique for a particular application and nothing can be 
constructed in advance. Thus, fabrication of a standard-cell chip is identical to that of a 
full-custom ASIC chip, and all layers have to be custom constructed. 

Gate array ASlC In gate array ASIC (also simply known as gate array) technology, a 
circuit is built from an array of predefined cells. Unlike standard-cell technology, a gate 
array chip consists of only one type of cell, known as a base cell. The base cell is fairly 
simple, resembling a logic gate. Base cells are prearranged and placed in fixed positions, 
aligned as a one- or two-dimensional array. Since the location and type are predetermined, 
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the base cells can be prefabricated. The customization of a circuit is done by specifying the 
interconnect between these cells. A gate array vendor also provides a library of predesigned 
components, known as macro cells, which are built from base cells. The macro cells have 
a predefined interconnect and provide the designer with more sophisticated logic blocks. 

Compared to standard-cell technology, the fabrication of a gate array device is much 
simpler, due to its fixed array structure. Since the array is common to all applications, the 
cell (and transistors) can be fabricated in advance. During construction of a chip, only the 
masks of metal layers, which specify the interconnect, are unique for an application and 
therefore must be customized. This reduces the number of custom layers from 10 to 15 
layers to 3 to 5 layers and simplifies the fabrication process significantly. 

Complex field-programmable device We now examine several non-ASIC technolo- 
gies. The most versatile non-ASIC technology is the complex field-programmable device. 
In this technology, a device consists of an array of generic logic cells and general intercon- 
nect structure. Although the logic cells and interconnect structure are prefabricated, both 
are programmable. The programmability is obtained by utilizing semiconductor “fuses” or 
“switches,” which can be set as open- or short-circuit. The customization is done by config- 
uring the device with a specific fuse pattern. This process can be accomplished by a simple, 
inexpensive device programmer, normally constructed as an add-on card or an adaptor cable 
of a PC. Since the customization is done “in the field” rather than “in a fab,” this technology 
is known as field programmable. (In contrast, ASIC technologies are “programmed” via 
one or more tailored masks and thus are mask programmable.) 

The basic structures of gate array ASKS and complex field-programmable devices are 
somewhat similar. However, the interconnect structure of field-programmable devices is 
predetermined and thus imposes more constraints on signal routing. To reduce the amount of 
connection, more functionality is built into the logic cells of a field-programmable device, 
making a logic cell much more complex than a base cell or a standard cell of ASIC. 
According to the complexity and structure of logic cells, complex field-programmable 
devices can be divided roughly into two broad categories: complex programmable logic 
device (CPLD) and field programmable gate array (FPGA). 

The logic cell of a CPLD device is more sophisticated, normally consisting of a D-type 
flip-flop and a PAL-like unit with configurable product terms. The interconnect structure of 
a CPLD device tends to be more centralized, with few groups of concentrated routing lines. 
On the other hand, the logic cell of an FPGA device is usually smaller, typically including a 
D-type flip-flop and a small look-up table or a set of multiplexers. The interconnect structure 
between the cells tends to be distributed and more flexible. Because of its distributive nature, 
FPGA is better suited for large, high-capacity complex field-programmable devices, 

Simple field-programmable device Simple field-programmable logic devices, as 
the name indicates, are programmable devices with simpler internal structure. Historically, 
these devices are generically called programmable logic devices (PLDs). We add the word 
simple to distinguish them from FPGA and CPLD devices. Simple field-programmable 
devices are normally constructed as a two-level array, with an and plane and an or plane. 
The interconnect of one or both planes can be programmed to perform a logic function 
expressed in sum-of-product format. The devices include programmable read only memory 
(PROM), in which the or plane can be programmed; programmable array logic (PAL), in 
which the and plane can be programmed; and programmable logic array (PLA), in which 
both planes can be programmed. 

Unlike FPGA and CPLD devices, simple field-programmable logic devices do not have 
a general interconnect structure, and thus their functionality is severely limited. They are 


