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Preface 

Nonlinear programming deals with the problem of optimizing an objective 
function in the presence of equality and inequality constraints. If all the 
functions are linear, we obviously have a linear program. Otherwise, the 
problem is called a nonlinear program. The development of highly efficient and 
robust algorithms and software for linear programming, the advent of high- 
speed computers, and the education of managers and practitioners in regard to 
the advantages and profitability of mathematical modeling and analysis have 
made linear programming an important tool for solving problems in diverse 
fields. However, many realistic problems cannot be adequately represented or 
approximated as a linear program, owing to the nature of the nonlinearity of the 
objective function and/or the nonlinearity of any of the constraints. Efforts to 
solve such nonlinear problems efficiently have made rapid progress during the 
past four decades. This book presents these developments in a logical and self- 
contained form. 

The book is divided into three major parts dealing, respectively, with 
convex analysis, optimality conditions and duality, and computational methods. 
Convex analysis involves convex sets and convex functions and is central to the 
study of the field of optimization. The ultimate goal in optimization studies is to 
develop efficient computational schemes for solving the problem at hand. 
Optimality conditions and duality can be used not only to develop termination 
criteria but also to motivate and design the computational method itself. 

In preparing this book, a special effort has been made to make certain that 
it is self-contained and that it is suitable both as a text and as a reference. Within 
each chapter, detailed numerical examples and graphical illustrations have been 
provided to aid the reader in understanding the concepts and methods discussed. 
In addition, each chapter contains many exercises. These include (1) simple 
numerical problems to reinforce the material discussed in the text, (2) problems 
introducing new material related to that developed in the text, and (3) theoretical 
exercises meant for advanced students. At the end of each chapter, extensions, 
references, and material related to that covered in the text are presented. These 
notes should be useful to the reader for further study. The book also contains an 
extensive bibliography. 

Chapter 1 gives several examples of problems from different engineering 
disciplines that can be viewed as nonlinear programs. Problems involving 
optimal control, both discrete and continuous, are discussed and illustrated by 
examples from production, inventory control, and highway design. Examples of 
a two-bar truss design and a two-bearing journal design are given. Steady-state 
conditions of an electrical network are discussed from the point of view of 
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obtaining an optimal solution to a quadratic program. A large-scale nonlinear 
model arising in the management of water resources is developed, and nonlinear 
models arising in stochastic programming and in location theory are discussed. 
Finally, we provide an important discussion on modeling and on formulating 
nonlinear programs from the viewpoint of favorably influencing the 
performance of algorithms that will ultimately be used for solving them. 

The remaining chapters are divided into three parts. Part 1, consisting of 
Chapters 2 and 3, deals with convex sets and convex functions. Topological 
properties of convex sets, separation and support of convex sets, polyhedral sets, 
extreme points and extreme directions of polyhedral sets, and linear 
programming are discussed in Chapter 2. Properties of convex functions, 
including subdifferentiability and minima and maxima over a convex set, are 
discussed in Chapter 3. Generalizations of convex functions and their 
interrelationships are also included, since nonlinear programming algorithms 
suitable for convex functions can be used for a more general class involving 
pseudoconvex and quasiconvex functions. The appendix provides additional 
tests for checking generalized convexity properties, and we discuss the concept 
of convex envelopes and their uses in global optimization methods through the 
exercises. 

Part 2, which includes Chapters 4 through 6,  covers optimality conditions 
and duality. In Chapter 4, the classical Fritz John (FJ) and the Karush-Kuhn- 
Tucker (KKT) optimality conditions are developed for both inequality- and 
equality-constrained problems. First- and second-order optimality conditions are 
derived and higher-order conditions are discussed along with some cautionary 
examples. The nature, interpretation, and value of FJ and KKT points are also 
described and emphasized. Some foundational material on both first- and 
second-order constraint qualifications is presented in Chapter 5 .  We discuss 
interrelationships between various proposed constraint qualifications and 
provide insights through many illustrations. Chapter 6 deals with Lagrangian 
duality and saddle point optimality conditions. Duality theorems, properties of 
the dual function, and both differentiable and nondifferentiable methods for 
solving the dual problem are discussed. We also derive necessary and sufficient 
conditions for the absence of a duality gap and interpret this in terms of a 
suitable perturbation function. In addition, we relate Lagrangian duality to other 
special forms of duals for linear and quadratic programming problems. Besides 
Lagrangian duality, there are several other duality formulations in nonlinear 
programming, such as conjugate duality, min-max duality, surrogate duality, 
composite Lagrangian and surrogate duality, and symmetric duality. Among 
these, the Lagrangian duality seems to be the most promising in the areas of 
theoretical and algorithmic developments. Moreover, the results that can be 
obtained via these alternative duality formulations are closely related. In view of 
this, and for brevity, we have elected to discuss Lagrangian duality in the text 
and to introduce other duality formulations only in the exercises. 

Part 3, consisting of Chapters 7 through 11 , presents algorithms for 
solving both unconstrained and constrained nonlinear programming problems. 
Chapter 7 deals exclusively with convergence theorems, viewing algorithms as 
point-to-set maps. These theorems are used actively throughout the remainder of 
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the book to establish the convergence of the various algorithms. Likewise, we 
discuss the issue of rates of convergence and provide a brief discussion on 
criteria that can be used to evaluate algorithms. 

Chapter 8 deals with the topic of unconstrained optimization. To begin, 
we discuss several methods for performing both exact and inexact line searches, 
as well as methods for minimizing a function of several variables. Methods 
using both derivative and derivative-free information are presented. Newton's 
method and its variants based on trust region and the Levenberg-Marquardt 
approaches are discussed, Methods that are based on the concept of conjugacy 
are also covered. In particular, we present quasi-Newton (variable metric) and 
conjugate gradient (fixed metric) algorithms that have gained a great deal of 
popularity in practice. We also introduce the subject of subgradient optimization 
methods for nondifferentiable problems and discuss variants fashioned in the 
spirit of conjugate gradient and variable metric methods. Throughout, we 
address the issue of convergence and rates of convergence for the various 
algorithms, as well as practical implementation aspects. 

In Chapter 9 we discuss penalty and barrier function methods for solving 
nonlinear programs, in which the problem is essentially solved as a sequence of 
unconstrained problems. We describe general exterior penalty function methods, 
as well as the particular exact absolute value and the augmented Lagrangian 
penalty function approaches, along with the method of multipliers. We also 
present interior barrier function penalty approaches. In all cases, implementation 
issues and convergence rate characteristics are addressed. We conclude this 
chapter by describing a polynomial-time primal-dual path-following algorithm 
for linear programming based on a logarithmic barrier function approach. This 
method can also be extended to solve convex quadratic programs polynomially. 
More computationally effective predictor-corrector variants of this method are 
also discussed. 

Chapter 10 deals with the method of feasible directions, in which, given a 
feasible point, a feasible improving direction is first found and then a new, 
improved feasible point is determined by minimizing the objective function 
along that direction. The original methods proposed by Zoutendijk and 
subsequently modified by Topkis and Veinott to assure convergence are 
presented. This is followed by the popular successive linear and quadratic 
programming approaches, including the use of C ,  penalty functions either 

directly in the direction-finding subproblems or as merit functions to assure 
global convergence. Convergence rates and the Maratos effect are also 
discussed. This chapter also describes the gradient projection method of Rosen 
along with its convergent variants, the reduced gradient method of Wolfe and 
the generalized reduced gradient method, along with its specialization to 
Zangwill's convex simplex method. In addition, we unify and extend the 
reduced gradient and the convex simplex methods through the concept of 
suboptimization and the superbasic-basic-nonbasic partitioning scheme. 
Effective first- and second-order variants of this approach are discussed. 

Finally, Chapter 11 deals with some special problems that arise in 
different applications as well as in the solution of other nonlinear programming 
problems. In particular, we present the linear complementary, quadratic 
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separable, linear fractional, and geometric programming problems. 
Methodologies used for solving these problems, such as the use of Lagrangian 
duality concepts in the algorithmic development for geometric programs, serve 
to strengthen the ideas described in the preceding chapters. Moreover, in the 
context of solving nonconvex quadratic problems, we introduce the concept of 
the reformulation-linearizatiodconvexijication technique (RLT) as a global 
optimization methodology for finding an optimal solution. The RLT can also be 
applied to general nonconvex polynomial and factorable programming problems 
to determine global optimal solutions. Some of these extensions are pursued in 
the exercises in Chapter 1 1. The Notes and References section provides 
directions for further study. 

This book can be used both as a reference for topics in nonlinear 
programming and as a text in the fields of operations research, management 
science, industrial engineering, applied mathematics, and in engineering 
disciplines that deal with analytical optimization techniques. The material 
discussed requires some mathematical maturity and a working knowledge of 
linear algebra and calculus. For the convenience of the reader, Appendix A 
summarizes some mathematical topics used frequently in the book, including 
matrix factorization techniques. 

As a text, the book can be used (1) in a course on foundations of 
optimization and ( 2 )  in a course on computational methods as detailed below. It 
can also be used in a two-course sequence covering all the topics. 

1. Foundations of Optimization 

This course is meant for undergraduate students in applied mathematics and for 
graduate students in other disciplines. The suggested coverage is given 
schematically below, and it can be covered in the equivalent of a one-semester 
course. Chapter 5 could be omitted without loss of continuity. A reader familiar 
with linear programming may also skip Section 2.7. 

2. Computational Methods in Nonlinear Programming 

This course is meant for graduate students who are interested in algorithms for 
solving nonlinear programs. The suggested coverage is given schematically 
below, and it can be covered in the equivalent of a one-semester course. The 
reader who is not interested in convergence analyses may skip Chapter 7 and the 
discussion related to convergence in Chapters 8 through 11. The minimal 
background on convex analysis and optimality conditions needed to study 
Chapters 8 through 11 is summarized in Appendix B for the convenience of the 
reader. Chapter 1, which gives many examples of nonlinear programming 
problems, provides a good introduction to the course, but no continuity will be 
lost if this chapter is skipped. 
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Introduction 
Chapter 

1 

Operations research analysts, engineers, managers, and planners are traditionally 
confronted by problems that need solving. The problems may involve arriving at 
an optimal design, allocating scarce resources, planning industrial operations, or 
finding the trajectory of a rocket. In the past, a wide range of solutions was con- 
sidered acceptable. In engineering design, for example, it was common to 
include a large safety factor. However, because of continued competition, it is 
no longer adequate to develop only an acceptable design. In other instances, 
such as in space vehicle design, the acceptable designs themselves may be lim- 
ited. Hence, there is a real need to answer such questions as: Are we making the 
most effective use of our scarce resources? Can we obtain a more economical 
design? Are we taking risks within acceptable limits? In response to an ever- 
enlarging domain of such inquiries, there has been a very rapid growth of opti- 
mization models and techniques. Fortunately, the parallel growth of faster and 
more accurate sophisticated computing facilities has aided substantially in the 
use of the techniques developed. 

Another aspect that has stimulated the use of a systematic approach to 
problem solving is the rapid increase in the size and complexity of problems as a 
result of the technological growth since World War 11. Engineers and managers 
are called upon to study all facets of a problem and their complicated interrela- 
tionships. Some of these interrelationships may not even be well understood. 
Before a system can be viewed as a whole, it is necessary to understand how the 
components of the system interact. Advances in the techniques of measurement, 
coupled with statistical methods to test hypotheses, have aided significantly in 
this process of studying the interaction between components of the system. 

The acceptance of the field of operations research in the study of indus- 
trial, business, military, and governmental activities can be attributed, at least in 
part, to the extent to which the operations research approach and methodology 
have aided the decision makers. Early postwar applications of operations 
research in the industrial context were mainly in the area of linear programming 
and the use of statistical analyses. Since that time, efficient procedures and com- 
puter codes have been developed to handle such problems. This book is con- 
cerned with nonlinear programming, including the characterization of optimal 
solutions and the development of algorithmic procedures. 

In this chapter we introduce the nonlinear programming problem and 
discuss some simple situations that give rise to such a problem. Our purpose is 
only to provide some background on nonlinear problems; indeed, an exhaustive 
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2 Chapter 1 

discussion of potential applications of nonlinear programming can be the subject 
matter of an entire book. We also provide some guidelines here for constructing 
models and problem formulations from the viewpoint of enhancing algorithmic 
efficiency and problem solvability. Although many of these remarks will be 
better appreciated as the reader progresses through the book, it is best to bear 
these general fundamental comments in mind at the very onset. 

1.1 Problem Statement and Basic Definitions 

Consider the following nonlinear programming problem: 

Minimize f ( x )  

subject to g j ( x )  5 0 for i = I, ..., m 

hi(x) = 0 for i = I, ..., t 
X E X ,  

wheref; g, ,..., g,,,, h, ,..., h, are functions defined on R", X is a subset of R", 

and x is a vector of n components x,, ..., xn. The above problem must be solved 

for the values of the variables x l ,  ..., xn that satisfy the restrictions and mean- 
while minimize the function$ 

The function f is usually called the objective function, or the criterion 
function. Each of the constraints g,(x)  2 0 for i = 1 ,..., m is called an inequality 

constraint, and each of the constraints h,(x) = 0 for i = 1, ...,t is called an equal- 

ity constraint. The set X might typically include lower and upper bounds on the 
variables, which even if implied by the other constraints can play a useful role in 
some algorithms. Alternatively, this set might represent some specially struc- 
tured constraints that are highlighted to be exploited by the optimization routine, 
or it might represent certain regional containment or other complicating con- 
straints that are to be handled separately via a special mechanism. A vector 
x E X satisfying all the constraints is called a feasible solution to the problem. 
The collection of all such solutions forms the feasible region. The nonlinear 
programming problem, then, is to find a feasible point X such that f ( x )  2 f (X) 
for each feasible point x. Such a point SZ is called an optimal solution, or simply 
a solution, to the problem. If more than one optimum exists, they are referred to 
collectively as alternative optimal solutions. 

Needless to say, a nonlinear programming problem can be stated as a 
maximization problem, and the inequality constraints can be written in the form 
g,(x)  2 0 for i = 1, ..., m. In the special case when the objective function is linear 
and when all the constraints, including the set X, can be represented by linear 
inequalities andor  linear equations, the above problem is called a linear pro- 
gram. 

To illustrate, consider the following problem: 



2 2 Minimize (xl - 3) + (x2 - 2) 

subject to "12 - x2 - 3 I 0 

x2-110 

-XI 10. 

The objective function and the three inequality constraints are 

f (x1 , x2 1 = (Xl - 3>2 + (x2 - 212 
2 

gl(Xl,x2) = x1 -%-3  

g2(XlJ2) = x2 -1 

g3(xlrx2) = -XI- 

Figure 1.1 illustrates the feasible region. The problem, then, is to find a 
point in the feasible region having the smallest possible value of 

(xl - 3)2 + (x2 - 2)2. Note that points (xl , x2) with (xl - 3) + (x2 - 2) = c rep- 

resent a circle with radius & and center (3, 2). This circle is called the contour 
of the objective function having the value c. Since we wish to minimizef; we 
must find the contour circle having the smallest radius that intersects the feasible 
region. As shown in Figure 1.1, the smallest such circle has c = 2 and intersects 
the feasible region at the point (2, 1). Therefore, the optimal solution occurs at 
the point (2, 1) and has an objective value equal to 2. 

The approach used above is to fmd an optimal solution by determining the 
objective contour having the smallest objective value that intersects the feasible 
region. Obviously, this approach of solving the problem geometrically is only 
suitable for small problems and is not practical for problems having more than 
two variables or those having complicated objective and constraint functions. 

2 2 

.,,' Contours of the 
objective function 

Figure 1.1 Geometric solution of a nonlinear problem. 
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Notation 

The following notation is used throughout the book. Vectors are denoted by 
boldface lowercase Roman letters, such as x, y ,  and z. All vectors are column 
vectors unless stated explicitly otherwise. Row vectors are the transpose of col- 

umn vectors; for example, xf denotes the row vector (xl, ..., x,,). The n-dimen- 
sional real Euclidean space, composed of all real vectors of dimension n, is 

denoted by R". Matrices are denoted by boldface capital Roman letters, such as 
A and B. Scalar-valued functions are denoted by lowercase Roman or Greek 
letters, such as f; g, and 0. Vector-valued functions are denoted by boldface 
lowercase Roman or Greek letters, such as g and Y. Point-to-set maps are 
denoted by boldface capital Roman letters such as A and B. Scalars are denoted 
by lowercase Roman and Greek letters, such as k,  A, and a. 

1.2 Illustrative Examples 

In this section we discuss some example problems that can be formulated as 
nonlinear programs. In particular, we discuss optimization problems in the fol- 
lowing areas: 

A. Optimal control 
B. Structural design 
C. Mechanical design 
D. Electrical networks 
E. Water resources management 
F. Stochastic resource allocation 
G. Location of facilities 

A. Optimal Control Problems 

As we shall learn shortly, a discrete control problem can be stated as a nonlinear 
programming problem. Furthermore, a continuous optimal control problem can 
be approximated by a nonlinear programming problem. Hence, the procedures 
discussed later in the book can be used to solve some optimal control problems. 

Discrete Optimal Control 

Consider a fixed-time discrete optimal control problem of duration K periods. At 
the beginning of period k, the system is represented by the state vector Y k - 1 .  A 

control vector u k  changes the state of the system from Y k - 1  to y k  at the end of 
period k according to the following relationship: 

y k  = Yk-1 + b ( Y k - 1 ,  U k  ) for k = 1,. . . , K. 

Given the initial state y o ,  applying the sequence of controls u l ,  ..., uK 

would result in a sequence of state vectors y l  , . . . , y K  called the trajectory. This 
process is illustrated in Figure 1.2. 
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Figure 1.2 Discrete control system. 

A sequence of controls u1, ..., uK and a sequence of state vectors yo, 

y l ,  . . . , yK are called admissible or feasible if they satisfy the following restric- 
tions: 

for k = 1, ..., K 

for k = 1, ..., K 

where ,..., Y K ,  Ul ,..., U K ,  and D are specified sets, and Y is a known func- 
tion, usually called the trajectory constraint function. Among all feasible con- 
trols and trajectories, we seek a control and a corresponding trajectory that 
optimize a certain objective function. The discrete control problem can thus be 
stated as follows: 

Minimize a(y0 ,y1  ,..., yK ,u l , .  . . , u K )  

Y k  yk for k = I, ..., K 

U k  Euk for k = 1, ..., K 

subject to yk = Yk-1 + $k(Yk-l,Uk) for k = 1 ,..., K 

y ( Y O , . . . ,  Y K  ,Ul, . . . ,uK) E D. 

Combining y1 ,. . . , y K ,  u l , .  . . ,uK as the vector x, and by suitable choices of g, h, 
and X, it can easily be verified that the above problem can be stated as the 
nonlinear programming problem introduced in Section 1.1. 

We illustrate the formulation of a 
discrete control problem with the following production-inventory example. 
Suppose that a company produces a certain item to meet a known demand, and 
suppose that the production schedule must be determined over a total of K 
periods. The demand during any period can be met from the inventory at the 
beginning of the period and the production during the period. The maximum 
production during any period is restricted by the production capacity of the 
available equipment so that it cannot exceed b units. Assume that adequate tem- 
porary labor can be hired when needed and laid off if superfluous. However, to 
discourage heavy labor fluctuations, a cost proportional to the square of the dif- 
ference in the labor force during any two successive periods is assumed. Also, a 
cost proportional to the inventory carried forward from one period to another is 

Production-Inventory Example 
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incurred. Find the labor force and inventory during periods I ,  ..., K such that the 
demand is satisfied and the total cost is minimized. 

In this problem, there are two state variables, the inventory level 1, and 

the labor force Lk at the end of period k. The control variable U k  is the labor 

force acquired during period k (uk < 0 means that the labor is reduced by an 

amount - u k ) .  The production-inventory problem can thus be stated as follows: 

K 

k=l 
Minimize c (clui + czlk) 

subject to Lk = Lk-1 f U k  

o < L k  < b l p  

1, 2 0  

fork = I, ..., K 

1, = 1k-l + PLk-1 - dk for k = 1, ..., K 

fork = I, ..., K 

for k = I, ..., K ,  

where the initial inventory lo and the initial labor force are known, dk is the 
known demand during period k,  and p is the number of units produced per 
worker during any given period. 

Continuous Optimal Control 

In the case of a discrete control problem, the controls are exercised at discrete 
points. We now consider a fixed-time continuous control problem in which a 
control function, u, is to be exerted over the planning horizon [0, r ] .  Given the 
initial state y o ,  the relationship between the state vector y and the control vector 
u is governed by the following differential equation: 

Y(t) = 4[Y(t), u(t)l for t E [O,TI. 

The control function and the corresponding trajectory function are called admis- 
sible if the following restrictions hold true: 

Y(0 E y 
u ( t )  E U 

for t E [0, TI 

for t E [0, TI 

'Y(Y,U) E D. 

A typical example of the set U is the collection of piecewise continuous 
functions on [0, r]  such that a I u(t )  I b for t E [O,T]. The optimal control prob- 

lem can be stated as follows, where the initial state vector y(0) = yo is given: 

Minimize J~a[y( t ) ,u( t ) ]  dt 

subject to y ( t )  = $[y(t), u(t)]  for t E [0, TI 

Y(t) E y for t E [0, TI 
u ( t )  E u for t E [0, TI 

'Y(Y, u) E D. 
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A continuous optimal control problem can be approximated by a discrete 
problem. In particular, suppose that the planning region [0, r ]  is divided into K 
periods, each of duration A,  such that K A  = T. Denoting y(kA) by yk  and u(kA) 

by U k  , for k = 1, ..., K ,  the above problem can be approximated as follows, where 

the initial state y o  is given: 

K 

k = l  

yk  = Y k - 1  + @(Yk- i ,uk )  

Minimize 1 a ( Y k ,  u k )  

subject to for k = 1 ,..., K 

Y k E Y  for k = 1, ..., K 

U k  fork = I ,  ..., K 

y(YO 9 ...) Y K  7 u I >. . ., U K  ) D. 

Example of Rocker Launching Consider the problem of a rocket that 
is to be moved from ground level to a height 7 in time T. Let y ( t )  denote the 

height from the ground at time t ,  and let u(r) denote the force exerted in the ver- 
tical direction at time t. Assuming that the rocket has mass m, the equation of 
motion is given by 

my(t)  + mg = u(t)  fort E [0, TI,  

where j ( t )  is the acceleration at time t and g is the deceleration due to gravity. 

Furthermore, suppose that the maximum force that could be exerted at any time 
cannot exceed b. If the objective is to expend the smallest possible energy so 
that the rocket reaches an altitude v at time T, the problem can be formulated as 
follows: 

Minimize J l \u ( t ) l j ( t )  dt 

subject to m j ( t )  + mg = u( t )  for t E [0, T ]  

(4>( 5 b for t E [0, TI 

Y ( T )  = F> 
where y ( 0 )  = 0. This problem having a second-order differential equation can be 
transformed into an equivalent problem having two first-order differential 
equations. This can be done by the following substitution: yl = y and y2 = jl .  
Therefore, my + mg = u is equivalent to j l ,  = y2 and my, + mg = u. Hence, the 

problem can be restated as follows: 

Minimize l l (u ( t ) l y2( t )  dt 

subject to y, ( t )  = y2 ( t )  

mj2  ( t )  = u(t)  - mg 

lu(t>j 5 b 

for t E [0, T ]  

for t E [O,T] 

for t E [0, T ]  

Yl (TI = v? 
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where yl(0) = y2(0) = 0. Suppose that we divide the interval [0, 7'l into K 

periods. To simplify the notation, suppose that each period has length l. Denot- 

ing the force, altitude, and velocity at the end of period k by U k ,  yl,k, and y2,k, 

respectively, for k = 1, ..., K,  the above problem can be approximated by the fol- 
lowing nonlinear program, where yl,o = y2,0 = 0: 

subject to Yl,k - y1,k-1 = Y2,k-1 

I U k I s b  

fork = 1, ..., K 

for k = 1, ..., K 
m(y2.k -Y2,k-1)  = Uk -mg for k = 1 ,..., K 

YI ,K  = 7. 
The interested reader may refer to Luenberger 11969, 1973d19841 for this 
problem and other continuous optimal control problems. 

Suppose that a road is to be 
constructed over uneven terrain. The construction cost is assumed to be pro- 
portional to the amount of dirt added or removed. Let T be the length of the 
road, and let c(t) be the known height of the terrain at any given t E [0, TI. The 
problem is to formulate an equation describing the height of the road y(t)  for 
t E [0, TI. 

To avoid excessive slopes on the road, the maximum slope must not 
exceed 4 in magnitude; that is, I j(t) l< 4. In addition, to reduce the roughness 

of the ride, the rate of change of the slope of the road must not exceed 9 in 

magnitude; that is, I j ; ( t ) l Ib .  Furthermore, the end conditions y(0) = a and y(T) 

= b must be observed. The problem can thus be stated as follows: 

Minimize lLly(t) -c(t)ldf 

subject to /j(t)l < 4 for t E [0, TI 

for t E [0, TI 

Example of Highway Construction 

(Y(t ) l<  9 

y (T)  = 6. 
Y (0 )  = a 

Note that the control variable is the amount of dirt added or removed; that is, 

Now let y1 = y and y2 = y,  and divide the road length into K intervals. 

For simplicity, suppose that each interval has length C. Denoting c(k), y l (k) ,  and 

y2 (k), by ck , yl k , and y2 k ,  respectively, the above problem can be approxi- 

mated by the following nonlinear program: 

~ ( t )  =y(t)  - c(t). 
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The interested reader may refer to Citron [ 19691 for more details of this exam- 
ple. 

B. Structural Design 

Structural designers have traditionally endeavored to develop designs that could 
safely carry the projected loads. The concept of optimality was implicit only 
through the standard practice and experience of the designer. Recently, the 
design of sophisticated structures, such as aerospace structures, has called for 
more explicit consideration of optimality. 

The main approaches used for minimum weight design of structural sys- 
tems are based on the use of mathematical programming or other rigorous 
numerical techniques combined with structural analysis methods. Linear pro- 
gramming, nonlinear programming, and Monte Carlo simulation have been the 
principal techniques used for this purpose. 

As noted by Batt and Gellatly [ 19741: 

The total process for the design of a sophisticated aero- 
space structure is a multistage procedure that ranges from 
consideration of overall systems performance down to the 
detailed design of individual components. While all levels 
of the design process have some greater or lesser degree 
of interaction with each other, the past state-of-the-art in 
design has demanded the assumption of a relatively loose 
coupling between the stages. Initial work in structural 
optimization has tended to maintain this stratification of 
design philosophy, although this state of affairs has 
occurred, possibly, more as a consequence of the method- 
ology used for optimization than from any desire to per- 
petuate the delineations between design stages. 

The following example illustrates how structural analysis methods can be 
used to yield a nonlinear programming problem involving a minimum-weight 
design of a two-bar truss. 

Consider the planar truss shown in Figure 1.3. The 
truss consists of two steel tubes pinned together at one end and fixed at two 
pivot points at the other end. The span, that is, the distance between the two 
pivots, is fixed at 2s. The design problem is to choose the height of the truss and 

Two-Bar Truss 
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the thickness and average diameter of the steel tubes so that the truss will sup- 
port a load of 2 W while minimizing the total weight of the truss. 

Denote the average tube diameter, tube thickness, and truss height by XI, 

x2, and x3, respectively. The weight of the steel truss is then given by 

2zpxlx2(s2 +x:)~’~, where p is the density of the steel tube. The following 
constraints must be observed: 

1. Because of space limitations, the height of the truss must not 
exceed 4 ; that is, x3 < 4 .  

The ratio of the diameter of the tube to the thickness of the tube 
must not exceed 9; that is, xllx2 2 9. 
The compression stress in the steel tubes must not exceed the steel 
yield stress. This gives the following constraint, where 4 is a con- 
stant: 

2. 

3. 

4. The height, diameter, and thickness must be chosen such that the tubes 
will not buckle under the load. This constraint can be expressed 
mathematically as follows, where b4 is a known parameter: 

2 
W ( S 2  + x 3 3 ’ 2  I b4X1X3(X? +x2). 

From the above discussion, the truss design problem can be stated as the 
following nonlinear programming problem: 

Load2W gx2 
Section at y - y  - 

f- Span 2s 

Figure 1.3 Two-bar truss. 
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C. Mechanical Design 

In mechanical design, the concept of optimization can be used in conjunction 
with the traditional use of statics, dynamics, and the properties of materials. 
Asimov [1962], Fox [1971], and Johnson [ 19711 give several examples of opti- 
mal mechanical designs using mathematical programming. As noted by Johnson 
[ 197 11, in designing mechanisms for high-speed machines, significant dynamic 
stresses and vibrations are inherently unavoidable. Hence, it is necessary to 
design certain mechanical elements on the basis of minimizing these undesirable 
characteristics. The following example illustrates an optimal design for a bear- 
ing journal. 

Consider a two-bearing journal, each of 
length L, supporting a flywheel of weight W mounted on a shaft of diameter D, 
as shown in Figure 1.4. We wish to determine L and D that minimize frictional 
moment while keeping the shaft twist angle and clearances within acceptable 
limits. 

A layer of oil film between the journal and the shaft is maintained by 
forced lubrication. The oil film serves to minimize the frictional moment and to 

Journal Design Problem 

Figure 1.4 Journal bearing assembly. 
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limit the heat rise, thereby increasing the life of the bearing. Let h, be the small- 
est oil film thickness under steady-state operation. Then we must have 

h, Ih, 5 6 ,  

where h, is the minimum oil film thickness to prevent metal-to-metal contact 

and S is the radial clearance specified as the difference between the journal 
radius and the shaft radius. A further limitation on h, is imposed by the 
following inequality: 

O < e < Z ,  

where e is the eccentricity ratio, defined by e = 1 - (h,/S),  and 2 is a prespecified 
upper limit. 

Depending on the point at which the torque is applied on the shaft, or the 
nature of the torque impulses, and on the ratio of the shear modulus of elasticity 
to the maximum shear stress, a constant k,  can be specified such that the angle 
of twist of the shaft is given by 

1 e=-. 
kl D 

Furthermore, the frictional moment for the two bearings is given by 

w 

SJ1-k D3L7 
A4 = k2 

where k2 is a constant that depends on the viscosity of the lubricating oil and w 

is the rotational speed. Also, based on hydrodynamic considerations, the safe 
load-carrying capacity of a bearing is given by 

w 
c = k3 7 DL34(e), 

S 

where k3 is a constant depending on the viscosity of the oil and 

[ ~ r ~ ( l - - e ~ ) + i 6 e ~ ] ~ ’ ~  
e 

+(e)  = ___ 
(1 - e2 l2 

Obviously, we need to have 2c 2 W to carry the weight W of the flywheel. 

Thus, if 6, 4, and Z are specified, one typical design problem is to find 

D, L,  and h, to minimize the frictional moment while keeping the twist angle 
within an acceptable limit a. The model is thus given by: 


