To Our Valued Readers:

Thank you for looking to Sybex for your Fiber Optics Installer or Fiber Optics Technician exam prep needs. We at Sybex are proud of our reputation for providing certification candidates with the practical knowledge and skills needed to succeed in the highly competitive marketplace. Certification candidates have come to rely on Sybex for accurate and accessible instruction on today’s crucial technologies. Just as the Electronic Technicians Association is committed to establishing measurable standards for certifying individuals working in the demanding field of fiber optics installation and support, Sybex is committed to providing those individuals with the skills needed to meet those standards.

The authors and editors have worked hard to ensure that the Fiber Optics Installer and Technician Guide that you hold in your hands is comprehensive, in-depth, and pedagogically sound. We’re confident that this book will exceed the demanding standards of the certification marketplace and help you, the FOI and FOT candidate, succeed in your endeavors.

As always, your feedback is important to us. If you believe you’ve identified an error in the book, please send a detailed e-mail to support@sybex.com. And if you have general comments or suggestions, feel free to drop me a line directly at nedde@sybex.com. At Sybex, we’re continually striving to meet the needs of individuals preparing for certification exams.

Good luck in pursuit of your Fiber Optics Installer or Fiber Optics Technician certification!

Neil Edde
Publisher—Certification
Sybex, Inc.
Software License Agreement: Terms and Conditions

The media and/or any online materials accompanying this book that are available now or in the future contain programs and/or text files (the “Software”) to be used in connection with the book. SYBEX hereby grants to you a license to use the Software, subject to the terms that follow. Your purchase, acceptance, or use of the Software will constitute your acceptance of such terms. The Software compilation is the property of SYBEX unless otherwise indicated and is protected by copyright to SYBEX or other copyright owner(s) as indicated in the media files (the “Owner(s)”). You are hereby granted a single-user license to use the Software for your personal, noncommercial use only. You may not reproduce, sell, distribute, publish, circulate, or commercially exploit the Software, or any portion thereof, without the written consent of SYBEX and the specific copyright owner(s) of any component software included on this media.

In the event that the Software or components include specific license requirements or end-user agreements, statements of condition, disclaimers, limitations or warranties (“End-User License”), those End-User Licenses supersede the terms and conditions herein as to that particular Software component. Your purchase, acceptance, or use of the Software will constitute your acceptance of such End-User Licenses.

By purchase, use or acceptance of the Software you further agree to comply with all export laws and regulations of the United States as such laws and regulations may exist from time to time.

Software Support

Components of the supplemental Software and any offers associated with them may be supported by the specific Owner(s) of that material, but they are not supported by SYBEX. Information regarding any available support may be obtained from the Owner(s) using the information provided in the appropriate read.me files or listed elsewhere on the media.

Should the manufacturer(s) or other Owner(s) cease to offer support or decline to honor any offer, SYBEX bears no responsibility. This notice concerning support for the Software is provided for your information only. SYBEX is not the agent or principal of the Owner(s), and SYBEX is in no way responsible for providing any support for the Software, nor is it liable or responsible for any support provided, or not provided, by the Owner(s).

Warranty

SYBEX warrants the enclosed media to be free of physical defects for a period of ninety (90) days after purchase. The Software is not available from SYBEX in any other form or media than that enclosed herein or posted to www.sybex.com. If you discover a defect in the media during this warranty period, you may obtain a replacement of identical format at no charge by sending the defective media, postage prepaid, with proof of purchase to:

SYBEX Inc.
Product Support Department
1151 Marina Village Parkway
Alameda, CA 94501
Web: http://www.sybex.com

After the 90-day period, you can obtain replacement media of identical format by sending us the defective disk, proof of purchase, and a check or money order for $10, payable to SYBEX.

Disclaimer

SYBEX makes no warranty or representation, either expressed or implied, with respect to the Software or its contents, quality, performance, merchantability, or fitness for a particular purpose. In no event will SYBEX, its distributors, or dealers be liable to you or any other party for direct, indirect, special, incidental, consequential, or other damages arising out of the use of or inability to use the Software or its contents even if advised of the possibility of such damage. In the event that the Software includes an online update feature, SYBEX further disclaims any obligation to provide this feature for any specific duration other than the initial posting.

The exclusion of implied warranties is not permitted by some states. Therefore, the above exclusion may not apply to you. This warranty provides you with specific legal rights; there may be other rights that you may have that vary from state to state. The pricing of the book with the Software by SYBEX reflects the allocation of risk and limitations on liability contained in this agreement of Terms and Conditions.

Shareware Distribution

This Software may contain various programs that are distributed as shareware. Copyright laws apply to both shareware and ordinary commercial software, and the copyright Owner(s) retains all rights. If you try a shareware program and continue using it, you are expected to register it. Individual programs differ on details of trial periods, registration, and payment. Please observe the requirements stated in appropriate files.

Copy Protection

The Software in whole or in part may or may not be copy-protected or encrypted. However, in all cases, reselling or redistributing these files without authorization is expressly forbidden except as specifically provided for by the Owner(s) therein.
To my grandparents, parents, aunts, and uncles for sharing their knowledge and providing encouragement. And to my son Mike for all the encouragement, my son Brandon for taking care of the household and his sister when I couldn’t, and to my daughter, Kathryn, for being patient over the last seven months.
—Bill Woodward

For my parents, who always knew I’d get here. For Diane. Yes, I will now get back to working on the house. Thank you for your patience.
—Emile B. Husson
Foreword

This text is intended for students in fiber optics installation, design, and maintenance courses. The 16 chapters encompass the latest techniques, skills, and knowledge required of the technologists who are now rewiring the business and residential worlds with high-speed broadband optical fiber. While only months ago, some telecommunications industry observers were predicting that copper and fiber were soon to be replaced in the main by wireless technologies, that has proven not to be the case. Instead, the major telephone and communications companies have set in motion some of the industry’s largest and most expensive construction projects by initiating new fiber networks. The cable, telephone, and Internet technology companies have expanded their systems worldwide and have driven fiber cabling from the trunk lines to the curb, to the premises, and into the home. Local and wide area networks are heavily fibered. Ships, aircraft, and automobiles now include fiber transmission media.

The Electronics Technicians Association International began the FOI certification program in 1996. Nearly 20,000 workers now hold the Certified Fiber Optics Installer (CFOI) or Technician (CFOT) credential. It is a rare day when one hears of a certified fiber professional who does not hold a well-paying job. Telecommunications companies are hiring workers with fiber skills and knowledge and are training existing employees to handle the growing projected future needs.

During the last decade, the training schools have used one or more of the existing study textbooks in their courses. Suppliers, training institutions, and technical publishers have produced several fine books that have been critical in helping students understand the principles and skills needed to safely and correctly install cable infrastructure. This book is an outgrowth of previous efforts to produce a comprehensive study guide that includes virtually everything needed to become a fiber professional.

The primary author, William Woodward, P.E., CFOT, has taught fiber courses at commercial training schools as well as in industrial settings. Not only does he have a background in copper, coax, and fiber cabling, but his life’s work has been in electronics communications. This includes military and civilian research, development, and quality control experiences. He has served as the Cabling Division Committee Chairman for ETA-I for three years and has been a major part of the certification examination development teams in the Fiber, Copper, Telecommunications, FDR Line Sweeping, and Wireless Communications areas. Few others have the extensive background directly related to fiber, as well as related technologies, that Mr. Woodward has.

Both students and cabling instructors will find this guide invaluable. It not only covers the theoretical, but digs into the practical hands-on practices needed by fiber installers and technicians. It has the most extensive chapter ever written on the functions and usage of all the test equipment now being used by fiber technicians. It is heavy on standards recognition and is an excellent reference manual for cabling professionals. Yes, it is a lengthy textbook, but once you start your studies, you will quickly discover that the easy-to-understand style make it fun, rather than a chore, to learn all about fiber cabling.

Lastly, this text prepares you to pass the ETA CFOI and CFOT certification exams. As you reach the end of the book, the practice exams, and perhaps the end of your classroom training, you will know that you are ready to become a Certified Fiber Optics professional.

—Dick Glass, CETsr
President, Electronics Technicians Association, International
President, NCEE, National Coalition for Electronics Education
Acknowledgments

Writing a book is a team effort that takes a dedicated group of professionals. This is my first book and I am very fortunate to have been able to work with a team of talented and dedicated individuals. The talented staff at Sybex, my coworkers at the ECPI College of Technology and at WR Systems, and my friends and mentors have made this possible.

First, I’d like to especially thank Sybex for giving me the opportunity to write this book. I can’t express how grateful I am that you took a chance on a new venue and on me. Special thanks to Maureen Adams for the outstanding job you did in guiding me through this project from start to finish and keeping the team focused. Thanks to Mae Lum for putting everything together and for being so patient as the project came to a close. Thanks to Suzanne Goraj for the great job you did in editing the text. My grammar has improved tremendously, thanks to you. Thanks also to Margaret Rowlands for creating the eye-catching book cover. And thanks to Charlie Husson for the outstanding job with the technical edits. You are an exceptional engineer and a great mentor.

Thank you, Lori Skowronski, for your significant contribution to Chapter 12. You spent many hours away from your family to write this chapter and to keep the book on track while I was recovering from surgery. You are a great friend.

I’d like to thank Karl Kuhn for his outstanding job on providing the many illustrations, and Teresa Jones for her outstanding job on many of the tables. Thanks to John Jeffcoat and Chuck Casbeer from the ECPI College of Technology for providing the test equipment and the industry standards required for this effort, not to mention all of Chuck’s help in reviewing the text and providing feedback. Special thanks to Marcus Friedman from the ECPI College of Technology for believing in me and giving many opportunities in my career in fiber optics.

Many companies provided technical information, equipment, and photographs. Special thanks to Mark Roehm and Mark Joseph from Stran Technologies, Scott Kale from Norfolk Wire, Christine Pons from OptiConcepts, Bill Troemel from Aerotech, and Dave Edwards from WR Systems.

I really need to thank my coauthor Emile Husson. Emile did a fantastic job and was an inspiration to work with. He spent many sleepless nights putting this manuscript together. His many talents and professionalism are greatly appreciated.

For many years, Dick Glass has been a friend, mentor, and coworker. Dick has spent many hours guiding me through this project and my career. I feel very blessed to have met Dick and greatly appreciate his guidance over the years and assistance with this project.

Thanks to the host of people behind-the-scenes that I did not mention for all your efforts to make this book the best that it can be.

Last but not least, thank you to my children, Mike, Brandon, and Kathryn; the love of my life, Susan; and her sons, Eric and Nathan, for your patience, inspiration, encouragement, and prayers. I am the luckiest man alive to have all of you in my life.

—Bill Woodward
Contents at a Glance

Introduction ... xix
Assessment Test ... xxxi

Chapter 1 History of Fiber Optics 1
Chapter 2 Principles of Fiber Optic Transmission 13
Chapter 3 Basic Principles of Light 41
Chapter 4 Optical Fiber Construction and Theory 61
Chapter 5 Optical Fiber Characteristics 85
Chapter 6 Safety ... 111
Chapter 7 Fiber Optic Cables 129
Chapter 8 Splicing ... 163
Chapter 9 Connectors 183
Chapter 10 Fiber Optic Light Sources 219
Chapter 11 Fiber Optic Detectors and Receivers 251
Chapter 12 Passive Components and Multiplexers 271
Chapter 13 Cable Installation and Hardware 299
Chapter 14 Fiber Optic System Design Considerations 321
Chapter 15 Test Equipment and Link/Cable Testing 355
Chapter 16 Link/Cable Troubleshooting 401
Glossary .. 427
Index .. 443
Contents

Introduction xix
Assessment Test xxxi

Chapter 1
History of Fiber Optics 1
Evolution of Light in Communication 2
 Early Forms of Light Communication 2
 The Quest for Data Transmission 3
Evolution of Optical Fiber Manufacturing Technology 4
 Controlling the Course of Light 4
 Extending Fiber’s Reach 6
Evolution of Optical Fiber Integration and Application 7
Summary 8
Exam Essentials 8
Review Questions 10
Answers to Review Questions 11

Chapter 2
Principles of Fiber Optic Transmission 13
The Fiber Optic Link 14
 Transmitter 15
 Receiver 15
 Optical Fibers 15
 Connectors 17
Amplitude Modulation 17
Analog Transmission 18
Digital Data Transmission 19
Analog Data Transmission vs. Digital Data Transmission 20
Analog to Digital (A/D) Conversion 21
 Sample Rate 21
 Quantizing Error 22
Digital to Analog (D/A) Conversion 23
Pulse Code Modulation (PCM) 25
Multiplexing 26
Decibels (dB) 26
 The Rules of Thumb 31
Absolute Power Gains and Losses 32
Summary 34
Exam Essentials 34
Review Questions 36
Answers to Review Questions 39
Chapter 3 Basic Principles of Light

Light as Electromagnetic Energy 42
The Electromagnetic Spectrum 45
Refraction 47
 What Causes Refraction? 48
Total Internal Reflection 51
Fresnel Reflections 54
Summary 55
Exam Essentials 56
Review Questions 57
Answers to Review Questions 60

Chapter 4 Optical Fiber Construction and Theory

Optical Fiber Components 62
 Core 63
 Cladding 63
 Coating 63
 Standards 64
 Materials 64
Tensile Strength 67
Manufacturing Optical Fiber 68
 Modified Chemical Vapor Deposition (MCVD) 69
 Outside Vapor Deposition (OVD) 70
 Vapor Axial Deposition (VAD) 70
 Plasma Chemical Vapor Deposition (PCVD) 70
Modes 71
 Refractive Index Profiles 73
 Dispersion-Shifted Fiber 76
Summary 78
Exam Essentials 78
Review Questions 79
Answers to Review Questions 82

Chapter 5 Optical Fiber Characteristics

It All Adds Up 86
Dispersion 87
 Modal Dispersion 88
 Material Dispersion 89
 Waveguide Dispersion 89
 Chromatic Dispersion 90
 Polarization-Mode Dispersion 93
 How Dispersion Affects Bandwidth 94
Attenuation 94
 Absorption 95
Chapter 6 Safety 111

Basic Safety 112
 Engineering Controls 112
 Personal Protective Equipment (PPE) 113
 Good Work Habits 113
Light Sources 114
 Laser Service Groups 114
 Laser Safety 115
Handling Fiber 117
Chemicals 118
 Isopropyl Alcohol 119
 Solvents 119
 Anaerobic Epoxy 120
Site Safety 120
 Electrical 120
 Ladders 121
 Trenches 122
Emergencies 122
 Injury 122
 Chemical Exposure 122
 Fire 123
Summary 123
Exam Essentials 124
Review Questions 125
Answer to Review Questions 127

Chapter 7 Fiber Optic Cables 129

Basic Cable 130
Cable Components 131
 Buffer 131
 Strength Members 134
 Jacket 136
Cable Types 137
 Cordage 138
 Distribution Cable 139
 Breakout Cable 139
 Armored Cable 140
 Messenger Cable 140
 Ribbon Cable 141
 Submarine Cable 143
 Hybrid Cable 145
 Composite Cable 145
Cable Duty Specifications 145
Cable Termination Methods 146
 Fanout Kit 146
 Breakout Kit 147
Blown-in Fiber 148
NEC Standards for Optical Fiber 149
 NEC-Listed Cable Types 149
 NEC-Listed Raceways 151
Cable Markings and Codes 152
 External Markings 152
 Color Codes 152
Bend Radius Specifications 155
Summary 156
Exam Essentials 156
Review Questions 157
Answers to Review Questions 161

Chapter 8 Splicing 163
Putting It Together 164
 Intrinsic Factors 164
 Extrinsic Factors 167
Splicing Equipment 170
 Mechanical Splicers 170
 Fusion Splicers 171
Splicing Procedures 173
 Mechanical Splicing Procedure 173
 Fusion Splicing Procedure 174
Splice Requirements 176
Summary 178
Exam Essentials 178
Review Questions 179
Answers to Review Questions 181
Chapter 9 Connectors 183
The Fiber Optic Connector 184
Connector Performance 187
 Roughness 187
 Geometry 187
Connector Types 188
 Single-Fiber Connectors 189
 Multiple-Fiber Connectors 192
Connector Termination 197
 Epoxy 197
 Tools 199
 Assembling the Connector 202
Endface Examination 208
 Connector Performance 212
Summary 212
Exam Essentials 213
Review Questions 214
Answers to Review Questions 217

Chapter 10 Fiber Optic Light Sources 219
Semiconductor Light Sources 220
 LED Sources 220
 Laser Sources 222
Light Source Performance Characteristics 223
 Output Pattern 223
 Source Wavelengths 226
 Source Spectral Output 227
 Source Output Power 229
 Source Modulation Speed 230
Transmitter Performance Characteristics 231
 LED Transmitter Performance Characteristics 231
 Laser Transmitter Performance Characteristics 235
Light Source Safety 240
 Classifications 241
 Safety Handling Precautions 242
Summary 242
Exam Essentials 242
Review Questions 244
Answers to Review Questions 248

Chapter 11 Fiber Optic Detectors and Receivers 251
Photodiode Fundamentals 252
PIN Photodiode 253
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avalanche Photodiode</td>
<td>254</td>
</tr>
<tr>
<td>Responsivity</td>
<td>254</td>
</tr>
<tr>
<td>Quantum Efficiency</td>
<td>255</td>
</tr>
<tr>
<td>Switching Speed</td>
<td>256</td>
</tr>
<tr>
<td>Fiber Optic Receiver</td>
<td>256</td>
</tr>
<tr>
<td>Receptacle</td>
<td>256</td>
</tr>
<tr>
<td>Optical Subassembly</td>
<td>256</td>
</tr>
<tr>
<td>Electrical Subassembly</td>
<td>258</td>
</tr>
<tr>
<td>Receiver Performance Characteristics</td>
<td>258</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>259</td>
</tr>
<tr>
<td>Operating Wavelength</td>
<td>259</td>
</tr>
<tr>
<td>LED Receiver Performance Characteristics</td>
<td>259</td>
</tr>
<tr>
<td>Laser Receiver Performance Characteristics</td>
<td>262</td>
</tr>
<tr>
<td>Summary</td>
<td>265</td>
</tr>
<tr>
<td>Exam Essentials</td>
<td>266</td>
</tr>
<tr>
<td>Review Questions</td>
<td>267</td>
</tr>
<tr>
<td>Answers to Review Questions</td>
<td>269</td>
</tr>
</tbody>
</table>

Chapter 12 Passive Components and Multiplexers

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couplers</td>
<td>272</td>
</tr>
<tr>
<td>The Tee Coupler</td>
<td>273</td>
</tr>
<tr>
<td>The Star Coupler</td>
<td>276</td>
</tr>
<tr>
<td>Optical Switches</td>
<td>278</td>
</tr>
<tr>
<td>Optomechanical</td>
<td>279</td>
</tr>
<tr>
<td>Thermo-Optic</td>
<td>280</td>
</tr>
<tr>
<td>Electro-Optic</td>
<td>280</td>
</tr>
<tr>
<td>Optical Attenuators</td>
<td>280</td>
</tr>
<tr>
<td>Gap-Loss Principle</td>
<td>281</td>
</tr>
<tr>
<td>Absorptive Principle</td>
<td>282</td>
</tr>
<tr>
<td>Reflective Principle</td>
<td>283</td>
</tr>
<tr>
<td>Fixed Attenuators</td>
<td>283</td>
</tr>
<tr>
<td>Stepwise Variable Attenuators</td>
<td>284</td>
</tr>
<tr>
<td>Continuously Variable Attenuators</td>
<td>284</td>
</tr>
<tr>
<td>Optical Isolator</td>
<td>284</td>
</tr>
<tr>
<td>Polarized</td>
<td>284</td>
</tr>
<tr>
<td>Magnetic</td>
<td>286</td>
</tr>
<tr>
<td>Wavelength Division Multiplexing</td>
<td>286</td>
</tr>
<tr>
<td>Optical Amplifier</td>
<td>291</td>
</tr>
<tr>
<td>Optical Filter</td>
<td>293</td>
</tr>
<tr>
<td>Summary</td>
<td>294</td>
</tr>
<tr>
<td>Exam Essentials</td>
<td>295</td>
</tr>
<tr>
<td>Review Questions</td>
<td>296</td>
</tr>
<tr>
<td>Answers to Review Questions</td>
<td>298</td>
</tr>
</tbody>
</table>
Chapter 13 Cable Installation and Hardware 299

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation Specifications</td>
</tr>
<tr>
<td>Minimum Bend Radius</td>
</tr>
<tr>
<td>Maximum Tensile Rating</td>
</tr>
<tr>
<td>Installation Hardware</td>
</tr>
<tr>
<td>Pulling Eye</td>
</tr>
<tr>
<td>Pullbox</td>
</tr>
<tr>
<td>Splice Enclosures</td>
</tr>
<tr>
<td>Patch Panels</td>
</tr>
<tr>
<td>Installation Methods</td>
</tr>
<tr>
<td>Tray and Duct</td>
</tr>
<tr>
<td>Conduit</td>
</tr>
<tr>
<td>Direct Burial</td>
</tr>
<tr>
<td>Aerial</td>
</tr>
<tr>
<td>Blown Fiber</td>
</tr>
<tr>
<td>Electrical Safety</td>
</tr>
<tr>
<td>Hardware Management</td>
</tr>
<tr>
<td>Cleanliness</td>
</tr>
<tr>
<td>Organization</td>
</tr>
<tr>
<td>Labeling</td>
</tr>
<tr>
<td>Documentation</td>
</tr>
<tr>
<td>Labeling Requirements</td>
</tr>
<tr>
<td>Summary</td>
</tr>
<tr>
<td>Exam Essentials</td>
</tr>
<tr>
<td>Review Questions</td>
</tr>
<tr>
<td>Answers to Review Questions</td>
</tr>
</tbody>
</table>

Chapter 14 Fiber Optic System Design Considerations 321

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Fiber Optic System Design Considerations</td>
</tr>
<tr>
<td>The Advantages of Optical Fiber over Copper</td>
</tr>
<tr>
<td>Bandwidth</td>
</tr>
<tr>
<td>Attenuation</td>
</tr>
<tr>
<td>Electromagnetic Immunity</td>
</tr>
<tr>
<td>Size and Weight</td>
</tr>
<tr>
<td>Security</td>
</tr>
<tr>
<td>Safety</td>
</tr>
<tr>
<td>Link Performance Analysis</td>
</tr>
<tr>
<td>Cable Transmission Performance</td>
</tr>
<tr>
<td>Splice and Connector Performance</td>
</tr>
<tr>
<td>Power Budget</td>
</tr>
<tr>
<td>Summary</td>
</tr>
<tr>
<td>Exam Essentials</td>
</tr>
<tr>
<td>Review Questions</td>
</tr>
<tr>
<td>Answers to Review Questions</td>
</tr>
</tbody>
</table>
Introduction

This book focuses on building a solid foundation in fiber optic theory. In addition, it describes in great detail fiber optic cable technology, connectorization, splicing, and passive devices. It examines the electronic technology built into fiber optic receivers, transmitters, and test equipment. It also incorporates many of the current industry standards pertaining to optical fiber, connector, splice, and network performance.

This book is an excellent reference for anyone currently working in fiber optics or for the person who just wants to start learning about fiber optics. The book covers in detail all of the competencies of the Electronics Technicians Association International (ETA) fiber optic installer (FOI) and fiber optic technician (FOT) certification.

ETA’s FOI and FOT Programs

The ETA's FOI and FOT programs are the most comprehensive in the industry. Each program requires the student to attend an ETA-approved training school. Each student must achieve a score of 75% or greater on the written exam and satisfactorily complete all the hands-on requirements. Persons interested in obtaining ETA FOI or FOT certification can visit the ETA’s website at www.eta-i.org and get the most up-to-date information on the program and a list of approved training schools.

The ETA FOI certification requires no prerequisite. The FOI program is designed for anyone who is interested in learning how to become a fiber optic installer. The FOI certification is recommended as a prerequisite for the FOT certification. The FOT certification is recommended for anyone who wants to learn how to test a fiber optic link to the current industry standards and how to troubleshoot. Fiber optic certification demonstrates to your employer that you have the knowledge and hands-on skills required to install, test, and troubleshoot fiber optic links and systems. With the push to bring fiber optics to every home, these skills are highly sought after.

What Does This Book Cover?

We’ve put this book together to provide you with a solid foundation in fiber optic technologies and practices. The book is loaded with valuable information, including the following elements:

Assessment test Directly following this introduction is an assessment test that you should take. It is designed to help you determine how much you already know. Each question is tied to a topic discussed in the book. Using the results of the assessment test, you can figure out the areas where you need to focus your study. Of course, we do recommend that you read the entire book.

Objective-by-objective coverage of the topics you need to know Each chapter lists the exam objectives covered in that chapter, followed by detailed discussion of each objective. Each objective meets or exceeds an ETA FOI or FOT competency.
Chapter exercises In each chapter, you’ll find exercises designed to give you the important hands-on experience that is critical for your exam preparation. The exercises support the topics of the chapter, and they walk you through the steps necessary to perform a particular function.

Real World Scenarios Because reading a book isn’t enough for you to learn how to apply these topics in your everyday duties, we have provided Real World Scenarios in special sidebars. These explain when and why a particular solution would make sense, in a working environment that you’d actually encounter.

Exam Essentials To highlight what you learn, you’ll find a list of Exam Essentials at the end of each chapter. The Exam Essentials section briefly highlights the topics that need your particular attention as you prepare for the FOI or FOT exam.

Review questions, complete with detailed explanations Each chapter is followed by a set of review questions that test what you learned in the chapter. The questions are written with the exam in mind, meaning that they are designed to have the same look and feel as what you’ll see on the exam.

Glossary Throughout each chapter, you will be introduced to important terms and concepts that you will need to know for the FOI or FOT exam. These terms appear in italics within the chapters. At the end of the book, a detailed glossary gives definitions for these terms, as well as other general terms you should know.

How Do You Use This Book?

This book provides a solid foundation for the serious effort of preparing for the ETA FOI or FOT certification exam. To best benefit from this book, you might want to use the following study method:

1. Take the assessment test to identify your weak areas.
2. Study each chapter carefully. Do your best to fully understand the information.
3. Read over the Real World Scenarios to improve your understanding of how to use what you learn in the book.
4. Study the Exam Essentials to make sure that you are familiar with the areas you need to focus on.
5. Answer the review questions at the end of each chapter. If you prefer to answer the questions in a timed and graded format, install the test engine from the book’s companion CD and answer the chapter questions there instead of from the book.
6. Take note of the questions you did not understand, and study the corresponding sections of the book again.
7. Go back over the Exam Essentials.
8. Go through this book’s other training resources, which are included on the book’s accompanying CD. These include electronic flashcards, the electronic version of the assessment test and chapter review questions (try taking them by objective), and two bonus exams.

To learn all the material required to pass the exam, you will need to study regularly and with discipline before and while attending an ETA-approved training course. Try to set aside the
same time every day to study, and select a comfortable and quiet place in which to do it. Do not wait until the break before the exam to start studying. Remember: if you have any questions about the material you are learning, ask your instructor.

What’s on the CD?

This book’s companion CD includes numerous simulations, bonus exams, and flashcards to help you study for the exam. We have also included the complete contents of the book in electronic form. The CD’s resources are described here:

The Sybex test engine preparation software These are a collection of multiple-choice questions that will help you prepare for your FOI and FOT exams. You’ll find the following:

- Two bonus exams designed to simulate the actual live exam.
- All the chapter review questions from the book. You can review questions by chapter or by objective, or you can take a random test.
- The assessment test.

Electronic flashcards for PCs and Palm devices The “flashcard” style of question is an effective way to quickly and efficiently test your understanding of the fundamental concepts covered in the exam. The Sybex flashcards set consists of 150 questions presented in a special engine that can run either on your PC or on your hand-held device.

Fiber Optics Installer and Technician Guide in PDF Many people like the convenience of being able to carry their book on a CD. They also like being able to search the text via computer to find specific information quickly and easily. For these reasons, the entire contents of this book are supplied on the companion CD in PDF. We’ve also included Adobe Acrobat Reader, which provides the interface for the PDF contents as well as the search capabilities.

ETA-Approved Certified Fiber Optics Installer Training Schools

These training schools are listed in ZIP code order.

- **Telecommunications Training Academy of New England**
 32 Boulevard Road
 Wellesley, MA 02481
 617-784-1844
 Barry McLaughlin, RCDD: barry@barrymclaughlin.com
 www.ttane.com

- **Briarcliffe College**
 1055 Stewart Avenue
 Bethpage, NY 11714
 516-918-3700
 Nancy Klein: nklein@bcl.edu
New Horizons Computer Learning Center of Long Island
6080 Jericho Turnpike
Commack, NY 11725
631-499-7929, ext. 127
Stuart Tenzer: stuart@nhli.com
www.nhli.com

Computer Education Services Corp.
920 Albany Shaker Road
Latham, NY 12110
860-243-1000, ext. 191
Ralph Fraley: rfraley@computeredservices.com
860-243-1000, ext. 174
Holly Banak: hbanak@computeredservices.com

Pittsburgh Job Corps Center
341 Third Street
Pitcairn, PA 15140
412-401-0846
Edward Parady, CET: eepar@aol.com

TBK Technologies
RD#1, Box 546
Adrian, PA 16210
412-600-8185
Robert Keys, FOI: rkeys@teksystems.com

Philadelphia Wireless Technical Institute
1533 Pine Street
Philadelphia, PA 19102
215-928-9960
Richard Agard, FOI: ragard@aol.com

Quality Telecommunications Services, Inc.
5410 Indianhead Highway
Oxon Hill, MD 20745-2021
301-686-0500
Bennie Davis: info@hqtsi.com
Howard Community College
10901 Little Patuxent Parkway
Columbia, MD 21044
410-772-4123 (Dave Rader)
410-772-4856 (Admissions)
Dave Rader: drader@howardcc.edu

Honeywell Technology Solutions, Inc.
7000 Columbia Gateway Drive
P.O. Box 5555
Columbia, MD 21046
410-964-7274
Jeffry Miller, FOI

IES Training Facility
220 8th Avenue N.W.
Glen Burnie, MD 21061
410-760-2990
Craig Jones: cjones@iestraining.com

Northern Virginia Community College
7630 Little River Turnpike, Suite 600
Annandale, VA 22003
703-323-3102
Rickie Harris: riharris@nvcc.edu

Priest Electronics, Inc.
1525 Technology Drive
Chesapeake, VA 23320
800-777-3532
John Hogan: Haggard23434@yahoo.com
Ted Green, FOI: ted@priestelectronics.com

Advanced Technology Center
1800 College Crescent
Virginia Beach, VA 23453
757-468-8960
Robert Stover, FOI: rstover@vbcps.k12.va.us
www.vbatc.com
ECPI
5555 Greenwich Road
Virginia Beach, VA 23462
757-858-6000
Chuck Casbeer, FOI: ccasbeer@ecpi.edu
Bill Woodward, FOI: wwoodwar@wrsystems.com

KITCO Fiber Optics
5269 Cleveland Street, Suite 109
Virginia Beach, VA 23462
888-548-2636
Dan Morris: dmorris@kitcofo.com

WR Systems
2500 Alameda Avenue, Suite 214
Norfolk, VA 23513
757-858-6000, ext. 606
William Woodward, FOI: wwoodwar@wrsystems.com

Yeager Career Center
10 Marland Avenue
Hamlin, WV 25523
304-824-5449
Gregory A Gosnay: ggosnay@access.k12.wv.us

Calhoun Community College
6250 U.S. 31 N.
Tanner, AL 35671
256-306-2972
Sherman Banks: smb@calhoun.edu

Communications Apprenticeship & Training
1400 E. Schaaf Road
Cleveland, OH 44131
216-635-1313
Richard Bowers: rickcatcwa@hotmail.com

Midwest Telecom Training, FiberCamp
2518 Waller Drive
Washington, IN 47501
812-254-3488
Kent Norris: kent@fibercamp.com
Diversified Wiring and Cable, Inc.
6250 Fifteen Mile Road
Sterling Heights, MI 48312
586-264-6500, ext. 245
Al Jankowski, FOI: a.jankowski@dw-c.com

Breakthru Training Solutions
8608 N. Richmond Avenue, 1st Floor
Kansas City, MO 64157
816-584-8177
Christopher Kehoe: ckehoe@btstraining.com
www.BTStraining.com

Central Community College
3134 W. Highway, Suite 34
Grand Island, NE 68802-4903
308-398-7490
Tim Ziller: tziller@cccneb.edu

Louisiana Technical College: Slidell Campus
1000 Canulette Road
Slidell, LA 70458
985-646-6430, ext. 128
William L. Little, FOI: wlittle@theltc.net

Elayn Hunt Correctional Center
Education Department
P.O. Box 174
St. Gabriel, LA 70776-0174
225-319-4266
Madeline McCaleb: eeducation@corrections.state.la.us

Texas State Technical College
3801 Campus Drive
Waco, TX 76705
Sandra Herinckx, FOI: sherinckx@tstc.edu

Cricket Institute of Technology
3727 Pinemont Drive
Houston, TX 77018
713-682-7352
Michael Brittain, FOI: Michael@cricketfiber.com
xxvi Introduction

The Institute of Robotics
957 NASA Road 1, Suite 261
Houston, TX 77058
281-535-3030
Scarlet Black: rov@irov.com

Montgomery College
102 Longview Drive
Conroe, TX 77301
936-271-6033
David Boden, FOI: boden@nhmccd.edu
www.mc.nhmccd.edu

Texas A&M Riverside Campus
Telecom Training Division
301 Tarrow, Suite 119
College Station, TX 77843-8000
800-645-0686
Joe Smith, FOI: joesmith@tamu.edu

Rocky Mountain Technical Institute
6229 S. Krameria
Greenwood Village, CO 80111
720-200-0784
Tom Janca, CETsr, FOI: trjanca@lucent.com

Casper College
125 College Drive
Casper, WY 82601
307-268-2521
David Arndt, FOI: darndt@caspercollege.edu

FNT Fiber Network Training
3908 E. Broadway, Suite 100
Phoenix, AZ 85040
866-818-8050
Jeffrey Dominique: jeff@f-n-t.com
www.f-n-t.com
Southern Arizona Institute for Advanced Technology
3000 East Valencia, Suite 190
Tucson, AZ 85706
520-573-7399 ext. 109
Kimberly Nichols: knichols@saiat.org
www.saiat.org

Integrated Training Center
4801 Hardware Avenue N.E.
Albuquerque, NM 87109
877-883-4130
Melody Dudley: Melodyd@itc4u.com
www.itc4u.com

JM Fiber Optics, Inc.
6251 Schaefer Avenue, Suite D
Chino, CA 91710-9065
909-628-3445
Kenneth Rivera: krivera@jmfiberoptics.com
www.jmfiberoptics.com

Advanced Training Associates
1900 Joe Crosson Drive, Suite C
El Cajon, CA 92020-1236
619-596-2766
Jose Villaman: tony@advancedtraining.edu

Cable Links Consulting/West Hills College
5100 N. 6th Street, Suite 174
Fresno, CA 93710
877-995-2555
559-225-2555
Sandy Slumberger: slummyclc02@sc.com

Technical Training Seminars
P.O. Box 596
Concord, CA 94522
510-331-1124
Joseph I. Pappaly, FOI: molu@attbi.com
Aviation and Electronic Schools of America
P.O. Box 1810
201 South Railroad Street
Colfax, CA 95713
800-345-8466
Evan Neilsen: eneilsen@aesa.com

CORADI Telecom Training Center
184 Lizama Street
Barrigada, Guam 96913
671-734-6897
Al Alicto, FOI: coradia@netpci.com

Guam Community College
P.O. Box 23069
Barrigada, Guam 96921
671-735-5610
John Limtiaco, FOI: jlimtiaco@guamcc.net

The Light Brigade
7691 S. 180th Street
Kent, WA 98032
800-451-7128
Larry Johnson: larry@lightbrigade.com
www.lightbrigade.com

Renton Technical College
3701 N.E. 10th Street
Renton, WA 98056
425-235-2352
John Cambroto: jcambroto@rtc.ctc.edu

Vector Technology Institute
35a Eastwood Park Road
Kingston, Jamaica KGN10
876-929-3434
Rohan Morris: rohmor@cwjamaica.com
www.vti-institute.com
Approved Military Schools

These training schools are listed in ZIP code order.

Fleet Training Center Norfolk
9459 Bainbridge
CCMM/N752/Fiber Optics
Norfolk, VA 23511
757-444-1262 ext. 3041
Anthony Corey, FOI: ET2-anthony.m.corey@cnet.navy.mil

Sheppard Air Force Base
364th TRS (Fiber Optics)
Building 1950
Wichita Falls, TX 76311
940-676-5541
Ronald Cook: Ronald.Cook@Sheppard.AF.Mil
M Sgt. Wayne Siverling: Wayne.Siverling@Sheppard.AF.Mil

Goodfellow AFB Air Education and Training Command
316th TRS/DOBB
17th Training Wing
156 Marauder Street
Goodfellow AFB, TX 76908-5000
325-654-4535
James Beam, FOI: james.beam@goodfellow.af.mil

Fleet Training Center San Diego
3975 Norman Scott Road, Suite 1
Code N7623/Fiber Optics
San Diego, CA 92136-5588
619-556-7059

Marine Corps/Communications–Electronics
Marine Corps Air Ground
Combat Center
Box 788251
29 Palms, CA 92278-8251
760-830-5028
760-830-6831
John A. Walters: waltersja@29palms.usmc.mil