
San Francisco • London

Cocoon 2 Programming:
Web Publishing with

XML and Java

Bill Brogden
Conrad D’Cruz
Mark Gaither

™

4131c00.qxd 9/3/02 1:44 PM Page iii

File Attachment
C1.jpg

4131c00.qxd 9/3/02 1:44 PM Page ii

Cocoon 2 Programming:
Web Publishing with

XML and Java

4131c00.qxd 9/3/02 1:44 PM Page i

4131c00.qxd 9/3/02 1:44 PM Page ii

San Francisco • London

Cocoon 2 Programming:
Web Publishing with

XML and Java

Bill Brogden
Conrad D’Cruz
Mark Gaither

™

4131c00.qxd 9/3/02 1:44 PM Page iii

Associate Publisher: Richard Mills

Acquisitions and Developmental Editor: Tom Cirtin

Editor: Linda Stephenson

Production Editor: Leslie E.H. Light

Technical Editor: John-Brian Vyncent

Graphic Illustrator: Jeff Wilson, Happenstance Type-O-Rama

Electronic Publishing Specialist: Maureen Forys, Happenstance Type-O-Rama

Proofreaders: Monique van den Berg, David Nash, Nancy Riddiough, Emily Hsuan, Laurie OConnell, Yariv Rabinovich

Indexer: Nancy Guenther

Cover Designer: Carol Gorska/Gorska Design

Cover Illustrator/Photographer: Akira Kaede, Photodisk

Copyright © 2003 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this publication may
be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photocopy, photograph, magnetic, or
other record, without the prior agreement and written permission of the publisher.

Library of Congress Card Number: 2002109624

ISBN: 0-7821-4131-5

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United States and/or other countries.

Screen reproductions produced with FullShot 99. FullShot 99 © 1991–1999 Inbit Incorporated. All rights reserved.
FullShot is a trademark of Inbit Incorporated.

Internet screen shot(s) using Microsoft Internet Explorer 6 reprinted by permission from Microsoft Corporation.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by following
the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release software whenever
possible. Portions of the manuscript may be based upon pre-release versions supplied by software manufacturer(s). The author and the pub-
lisher make no representation or warranties of any kind with regard to the completeness or accuracy of the contents herein and accept no
liability of any kind including but not limited to performance, merchantability, fitness for any particular purpose, or any losses or damages
of any kind caused or alleged to be caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

4131c00.qxd 9/3/02 1:44 PM Page iv

SOFTWARE LICENSE AGREEMENT:
TERMS AND CONDITIONS

The media and/or any online materials accompanying this book
that are available now or in the future contain programs and/or
text files (the “Software”) to be used in connection with the book.
SYBEX hereby grants to you a license to use the Software, subject
to the terms that follow. Your purchase, acceptance, or use of the
Software will constitute your acceptance of such terms.

The Software compilation is the property of SYBEX unless other-
wise indicated and is protected by copyright to SYBEX or other
copyright owner(s) as indicated in the media files (the “Owner(s)”).
You are hereby granted a single-user license to use the Software
for your personal, noncommercial use only. You may not repro-
duce, sell, distribute, publish, circulate, or commercially exploit
the Software, or any portion thereof, without the written consent
of SYBEX and the specific copyright owner(s) of any component
software included on this media.

In the event that the Software or components include specific
license requirements or end-user agreements, statements of condi-
tion, disclaimers, limitations, or warranties (“End-User License”),
those End-User Licenses supersede the terms and conditions
herein as to that particular Software component. Your purchase,
acceptance, or use of the Software will constitute your acceptance
of such End-User Licenses.

By purchase, use, or acceptance of the Software you further agree
to comply with all export laws and regulations of the United States
as such laws and regulations may exist from time to time.

Reusable Code in This Book
The author(s) created reusable code in this publication expressly
for reuse by readers. Sybex grants readers limited permission to
reuse the code found in this publication or its accompanying
CD-ROM so long as the author(s) are attributed in any applica-
tion containing the reusable code and the code itself is never dis-
tributed, posted online by electronic transmission, sold, or
commercially exploited as a stand-alone product.

Software Support
Components of the supplemental Software and any offers associated
with them may be supported by the specific Owner(s) of that mater-
ial, but they are not supported by SYBEX. Information regarding
any available support may be obtained from the Owner(s) using the
information provided in the appropriate read.me files or listed else-
where on the media.

Should the manufacturer(s) or other Owner(s) cease to offer sup-
port or decline to honor any offer, SYBEX bears no responsibility.
This notice concerning support for the Software is provided for
your information only. SYBEX is not the agent or principal of the
Owner(s), and SYBEX is in no way responsible for providing any
support for the Software, nor is it liable or responsible for any sup-
port provided, or not provided, by the Owner(s).

Warranty
SYBEX warrants the enclosed media to be free of physical defects
for a period of ninety (90) days after purchase. The Software is not
available from SYBEX in any other form or media than that
enclosed herein or posted to www.sybex.com. If you discover a
defect in the media during this warranty period, you may obtain a
replacement of identical format at no charge by sending the defec-
tive media, postage prepaid, with proof of purchase to:

SYBEX Inc.
Product Support Department
1151 Marina Village Parkway
Alameda, CA 94501
Web: http://www.sybex.com

After the 90-day period, you can obtain replacement media of
identical format by sending us the defective disk, proof of pur-
chase, and a check or money order for $10, payable to SYBEX.

Disclaimer
SYBEX makes no warranty or representation, either expressed or
implied, with respect to the Software or its contents, quality, per-
formance, merchantability, or fitness for a particular purpose. In
no event will SYBEX, its distributors, or dealers be liable to you or
any other party for direct, indirect, special, incidental, consequen-
tial, or other damages arising out of the use of or inability to use
the Software or its contents even if advised of the possibility of
such damage. In the event that the Software includes an online
update feature, SYBEX further disclaims any obligation to provide
this feature for any specific duration other than the initial posting.

The exclusion of implied warranties is not permitted by some
states. Therefore, the above exclusion may not apply to you. This
warranty provides you with specific legal rights; there may be
other rights that you may have that vary from state to state. The
pricing of the book with the Software by SYBEX reflects the allo-
cation of risk and limitations on liability contained in this agree-
ment of Terms and Conditions.

Shareware Distribution
This Software may contain various programs that are distributed
as shareware. Copyright laws apply to both shareware and ordi-
nary commercial software, and the copyright Owner(s) retains all
rights. If you try a shareware program and continue using it, you
are expected to register it. Individual programs differ on details of
trial periods, registration, and payment. Please observe the
requirements stated in appropriate files.

Copy Protection
The Software in whole or in part may or may not be copy-
protected or encrypted. However, in all cases, reselling or redis-
tributing these files without authorization is expressly forbidden
except as specifically provided for by the Owner(s) therein.

4131c00.qxd 9/3/02 1:44 PM Page v

Introduction xv

Chapter 1: The Cocoon 2 Architecture 1

Chapter 2: Uses of Cocoon 21

Chapter 3: A Review of the Essential Technologies 55

Chapter 4: The Cocoon Serializers 91

Chapter 5: Logic Control: The Sitemap 111

Chapter 6: Introducing XSP Usage 139

Chapter 7: XSP Logicsheets 167

Chapter 8: Content Generators 205

Chapter 9: Configuration for Debugging and Optimization 241

Chapter 10: Patterns of Presentation 269

Chapter 11: Patterns of Content Generation 289

Appendix A: Resources 309

Appendix B: Sitemap Tag References 315

Glossary 321

Index 339

Contents at a Glance

4131c00.qxd 9/3/02 1:44 PM Page vi

Introduction xv

Chapter 1 The Cocoon 2 Architecture 1

The Challenges of Web Publishing 2
Dynamic Presentation and Browser Wars 3
Enterprise Applications and Dynamic Data 3

The Challenges of Web Content Management 4
Integrating and Formatting Data from Multiple Sources 4
Change Management and Content Management 5
Taming the Web Beast 5

Content Management Systems to the Rescue 6
Separation of Concerns 6
Web-Publishing Frameworks and CMSs 7
Defining CMS 7
Web Server Versus CMS 8
A Brief Review of Open-Source CMS Offerings 8

The Original Cocoon Project 9
Cocoon 1—a Simple Solution 9
The Cocoon 1 Architecture: Strengths and Drawbacks 10

Architecture of the Cocoon 2 Framework 11
An XML-Publishing Framework 11
Flexible Content Aggregation 11
Pipelines and Components 12
Introducing the Cocoon Sitemap 14
Matching the URI to a Pipeline 15
Processing the Requested URI 16
Integrating Business Services 18
Separation of Presentation, Content, and Logic 18

Summary 19

Contents

4131c00.qxd 9/3/02 1:44 PM Page vii

viii

Chapter 2 Uses of Cocoon 21

Setting Up Cocoon for Application Development 22
Two Simple Applications 26

Hello Cocoon 26
Business Card 29

Interfacing with a Database 32
Setting Up the JDBC Connection to the Database 32
Accessing the Databases 33

Site Serving Mobile Devices 38
A Menu-Driven Site 42
Rendering Scalable Vector Graphics 48

A Simple Example 48
Rendering Complex Graphics 50

Summary 52

Chapter 3 A Review of the Essential Technologies 55

Developing Content 57
The Avalon Project 57
The Document Object Model (DOM) 64
Simple API for XML (SAX) 67
Additional Resources for Content Technologies 71

Developing Logic 71
XSL Transformations (XSLT) 71
Extensible Server Pages (XSP) 75
Additional Resources for Logic Technologies 75

Developing Presentation 75
Cascading Style Sheets (CSS) 76
Extensible Stylesheet Language (XSL) 79
Extensible HTML (XHTML) 84
Additional Resources for Presentation Technologies 87

Summary 87

Chapter 4 The Cocoon Serializers 91

Simple Serializers 92
The HTML Serializer 94
Example Formatting for WML 95

Contents

4131c00.qxd 9/3/02 1:44 PM Page viii

More-Complex Serializers 98
Creating a PDF Page Using FOP 98

Output of MS Office Formats 103
How to Build a Serializer 105

The Avalon Project 106
The SAX Interface Hierarchy 107
The org.apache.cocoon.xml Package 107
The org.apache.cocoon.serialization Package 108

Looking at Serializer Examples 108
Internationalization 109

Language Encoding in Java 109
Defining Serializer Encoding 109
Language Resource Support 110

Summary 110

Chapter 5 Logic Control: The Sitemap 111

Sitemap Design Principles 112
The Contents of a Sitemap 113

Sitemap Variables 114
Subsitemap Operation 114
Compiled Versus Interpreted Sitemaps 115

The Components in Detail 115
Component Management 116
Actions 117
Generators 118
Readers 121
Serializers 122
Transformers 123
Matchers 127
Selectors 129

The Resources Element 132
The Views Element 133
The Action-Sets Element 133
Pipelines 134

Pipeline Error Handlers 135

Contents ix

4131c00.qxd 9/3/02 1:44 PM Page ix

x

Pipeline Elements 135
Pipeline Control 138

Summary 138

Chapter 6 Introducing XSP Usage 139

A Minimal XSP Page 141
How XSP Works 142
Creating Dynamic Pages 143

Mixed Content and Logic 143
Managing User Sessions 147

User Session Management Example 148
A SQL Example 158

Setting Up the SQL Example 158
How the Example Works 159

Summary 165

Chapter 7 XSP Logicsheets 167

How a Logicsheet Works 169
Built-In XSP Logicsheets 170

Action Logicsheet 170
Capture Logicsheet 172
Cookie Logicsheet 173
ESQL Logicsheet 176
Formval 180
Log Logicsheet 182
Request Logicsheet 183
Response Logicsheet 187
Sel Logicsheet 188
Session Logicsheet 189
SOAP Logicsheet 191
Util Logicsheet 192
XScript Logicsheet 193

Building a Custom Logicsheet 194
myUtil Logicsheet 195
Deploying the myUtil Logicsheet 199

Summary 202

Contents

4131c00.qxd 9/3/02 1:44 PM Page x

Chapter 8 Content Generators 205

Generators As Cocoon Components 206
The Standard Generators 206
The Generator for Error Handling 208
Using Scripting Languages with BSF 209
The JSPGenerator 217
The Velocity Generator 217
The Directory Generator Group 217
The FileGenerator 220
Utility Generators 222
Debugging and Performance Tuning 224

Creating a Custom Generator 227
Sitemap Entries for the SurveyGenerator 228
Requirements for a Generator 229
The SurveyGenerator Code 231
The XSLT Transformation for Surveys 238

Summary 239

Chapter 9 Configuration for Debugging and Optimization 241

Tips for Debugging 242
Logging in Cocoon 243
Formatting the Output of a LogTarget 244
Using the Logs to Debug a Problem 250
Spying on the Pipeline 251
Cleaning Out the Cache 256

Optimizing the Cocoon 2 System 258
Modifying the Tomcat Configuration File 259
Modifying the cocoon.xconf File 260
Modifying the sitemap.xmap File 260
Modifying the logkit.xconf File 261
Deciding What Gets Served from Cache 264
Optimizing and Compiling XSPs 265
General Recommendations for Application Design 265

Summary 267

Contents xi

4131c00.qxd 9/3/02 1:44 PM Page xi

xii

Chapter 10 Patterns of Presentation 269

Patterns in Web Programming 270
Moving Simple Sites to Cocoon 271

Separating Presentation from Content 271
Conforming to Standards 272
Usability Standards 273

The Portal Pattern 275
Portal Standardization 280

The Forms Problem 281
XForms: XML-Based Forms 283
Cocoon’s XmlForms Project 285

The Wiki and Blog Phenomena 285
A Blog in Cocoon 286
A Wiki in Cocoon 286

Client Capability 287
Summary 288

Chapter 11 Patterns of Content Generation 289

Cocoon and J2EE 290
Cocoon and the Model-View-Controller Pattern 291
JBoss—the Open-Source J2EE Server 292

Cocoon and Loosely Coupled Systems 293
Java Message Service 293
JavaSpaces 294

Web Services and SOAP 296
Getting a SOAP Stock Quote 297
Support for SOAP Programming 298

Data Sources 299
Relational Databases and JDBC 299
Data from Stored Objects 299

Business Logic 306
The UML Design Tool 306

Summary 308

Contents

4131c00.qxd 9/3/02 1:44 PM Page xii

Appendix A Resources 309

Standards 310
XML Standards at W3C 310
Related XML Standards 311
Java Standards from Sun 311
Java Standards from JCP 312

Apache Projects 312
Tutorials, FAQs, and Other Goodies 313

Appendix B Sitemap Tag References 315

Glossary 321

Index 339

Contents xiii

4131c00.qxd 9/3/02 1:44 PM Page xiii

Acknowledgments

Iwould like to thank the following people for their help: As always, my wife, Rebecca, my
unfailing support for many years. My fellow LANWrights, Inc. employees Ed Tittel and

Dawn Rader for their guidance and editorial expertise, respectively. Cheryl Applewood for
her help early in the project. Tom Cirtin and Leslie Light of Sybex for constructive criticism
and discussion. The many active developers of the Apache Cocoon project and the partici-
pants on the users and developers mailing lists.

—Bill Brogden

F irst and foremost, I would like to acknowledge my parents, Wilma and (late) Albert
D’Cruz for their role in shaping my life and career. The following for helping me with

issues related to the writing of my chapters: Andreas Hartmann (www.cocooncenter.org) for
his advice on an example I created, Andrew Oliver of The Triangle Java Users Group for his
unwavering support of the Apache Project and a sounding board for my ideas on Cocoon
usage, and Meredith Norris (IBM) for helping me surmount some obstacles in getting an
example completed on time. My friends and colleagues who encouraged me through the
project. A special thank you to my co-authors for their fresh insights and guidance. Cheryl
Applewood and Dawn Rader for showing me the ropes in the publishing world. Tom Cirtin
and Ed Tittel for taking care of roadblocks and challenges along the way.

—Conrad D’Cruz

I extend my deepest gratitude and thanks to Ed Tittel for his continued friendship, his over-
whelming generosity, his steadfast support, and his Sunday night dinners and 9-ball games.

Thanks to my co-authors for their patience and understanding. Thanks to the constant
voices on the developers mailing lists. Many thanks to my family for believing in me and sup-
porting me through good and bad times. Thanks to my brother, Paul, for his timely guidance
and unwavering resolve. Thanks to Scott Bean for being a great friend and great business
partner. Lastly, a special thanks to Mikiel Featherston. With his supreme belief in me as a
human and a golfing buddy, through holes-in-one and chilly dips, his continued challenging
of my faith, through rainbows and floods, and his pure undeniable joy, through crushing
football tackles and fumbles, he continues to inspire me. Now, if he could only putt!

—Mark Gaither

4131c00.qxd 9/3/02 1:44 PM Page xiv

Introduction

T he technology for production of Internet applications has undergone rapid evolution in
the last few years. One of the most dramatic trends has been the rise and standardization

of XML as the most widely accepted method of creating and describing content. This has
come about by extraordinary vision and collaboration among the creators and users.

XML is a simplified form of the Standard Generalized Markup Language (SGML), which
has been a standard for document markup for some time. SGML is very complete, but much
too complex to become a useful tool for everyday programmers. The other descendant of
SGML is HTML, but HTML went in the direction of describing the appearance of docu-
ments rather than the content. Furthermore, when using HTML, you must stick to a given
markup scheme. XML is designed as a language for creating your own specialized markup
languages, so it is easy to adapt to just about any type of data.

In 1996, the World Wide Web Consortium (W3C) started the design effort that led to the
first XML standard. Jon Bosak from Sun Microsystems was one of the main participants, so it
is not surprising that most of the early software tools for working with XML were in Java. As a
Java programmer, you have access to an awesome array of tools that just keeps on growing.

Since that first standard, XML-related projects have sprung up like mushrooms after a
rain. It seems like everybody can find an application for XML in their particular problem
domain. Odds are that no matter which industry you work in, some formal or informal group
is attempting to standardize an XML vocabulary for you.

Many of these projects have led to standards endorsed by the W3C. In fact, the last time
we looked, the W3C had more than 14 XML-related standardization efforts going on. How-
ever, a number of significant approaches have become de facto standards outside the normal
standards bodies.

The Amazing Cocoon Project
The first version of Cocoon (now referred to as Cocoon 1) got started in 1998 by a group of
programmers who had worked on several Java projects as part of the Apache Software Foun-
dation. Stefano Mazzocchi took the lead and developed a simple servlet that used one of the
first XSL processors to reformat XML formatted documents for the Web. Cocoon 1 grew

4131c00.qxd 9/3/02 1:44 PM Page xv

xvi

and acquired enough utility that it was used at a number of websites, but it had some archi-
tectural weaknesses.

Cocoon 2, which is the version this book covers, was a major redesign with a much more
general and flexible architecture. It also draws on a number of other projects at the Apache
Software Foundation. In fact, a large number of open-source Java projects working with
XML-formatted data have found that Cocoon is exactly what they needed as a framework.

Version 2.0.1 was the release when we started the book and version 2.0.2 came along as we
were midway through. We have not attempted to cover any features that are not in the
release version 2.0.2. These versions are stable enough for commercial website development
and there are already a number of public Cocoon-driven sites.

If there is one problem with Cocoon, it is that it has an inspiring effect on programmers, so
there is a continuous ferment of suggestions for the next versions. There will probably be
another major redesign with 2.1. Your best bet is to select a version and stick with it.

There are so many XML-related initiatives in the world of programming these days that it
would be impossible to catalog them. However, due to the stability of the basic XML stan-
dard as maintained by the W3C, Cocoon programmers will be well positioned to take advan-
tage of the latest developments.

Support for the Book
LANWrights will be maintaining a website for the book at:

www.lanw.com/books/cocoonbook/

That site will probably be running on Cocoon by the time you read this. We will be post-
ing any errata and revisions to the code samples.

Sybex has published all the code used in this book on their website at www.sybex.com.
Search for this book using the title, author or the book number (4131) and click the Down-
loads button. Once you have accepted the license agreement, you’ll be able to download any
of the code listed in this book, organized by chapter.

Before we go any further, let’s clarify a few things. Nothing in this book is going to teach
you XML, XSLT, or any other Xwhatever basics. You will need to be comfortable with XML
1.0 2nd edition, including namespaces. We provide an overview of XSLT, CSS, and other
technologies used by Cocoon, but you will need other reference books for complete coverage
of these subjects.

You should also be familiar with Java 1.3 or 1.4 and the servlet API. If you don’t already
have a servlet-capable web server, you should plan on getting one. Currently, the most com-
monly used servlet engine among Cocoon users is Tomcat.

Introduction

4131c00.qxd 9/3/02 1:44 PM Page xvi

xvii

Contacting the Authors
We would be delighted to hear from readers with suggestions, reports of errors in the text, or
your Cocoon-related announcements.

You can contact Bill Brogden at wbrogden@bga.com; his personal web page is at:
www.bga.com/~wbrogden/

You can contact Conrad D’Cruz at conrad.dcruz@netswirl.com; his website is at:
www.netswirl.com

You can contact Mark Gaither at mark@markgaither.com; his website is at:
www.markgaither.com

Introduction

4131c00.qxd 9/3/02 1:44 PM Page xvii

4131c00.qxd 9/3/02 1:44 PM Page xviii

The Cocoon 2 Architecture

• The Challenges of Web Publishing

• The Challenges of Web Content Management

• Content Management Systems to the Rescue

• The Original Cocoon Project

• Architecture of the Cocoon 2 Framework

Chapter 1

4131c01.qxd 9/3/02 1:44 PM Page 1

2

S olutions for web publishing abound and have been rapidly evolving to fill the needs of
both developers and their customers. All of these solutions come down to systems for

managing content and serving it up on the Web upon request in a format easily accessible
to a variety of users.

This chapter introduces the Cocoon framework by defining the original design goals and
architecture of Cocoon 1 and studying the areas where the framework fell short. The chapter
also provides an overview of the Cocoon 2 architecture and lays the foundation for developing
robust web applications using the framework. In the course of this chapter and the rest of the
book, we highlight the benefits that the Cocoon framework brings to most web-publishing
efforts and why most projects benefit from it.

So why Cocoon 2? Because it’s a flexible, powerful solution based on XML—the language
of the Web—and related technologies. It is part of the Apache Project, making it fully capable
of managing content and presentation for large-scale web publishing.

To fully understand Cocoon’s place in the scheme of things, however, we must take a brief
look at the origins of the World Wide Web and the technologies that supported the adoption
of the Web as the de facto standard for information repositories around the world. Ever since
the mid-1990s, the popularity of the Web has helped to shape the evolution of strategies for
business. This chapter emphasizes the associated problems that came about and the issues
that have created challenges for technical and business organizations as they tried to adapt to
the constantly changing needs that were created by the Web.

Finally, we take a look at the challenges of developing and maintaining web applications
and the impact those challenges have had on development teams. We list the features of a
good publishing framework and define the additional requirements of a true content man-
agement system (CMS). We also list the most popular open-source publishing frameworks
currently available and provide references for each.

The Challenges of Web Publishing
The TCP/IP network called the Internet had been in use since the late 1960s by an exclusive
group of individuals affiliated with the government, academia, research institutions, and
technology companies. The costs and complexity associated with using this network pre-
vented the average person from understanding and using it as a tool for increasing personal
productivity. In 1992, the adoption of the Hypertext Markup Language (HTML), derived
from the more complex Standard Generalized Markup Language (SGML), caused a lot of
excitement in the technology and business communities. The complexity of using the Inter-
net was abstracted by the creation of a network of servers that could be used for publishing
documents based on HTML and its parent, SGML. This network of information servers
came to be known as the World Wide Web.

Chapter 1 • The Cocoon 2 Architecture

4131c01.qxd 9/3/02 1:44 PM Page 2

3

Any document could be marked up using a set of standardized tags and published to a web
server. A remote client browser application could access this document, interpret the tags, and
then display the information. The web developer predefined the format of the document and
changing the presentation involved modifying the markup tags in the document. Vendors
began providing their web server applications and browsers for free and this resulted in the
proliferation of web technologies. The ease with which a developer could mark up a docu-
ment and the availability of tools for the nontechnical content developer made HTML a very
popular language for web publishing. HTML soon came to be the lingua franca of the Web.

Dynamic Presentation and Browser Wars
With the adoption and increasing popularity of HTML came the inevitable battle among
vendors for control of the standard. In a move to protect their installed bases, vendors began
to support nonstandard tags and server configurations. Developing content for consumption
within an intranet was slightly less complicated, because most organizations exercised some
control over the browser versions deployed within their enterprises. As time went by, the
number of browser vendors increased, as did the versions of a particular browser. The night-
mare had only just begun for content developers.

HTML was an excellent mechanism for authoring and rendering static information pages
with graphical images, but it had some serious limitations. It did not address dynamic presen-
tation or provide any way for the application to access data from external sources. Dynamic
presentation and browser customization was made possible by the introduction of support in
HTML for scripting languages like JavaScript and VBScript. Server-side technologies, such
as the Common Gateway Interface (CGI), Java Servlet technologies, and a few others, enabled
dynamic data to be displayed in browsers. Prior to the introduction of these technologies, the
website was a tool for information distribution and was only used to support the marketing
functions of an organization. Not long after dynamic content made its way into browsers, the
industry presented strategies and products to help organizations make money on the Web.
Up until that time, only the big companies could afford to conduct business electronically
with expensive and proprietary technologies based on the Electronic Data Interchange (EDI)
standard. The new web applications allowed even the smallest players to get into the electronic
commerce arena.

Enterprise Applications and Dynamic Data
Web application servers became more sophisticated and could now perform multiple tasks,
such as serving up information pages customized for a particular browser and embedding
data extracted from one or more data sources in those pages. The servers allowed users to
initiate transactions and execute business processes—for example, making a retail purchase
or placing a bid on an auction site. The user did not need to navigate to each business server,
extract individual pieces of information, and manually correlate all relevant data. The service

The Challenges of Web Publishing

4131c01.qxd 9/3/02 1:44 PM Page 3

4

provider had to develop an application that collected all the data behind the scene and pre-
sented the user with an integrated and unified web page with the data requested.

The web browser paradigm abstracted the complexity of the organization’s technical infra-
structure by presenting the results of all operations in the form of a web page with some
dynamic presentation data objects. The web server was promoted from the old role of a static
electronic brochure to a dynamic catalog of the organization’s products and services. It now
provided online service delivery and managed user sessions and transactions. It also provided
a front end for managing user relationships and communications with the organization.

Figure 1.1 shows a layout of a web application that interfaces with different enterprise services
and data stores. It shows the web server as the repository of all the parts of the web application.

The Challenges of Web Content Management
Figure 1.1 shows the complexity and needs of a typical web application. This section looks
at the challenges facing web application developers. It discusses the issues associated with
integrating enterprise services as well as the problems associated with managing change, and
highlights some of the ways development teams are dealing with these issues.

Integrating and Formatting Data from Multiple Sources
One critical issue that presented a challenge when developing web applications that inter-
faced with enterprise applications and legacy systems was that data in most enterprises was
not available in a single, easy-to-use format. The data had to be extracted, modified, and

Client web
browser HTTP

request/
response

Web
application

server Web commerce
server

Legacy
systems

Database
or data

warehouse

Electronic
data

interchange

Gateway
to partner

sites

Partner or
vendor
systems

Merchant
banking
system

Mainframe
system

Connectors

HTML
JSP

JavaScript
Servlets

TCP/IP network backbone

Customer resource
management and

supply chain
management systems

VPN

VPN

F I G U R E 1 . 1 :
A typical enterprise
web application

Chapter 1 • The Cocoon 2 Architecture

4131c01.qxd 9/3/02 1:44 PM Page 4

5

reformatted before it was suitable for presentation in a web page. Java offered some relief
by providing support for developing complex multitier applications. Technologies like Java
Database Connectivity (JDBC), Servlets, and Java Server Pages (JSP) provide a means to
seamlessly integrate disparate legacy applications and database systems while sticking closely
to the web presentation paradigm—that is, output in the form of HTML pages.

This was a double-edged sword and highlighted another critical issue: In an HTML page,
content and presentation are so closely tied together that it is difficult for external applica-
tions to extract the data embedded in both static and dynamically generated pages. Both
these issues were partially addressed by the adoption of Extensible Markup Language (XML)
as the standard for modeling data in enterprise and web applications. The use of XML allowed
for separation of content and presentation. Because XML documents are normal text files,
Java Servlets can be used to dynamically produce XML instead of HTML. Customized
presentation was achieved through the use of either Cascading Style Sheets (CSS) or Exten-
sible Stylesheet Language (XSL).

Change Management and Content Management
All these requirements added to the challenges of designing and implementing web applica-
tions. As the size and complexity of applications increased, the two issues that moved to the
forefront were content management and change management. Content management deals
with managing all the objects and parts that go into building the complete application. The
use of Java and XML technologies enables the developer to produce robust and easily inte-
grated building blocks for the application. Change management addresses the issues associ-
ated with modifying or enhancing the application after it is in production. Some organizations
have very stringent requirements, which dictate that changes happen frequently and must be
implemented very quickly. This not only includes changes to the dynamic data on the enter-
prise systems but also how the data gets presented on the pages.

Tighter integration between the web application pages and the enterprise applications or
data systems allows for more dynamic data to be available in the final presentation, as in the
case of inventory control and purchasing websites. Most content pages have dependencies else-
where in the same application, or some other application on the same web server, or other
applications on remote servers. There is a ripple effect when changes are made to these applica-
tions, and often a simple change affects multiple documents, servers, and departments within
an organization. The complexity and size of an average dynamic website necessitates either a
larger change management team or the automation of the process of change management.

Taming the Web Beast
Most organizations responded to the challenges by increasing the size of the content man-
agement team and settling on standardized technologies as the basis for their applications.

The Challenges of Web Content Management

4131c01.qxd 9/3/02 1:44 PM Page 5

6

An implied challenge was choosing development tools that strictly adhered to the standards
and training the entire development team in the use of these tools. Despite all the planning and
strategies, content changes rarely could keep pace with the rapidly changing business needs.
The limitations of the tools and the change management process often resulted in teams fail-
ing in their efforts to manage and maintain web applications. This resulted in a higher
cost of ownership, decreased satisfaction on the part of the business sponsors, and an overall
reduction in team morale.

Content Management Systems to the Rescue
The Web had proved its potential as a tool for delivery of information and services over the
Internet. Organizations of all shapes and sizes quickly jumped on the bandwagon and
adopted web strategies. With this came the big push to web-enable products and enterprise
applications. Even vendors of proprietary solutions caught the wave and began offering
applications designed exclusively for the Web, or at the very least, providing a web front end
for their products. The large sites were rich in data and dynamic presentation and created
new challenges for the teams designing and maintaining them.

The emphasis was now on teams that were composed of specialists in a particular part of
the web application. One such team would specialize in the look and feel of the web pages
and the related technologies like HTML and scripting languages. Another team would spe-
cialize in integrating enterprise applications into the web application. Newer technologies
and standards were hastily put together to support the development and maintenance of
large websites. However, this strategy came with its own set of problems. The size of the
teams increased and the people-management aspects became a big issue. There were also
problems of bridging the training and knowledge gap between teams.

Separation of Concerns
There were sections of the web application that included pieces that mixed the two functions.
For example, Java Servlets provided the means to integrate with enterprise applications but
would also be used to create the dynamic output to the client. This placed additional pressures
on the application integrators because they now had to be concerned with graphical user
interface issues. One of the design goals of Java Server Pages (JSP) was to separate content
from presentation. However, this came up short and only added to the confusion of the devel-
opment teams. JSP put additional pressures on the presentation developers because they now
had to learn the syntax of Java and had to deal with programming issues. An interim solution
was to create cross-functional teams in which members were trained in presentation and
application programming, but this was a very expensive solution. There was a need for a solu-
tion that would allow the separation of the three areas: content, logic, and presentation.

Chapter 1 • The Cocoon 2 Architecture

4131c01.qxd 9/3/02 1:44 PM Page 6

7

Web-Publishing Frameworks and CMSs
A web search on the term content management system (CMS) reveals a long list of products and
frameworks that advertise an easy way to manage the large quantities of information and the
services that an enterprise has to offer to its customers. Several of the products and organiza-
tions use the term content management systems interchangeably with other terms like content-
publishing frameworks, web-publishing frameworks, and XML-publishing frameworks.

This section provides a general definition of CMSs that encompasses all the design require-
ments of a good system. The definition highlights the features of the system that address and
solve the challenges created by the surge in the popularity of the Web as a vehicle for delivering
information and services. We also name a few of the products available and then shift our focus
to the Cocoon architecture. We have chosen to focus on this one framework because it is cur-
rently one of the most powerful publishing systems and has the potential of becoming a CMS.

Defining CMS
A CMS is a framework that allows the creator or owner of an information delivery applica-
tion to effectively manage all the pieces that go into building that application and that define
formal processes that support the entire lifecycle of an application. CMSs and web-publishing
frameworks offer solutions to most of the common business problems discussed earlier that
are associated with developing and maintaining large web applications. They address the
issues of rapid application development that offer flexibility in the look and feel as well as
added functionality. Using a CMS as the central focal point for web application development
strategy allows an organization to produce flexible and scalable applications in a cost effective
and timely manner.

A CMS also allows seamless integration of tools and strategies that enable the creation of
routine maintenance or upgrades, and the eventual retirement of the application. The CMS
integrates data from multiple applications and services and provides a flexible mechanism to
format the output and present it to the user. The technologies and strategies might be standards-
based or proprietary. The systems that have the term web in the name support the standard web
technologies and, at the very minimum, use HTML and the Hypertext Transfer Protocol
(HTTP). In addition to supporting the Web, the frameworks can support alternative delivery
mechanisms, such as dedicated client applications, whether they are stand-alone windows, fat
clients, or Java applets embedded in web pages. They also support the integration of the out-
put into another application framework such as Web Services. A few of the products satisfy
only a subpart of the definition and might rely on proprietary technologies for the manage-
ment and delivery of the information and services. Some of the frameworks include specific
technologies in the product name itself, such as XML, to emphasize support of the standards
for formatting and presenting documents and data. This focuses on technologies that are
standards-based and products that are part of the open-source development paradigm.

Content Management Systems to the Rescue

4131c01.qxd 9/3/02 1:44 PM Page 7

8

Web Server Versus CMS
Some of the products attempt to classify regular web information servers as CMSs. This
might not be a wrong classification, because creating and managing websites that serve up
HTML and images is not trivial given the potential size to which the website can grow.
Change management in websites is a significant issue because hyperlinks in HTML pages
create interdependencies and any process that enables an easy maintenance strategy needs to
get honorable mention. However, the term content management is more encompassing and
addresses systems and processes for managing information in many different formats and
access to enterprise services from multiple sources.

Choosing a framework that offers all the features of a CMS for a website with static HTML
content might be overkill, especially if the content is not expected to change over time and
the pages do not need to integrate data from external applications. The complexity of config-
uring and maintaining such HTML content sites using a CMS cannot be cost-justified in the
long run. There are several commercial or open-source web servers that are more cost effective
and suited for simple websites serving up static HTML pages and images with a little dynamic
presentation using scripting languages like JavaScript or VBScript.

A Brief Review of Open-Source CMS Offerings
The following are brief descriptions of some of the open-source CMSs that are currently
available and the web addresses of the organizations that support the development of each. It
is not a comprehensive list, and their appearance is not meant to be an endorsement over any
other open-source products.

XPS Extensible Publishing System from Wyona is an application that uses XML and
Java technologies to manage documents and images on the server. Wyona supports XPS at
www.wyona.org.

eZ Publish From eZ Systems, eZ Publish is advertised as an information management
system with the data residing in a database. eZ Publish is created and maintained by eZ
Systems at http://developer.ez.no.

Zope Developed by the Zope community, Zope enables teams to collaborate in the cre-
ation and management of dynamic web-based business applications. Zope is offered by the
Zope community at www.zope.org.

Cofax Created by the Content Object Factory, Cofax is advertised as a web-based text
and multimedia publication system. Cofax is available from the Content Object Factory at
www.cofax.org.

Midgard From the Midgard Project, Midgard is defined as a toolkit for building dynamic
applications for powering e-business and information management processes. Midgard is
available at www.midgard-project.org.

Chapter 1 • The Cocoon 2 Architecture

4131c01.qxd 9/3/02 1:44 PM Page 8

9

MMBase MMBase offers a flexible solution for creating and maintaining big websites
easily. MMBase can be found at www.mmbase.org.

OpenCms From the OpenCms Project, OpenCms is advertised as a Java-based web
CMS and emphasizes the ease of creating and publishing web content. OpenCms can be
found at www.opencms.org.

Why Choose Open-Source Projects?
As stated earlier, we emphasize the open-source frameworks that are helping shape the field
of content management. Open-source systems are popular with most enterprises because
of the lower costs of ownership. These systems are based on standardized technologies
and are vendor independent. Most of the systems have a process for soliciting needs and
requirements using a community process. The features invariably are based on needs that
solve real problems and not on what a vendor decides is good for you. The developers of the
frameworks are professionals in the field who have solved the content management chal-
lenges in their work environment. They bring a wealth of knowledge and experience from
their careers to the development of these systems.

The Original Cocoon Project
The Cocoon Project started as an attempt to organize and control the documentation of all
the projects being run under the Apache umbrella project. The first iteration was simple and
was based on proposed technologies that had not yet been standardized. As the technologies
evolved, the framework evolved along with it to utilize the new standards and include more
developer requirements. The project recently released the second generation of the product,
Cocoon 2, which offers more flexibility and features. We start with the first release, Cocoon 1,
and examine the design goals, successes, and drawbacks.

Cocoon 1—a Simple Solution
By design, Cocoon 1 (C1) was based on the open technologies adopted by the Apache Soft-
ware Foundation and utilized existing frameworks. C1 was a publishing framework that was
written completely in Java. It was based on technologies standardized by the Worldwide Web
Consortium (W3C), such as Document Object Model (DOM) parsing, XML for formatting
data, XSLT for transforming data and merging XML documents, and Extensible Stylesheet
Language (XSL) for presentation.

Cocoon was originally a very simple Java Servlet with approximately 100 lines of code and
the format for the documents was XML. It used the IBM XML4J parser for parsing of XML

The Original Cocoon Project

4131c01.qxd 9/3/02 1:44 PM Page 9

10

documents and the LotusXSL parser for transforming the XML file using an XSL stylesheet.
The next chapter goes into the details of the technologies that are the building blocks of the
application, but we mention each of them in this section. The framework was defined with
the adopted standard at that time. When the need arose for a server engine that would utilize
XSL for transforming XML documents, the project was formally adopted by a vote on the
jserv-dev mailing list and named the Cocoon Project under the Apache umbrella.

The Cocoon 1 Architecture: Strengths and Drawbacks
The Apache Avalon Project is part of the Jakarta Project and was an effort to allow developers
of open-source projects to collaborate and share code easily. It created a common extensible
framework and a set of pure Java components that could be extended to create new applications.
C1 was based on the Apache Avalon framework and continued to have a simple structure
with very little code. It was primarily used to demonstrate the importance of XSL and XML
in web-based publishing. The Apache Xerces parser replaced the XML4J parser and the
Apache Xalan parser replaced the LotusXSL parser. As the number of developers grew and
additional requirements were added to the design goals, the simple servlet evolved into a
complete XML-based publishing system. The framework was adopted widely and was used
in production websites all over the world. The strengths of the framework were its simplicity
and the fact that it was based on existing, popular frameworks.

However, the framework was based on XML technologies that were still in their infancy.
The available parsers were based on the DOM and had several critical architectural issues.
Performance was an issue because of the use of the DOM parser, which parses the XML
document and creates a tree in memory. This also created greater demands on the server
resources when multiple documents had to be served up to several concurrent users.

These drawbacks were not unique to the Cocoon Project and were based on the limita-
tions of the technologies available at that time. Developers of other XML-based applications
were experiencing similar problems. The W3C is the body that introduces, regulates, and
adopts standards for the Web. To address the problems associated with XML, several new
standards were proposed and adopted.

One of new standards addressed how XML documents would be parsed using inline Simple
API for XML (SAX) events, which would eliminate the need for creating the object model in
memory on the application server. Another change involved splitting up the XSL standard to
address three different areas: XSL Transformations (XSLT), Formatting Objects (XSL:FO),
and XPath for defining subparts of an XML document. Armed with these new standards,
the Cocoon developers embarked on a two-year project to redesign the framework that
solves the architectural problems of Cocoon 1 while adding new and interesting features
that expanded the system’s capabilities.

Chapter 1 • The Cocoon 2 Architecture

4131c01.qxd 9/3/02 1:44 PM Page 10

