LEARNING BY DOING

A Comprehensive Guide to Simulations, Computer Games, and Pedagogy in e-Learning and Other Educational Experiences

Clark Aldrich
PRAISE FOR SIMULATIONS
AND THE FUTURE OF LEARNING
BY CLARK ALDRICH

“****” (out of four)—Training Media Review
“. . . Riveting.”—Training & Development magazine
“Two polygonal thumbs up.”—Slashdot.net
“Advice to Chief Learning Officers: Read Simulations and the Future of Learning”—CLO magazine
“If this is the future of learning, then I want to be there. Go, Aldrich!”—Training magazine
“Clark Aldrich . . . has written a book that will revolutionize e-learning in both education and industry.”—Human Resource Development Quarterly, 15(2).
About This Book

Why is this topic important?

The interest in simulations at corporate, government, military, and academic levels has grown year over year. In part, this is because students are increasingly pragmatic, craving interaction and personalization, highly visual problem solvers, averse to reading, and computer-savvy. Meanwhile computer games, leveraging new technology, continue to set expectations and impact our culture and even skill sets. Finally, early examples of simulations are creating massive increases in the productivity of and knowledge transfer to students and employees.

Yet confusion over different types, in fact different genres, of simulations persists, dragging down effective short-term action and long-term strategies. Computer game advocates are both exciting us and muddying the conversation. This book provides critical differentiation between simulation types today and critical success factors for all simulations going into the future.

What can you achieve with this book?

This book, based on hundreds of new interviews with practitioners, as well as new analysis of best practices and trends, will help anyone better plan, manage, and execute simulation deliverables. This includes today’s four proven models, as well as the emerging, more computer-game-like next generation simulations. It will also help strategists understand simulations in a greater context, build consensus among stakeholders, and understand where the field is going.

How is this book organized?

In Section One, Building and Buying the Right Simulations in Corporations and Higher Education Today, we will look at the computer-based simulations
that are proven and established. If you are conservative and want something predictable, here is where you go. We will highlight their appropriate uses and defining components.

In Section Two, The Broader Opportunities of Simulations, we will discuss why these first models are not sufficient, either in capturing others’ views of current simulations or in sufficiently providing an evolutionary foundation to next generation sims. We will formally examine three content types, linear, cyclical, and systems. And we will begin to tease apart the conflicting elements of simulations, games, and pedagogy.

Then we will look at other types of tangential simulations, including non-technology simulations at one extreme and computer games and military flight simulators at another.

In Section Three, Next Gen Sims, we will look at innovative simulations that are breaking new ground. We will look at role models that contain lessons learned that will become increasingly dominant in the decade to come and at some of the challenges these models have highlighted and overcome.

In Section Four, Managing the Simulation Process, we will look at the planning and implementations of all different types of sims in the real world. This includes the identification and balancing of simulation, game, and pedagogical elements, as well as their deployment and measurement. To paraphrase an old programming axiom, the creation of the core of the simulation takes the first 90 percent of the project. Building sufficient support material takes the other 90 percent.

Finally, in the Appendices, we will shoot the breeze about what the impact of the Next Gen Sims could have on all of education.
About Pfeiffer

Pfeiffer serves the professional development and hands-on resource needs of training and human resource practitioners and gives them products to do their jobs better. We deliver proven ideas and solutions from experts in HR development and HR management, and we offer effective and customizable tools to improve workplace performance. From novice to seasoned professional, Pfeiffer is the source you can trust to make yourself and your organization more successful.

Essential Knowledge Pfeiffer produces insightful, practical, and comprehensive materials on topics that matter the most to training and HR professionals. Our Essential Knowledge resources translate the expertise of seasoned professionals into practical, how-to guidance on critical workplace issues and problems. These resources are supported by case studies, worksheets, and job aids and are frequently supplemented with CD-ROMs, websites, and other means of making the content easier to read, understand, and use.

Essential Tools Pfeiffer’s Essential Tools resources save time and expense by offering proven, ready-to-use materials—including exercises, activities, games, instruments, and assessments—for use during a training or team-learning event. These resources are frequently offered in looseleaf or CD-ROM format to facilitate copying and customization of the material.

Pfeiffer also recognizes the remarkable power of new technologies in expanding the reach and effectiveness of training. While e-hype has often created whizbang solutions in search of a problem, we are dedicated to bringing convenience and enhancements to proven training solutions. All our e-tools comply with rigorous functionality standards. The most appropriate technology wrapped around essential content yields the perfect solution for today’s on-the-go trainers and human resource professionals.

www.pfeiffer.com

Essential resources for training and HR professionals
LEARNING BY DOING

A Comprehensive Guide to Simulations, Computer Games, and Pedagogy in e-Learning and Other Educational Experiences

Clark Aldrich
CONTENTS

Dedication xxi
Acknowledgements xxiii
Preface xxv
Introduction 1: The Challenge—A Conversation with Three Game Gurus xxix
Introduction 2: Technology and Simulations: Why Timing Matters xxxiii

SECTION ONE
Building and Buying the Right Simulation in Corporations and Higher Education Today

1. Four Traditional Simulation Genres 3
2. Controlling People with Branching Stories 7
3. Introduction to Systems Thinking: Interactive Spreadsheets as Simulations 18
4. Making the Boring Fun: Game-Based Models 33
5. Getting a Good Feel for Things: Virtual Products and Virtual Labs 42

SECTION TWO
The Broader Opportunities of Simulations

6. A More Complete Perspective: Looking to the Broader World of Educational Simulations 59
7. Recognizing New Types of Scalable Content: Systems, Cyclical, and Linear 70
8. The Three Essential Elements to Successful Educational Experiences: Simulations, Games, and Pedagogy 79
9. Learning from Live Role Plays 96
10. Role Plays Redux: The Revolutionary Role of New Technologies 106
CONTENTS

11. Using Simple, People-Based Game and Simulation Elements for Devastating Effectiveness 118
12. Learning from Flight Simulators 125
13. The Most Popular Simulations: Computer Games as Expectation Setters and Places to Start 134
15. The Mosquitoes of the Educational Simulations Ecosystem: Marketing Mini-Games 162

SECTION THREE
Next Gen Sims

16. The Advent of Next Generation Simulations 173
17. What If We REALLY REALLY Simulated History? First Flight: The Wright Experience Flight Simulator 178
18. Virtual University and Understanding the Value of a Classroom 186
19. Military + Computer Game = Full-Spectrum Experiences 195

SECTION FOUR
Managing the Simulation Process

20. When Are Simulations a Solution? 205
21. Researching a Simulation: A New Competency 213
22. Designing a Simulation: Keys to Success 217
23. Deploying an Educational Simulation: It’s Not What You Think 241
24. Iterations: Because You Won’t Get It Right the First Time 254
25. One Branching Story Business Model 259
26. The Business Impact of Next Generation Simulations 264
27. Conclusion: Scalable Skills (a.k.a. a Heapen’ Helpin’ o’ Hype) 270

SECTION FIVE
Appendices

Appendix 1: Aligning the Right Instructional Solution for the Right Problem 281
Appendix 2: e-Learning Architecture Considerations Today 292
Appendix 3: Traditional Corporate Simulation Vendors 301
CONTENTS

Appendix 4: Advanced Techniques for Branching Stories 304
Appendix 5: Advanced Techniques for Interactive Spreadsheets 312
Appendix 6: Getting What You Want: The Black Art of Customizing the Four Traditional Simulation Genres 316
Appendix 7: e-Learning and Computer Game Milestones 327
Appendix 8: Full Interviews with Jane Boston, Warren Spector, and Will Wright 334
Index 343
About the Author 353
Pfeiffer Publications Guide 354
LIST OF FIGURES AND TABLES

Figure P.1: Ideas (Mine and Others) in This Book xxvii
Figure I.1: A Traditionally Modeled Technology Adoption Curve xxxvi
Figure I.2: The Four Traditional Corporate and Higher-Ed Simulation Genres xxxix
Figure I.3: The Many Facets of Educational Simulation, with the Traditional Corporate and Higher-Ed Genres in the Middle Circle xl
Figure 1.1: The Four Traditional Simulation Genres 4
Figure 2.1: A Visualization of the Structure of the Branching Story Example (or an X-Ray of a Duck’s Foot) 8
Figure 2.2: A Pure Branching Story Model 9
Figure 2.3: A More Common Branching Story Model 10
Figure 2.4: The Right Advice at the Right Time 10
Figure 2.5: A Retail Moment from a Branching Story Simulation 11
Figure 2.6: Traditional Branching Stories Vendors 13
Figure 2.7: A Strategic Branching Decision 13
Figure 2.8: Branching Story Architecture Considerations 15
Table 3.1: An Example of Allocations over Four Days 19
Figure 3.1: An Example of Changing Key Metrics in an Interactive Spreadsheet 20
Figure 3.2: An Example of Changing Key Metrics in an Interactive Spreadsheet 20
Figure 3.3: A Spreadsheet Input Example 22
Figure 3.4: A Spreadsheet Graph Output Example 23
Figure 3.5: A University of Phoenix/Tata Interactive Input/Output 24

xiii
Figure 3.6: A Trigger at Bank Account, Day 12 25
Figure 3.7: Traditional Interactive Spreadsheet Vendors 27
Figure 3.8: An Interactive Spreadsheet Development Process 28
Figure 3.9: Interactive Spreadsheet Architecture Considerations 30
Figure 4.1: A Game-Based Simulation from Games2Train 34
Figure 4.2: A Word Jumble with an “I Give Up” Button 36
Figure 4.3: Game-Based Models Architecture Considerations 39
Figure 5.1: Virtual Vault Storage 43
Figure 5.2: Capturing the Essence of Reality 44
Figure 5.3: A Simple State-Based Model 44
Figure 5.4: A More Abstract State-Based Model 45
Figure 5.5: Virtual Watch with Statechart 45
Figure 5.6: An Interactive HT50 Ventilator 46
Figure 5.7: Interactive Learning About Alarm Conditions on the HT50 47
Figure 5.8: Assembling the HT50 Ventilator Circuit 47
Figure 5.9: Aspects of a Virtual Product with Analog Controls 48
Figure 5.10: Product + Scenario = Lab 49
Figure 5.11: GM Virtual Lab 50
Figure 5.12: Building Globes 51
Figure 5.13: A Simple Drag-and-Drop Model for a Nuclear Reactor (and Boy Do I Hope This Is Not the Extent of Their Training) 52
Figure 5.14: SARS Outbreak Synthetic Microworld 53
Figure 5.15: Possible Opinions of Virtual Products and Virtual Labs 53
Figure 5.16: Traditional Virtual Product Vendors 54
Figure 5.17: Virtual Products and Virtual Lab Architecture Considerations 55
Figure 6.1: Facets of Educational Simulation, with the Four Traditional Corporate and Higher-Ed Genres in the Middle 63
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Educational Simulations and Tangential Spaces</td>
<td>64</td>
</tr>
<tr>
<td>6.3</td>
<td>Very High Fidelity Models of Objects</td>
<td>66</td>
</tr>
<tr>
<td>6.4</td>
<td>The Merging of Product Development, Training, and Maintenance</td>
<td>67</td>
</tr>
<tr>
<td>6.5</td>
<td>A Culture of Simulations at NCO Training (Engaging Virtual Leader, in This Case)</td>
<td>68</td>
</tr>
<tr>
<td>7.1</td>
<td>Manufacturing Systems Dynamics from STELLA Software</td>
<td>71</td>
</tr>
<tr>
<td>7.2</td>
<td>Virtual Watch with Statechart</td>
<td>73</td>
</tr>
<tr>
<td>7.3</td>
<td>Some Tactical and Discrete Actions to Influence a Leadership Situation, Using a Meeting as a Real-Time Microcosm</td>
<td>75</td>
</tr>
<tr>
<td>7.4</td>
<td>Interface to a Real-Time Leadership Situation, Using a Meeting as a Real-Time Microcosm</td>
<td>75</td>
</tr>
<tr>
<td>7.5</td>
<td>Linear Versus Dynamic Simulation Content</td>
<td>77</td>
</tr>
<tr>
<td>8.1</td>
<td>Educational Simulations Happen at the Convergence of Three Elements</td>
<td>80</td>
</tr>
<tr>
<td>8.2</td>
<td>Simulation Elements Impact on Content Types</td>
<td>81</td>
</tr>
<tr>
<td>8.3</td>
<td>The Evolution of a Combat Ace</td>
<td>83</td>
</tr>
<tr>
<td>8.4</td>
<td>Game Elements Impact on Content Types</td>
<td>86</td>
</tr>
<tr>
<td>8.5</td>
<td>Pedagogical Elements Impact on Content Types</td>
<td>89</td>
</tr>
<tr>
<td>8.6</td>
<td>A Pedagogical Moment</td>
<td>91</td>
</tr>
<tr>
<td>8.7</td>
<td>At the Intersection of Game and Simulation Elements</td>
<td>92</td>
</tr>
<tr>
<td>8.8</td>
<td>At the Intersection of Game and Pedagogical Elements</td>
<td>94</td>
</tr>
<tr>
<td>9.1</td>
<td>Role Plays Can Create Real Conversations</td>
<td>102</td>
</tr>
<tr>
<td>10.1</td>
<td>Virtual Classroom Architecture Considerations</td>
<td>108</td>
</tr>
<tr>
<td>10.2</td>
<td>Multi-Player Simulation Architecture Considerations</td>
<td>111</td>
</tr>
<tr>
<td>10.3</td>
<td>Players Explore Multimedia Repositories</td>
<td>112</td>
</tr>
<tr>
<td>10.4</td>
<td>Examples of How a Player Grows His or Her Virtual Experience Space</td>
<td>113</td>
</tr>
<tr>
<td>10.5</td>
<td>Different Players Evolve Different Virtual Experience Spaces</td>
<td>114</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>10.6</td>
<td>Players Can Share Thoughts with Each Other on a Community Board</td>
<td>115</td>
</tr>
<tr>
<td>10.7</td>
<td>Players Receive Emails from Role-Play Characters</td>
<td>116</td>
</tr>
<tr>
<td>11.1</td>
<td>People-Based Simulation Architecture Concerns</td>
<td>123</td>
</tr>
<tr>
<td>12.1</td>
<td>A Flight Simulator</td>
<td>126</td>
</tr>
<tr>
<td>12.2</td>
<td>A Flight Simulator Cockpit</td>
<td>128</td>
</tr>
<tr>
<td>12.3</td>
<td>Flight Simulator Architecture Considerations</td>
<td>130</td>
</tr>
<tr>
<td>13.1</td>
<td>Microsoft’s Rise of Nations®</td>
<td>138</td>
</tr>
<tr>
<td>13.2</td>
<td>A First-Person Shooter, Delta Force®—Black Hawk Down®</td>
<td>140</td>
</tr>
<tr>
<td>13.3</td>
<td>A First-Person Shooter, Halo®: Combat Evolved</td>
<td>140</td>
</tr>
<tr>
<td>13.4</td>
<td>Microsoft’s Zoo Tycoon®</td>
<td>142</td>
</tr>
<tr>
<td>13.5</td>
<td>Computer Games Architecture Considerations</td>
<td>146</td>
</tr>
<tr>
<td>14.1</td>
<td>From Mods to Programming Languages</td>
<td>155</td>
</tr>
<tr>
<td>14.2</td>
<td>Linear vs. Dynamic Simulation Content</td>
<td>157</td>
</tr>
<tr>
<td>14.3</td>
<td>Customization Options Through Mods</td>
<td>157</td>
</tr>
<tr>
<td>14.4</td>
<td>Game Components</td>
<td>160</td>
</tr>
<tr>
<td>15.1</td>
<td>A Marketing Mini-Game</td>
<td>163</td>
</tr>
<tr>
<td>15.2</td>
<td>A Marketing Mini-Game from DeanforAmericaGame.com</td>
<td>165</td>
</tr>
<tr>
<td>15.3</td>
<td>No Losing (Except for Dean)</td>
<td>166</td>
</tr>
<tr>
<td>15.4</td>
<td>An Early Prototype of Airport Profiler, Featuring Passengers with Exaggerated Identifiable Characteristics</td>
<td>167</td>
</tr>
<tr>
<td>15.5</td>
<td>Marketing Mini-Games Architecture Considerations</td>
<td>168</td>
</tr>
<tr>
<td>16.1</td>
<td>Next Gen Sims Components</td>
<td>174</td>
</tr>
<tr>
<td>16.2</td>
<td>Computer Game Architecture Considerations</td>
<td>176</td>
</tr>
<tr>
<td>17.1</td>
<td>Wright 1902 Glider Reproduction Underwent Wind Tunnel Tests at Langley Full-Scale Tunnel</td>
<td>180</td>
</tr>
<tr>
<td>17.2</td>
<td>Simulating Flight</td>
<td>181</td>
</tr>
</tbody>
</table>
LIST OF FIGURES AND TABLES

Figure 18.1: For Those Who Want to Lead 188
Figure 18.2: Some of Your Faculty 190
Figure 18.3: Virtual U Feedback 191
Figure 19.1: Full Spectrum Warrior™ Interface 199
Figure 19.2: Full Spectrum Warrior™ Interface 199
Figure 19.3: Full Spectrum Warrior™ Controls 201
Figure 19.4: Full Spectrum Command™ Interface 202
Figure 19.5: Full Spectrum Command™ Interface 203
Table 20.1: Different Total Development Resources Per Genre 210
Table 20.2: Examples of Technology Profiles and Corresponding Media 211
Figure 22.1: An Interactive Spreadsheet Development Process 218
Table 22.1: Different Slate Deployment Times Per Genre 219
Figure 22.2: The Iterative Order of Design 220
Figure 22.3: Computer Game/Next Gen Sims Components 221
Figure 22.4: Create a Spreadsheet to Map Out Variables and Relationships (Your Results Will Look Like This) 222
Figure 22.5: Diagram the Complete Interface Under Different Conditions; Storyboard Models of Potential Play 224
Figure 22.6: Create a Composite to Be Visually Specific 225
Figure 22.7: In Case You Are Curious, Here’s How That Character Ended Up 226
Figure 22.8: A Twenty-Minute Play at a Glance 227
Table 22.2: Different Slate Two Deployment Times Per Genre 230
Figure 22.9: Manuals Are an Easy Place to Add in Pedagogy 231
Figure 22.10: An Annotated Walkthrough 232
Figure 22.11: Background Information Can Be Interactive 233
Figure 22.12: Storyboard Everything 234
Figure 22.13: A Start/Home Navigation Page 234
Figure 22.14: A Generic Workflow of the User Experience 235
Table 22.3: Time Commitment for a Next Gen Sim 236
Table 23.1: Frequently Used Skills vs. Infrequently Used Skills

Table 26.1: Analysis of Increase of Positive Behaviors

Table 26.2: Analysis of Reduction of Negative Behaviors

Figure 27.1: Revolution

Figure 27.2: Rethinking Our Libraries’ Content Through New Lenses

Figure 27.3: Aligned, Recursive Skills

Figure A1.1: A Bulletin Board to Support an Online Community

Figure A1.2: A Learning Portal with Classes, Progress, Tools, and News

Figure A1.3: The Digital Detroit Conference

Figure A1.4: Teaching Options (Super Jumbo Edition)

Figure A1.5: A Tier-Two Solution

Figure A2.1: e-Learning Content

Figure A2.2: Linear Workbook-Style Content

Figure A2.3: e-Learning Management

Figure A2.4: e-Learning Experience
Figure A2.5: Bonus: e-Learning Architecture Considerations Today Suitable for Framing 300
Figure A3.1: The Simulation Market Map (with Vendors Organized by Traditional Strengths) 302
Figure A4.1: Adding Scores to Branching Stories 305
Figure A4.2: A Maze Branching Story Piece 305
Figure A4.3: The Persistent Meter (Upper Right) Gives Learners a Bigger Picture Sense of How They Are Doing 306
Figure A4.4: Your Own Voice 306
Figure A4.5: Chose Intent, Not Quote 307
Figure A4.6: A Background Information Branching Story Piece 307
Figure A4.7: Interviewing a Panel, Choosing the Right Questions 310
Figure A4.8: Wisely Choose One of Five Potential Conversations on the Path to the Sale 311
Figure A5.1: The Production Room from Enspire’s Global Supply Chain Management Interactive Spreadsheet 314
Figure A6.1: From Authoring Toolkits to Programming Languages 317
Figure A6.2: From Authoring Toolkits to Programming Languages: Examples 318
Figure A6.3: Learning Objects Architecture Considerations 320
Figure A6.4: Toolkits for the Four Traditional Simulation Types 321
Figure A6.5: Pieces of a Branching Story 322
Figure A6.6: Triggers in an Interactive Spreadsheet 324
Figure A6.7: Pieces of a Virtual Product with Analog Controls 325
To Slater and Lisa
ACKNOWLEDGMENTS

The book would have been much less interesting, and perhaps not possible, without the contributions of Darius Clarke, John Curran, Bill Ellet, Gloria Gery, Abhas Kumar, Peg Maddocks, Lyn McCall, Andy Snider, and The Serious Games Community.
FIVE BLIND PEOPLE were walking down a path. They stumbled upon something that none of them had ever experienced before, an educational simulation. They each tried to describe it to the others.

“It is a class. People sit down and learn important ideas,” said the first.

“I don’t think so.” said the second. “It’s a computer game. It moves quickly, it involves a mouse, and requires my complete attention.”

“No,” said the third, “It can be used with a class, but it’s more like a book. It can be sold anywhere in the world. It is scalable—hundreds of thousands can engage it at the same time.”

“What are you talking about?” asked the fourth. “It is like a pill. It is a compact package of intellectual property that improves quality of life.”

“I beg to differ,” said the fifth. “It is more like a gym. It requires the users to work hard and sweat and put in hours to tone themselves.”

Tragically, a consensus was never reached. At just that moment, an elephant came running down the path, trampling them all.

‘SPLAINING SIMULATIONS

I spent over two years leading a team determined to build a concept car of simulation-based education. That journey resulted in SimuLearn’s Virtual Leader, which was honored in 2004 with the award of Best Online Product of the Year by Training Media Review and Training & Development magazine. And the inward journey of the development of the simulation was the centerpiece of the book, Simulations and the Future of Learning (Pfeiffer, 2004).

After that, I came out of my self-imposed exile and re-engaged the outside world. Part of that engagement was exposing Virtual Leader to others. More importantly, part of that was trying to help in the creation and success of other educational simulation-based initiatives.

This second part was harder than it sounds. I found a lot of frustration on the part of enterprises looking at using simulations in their curricula. Case studies were simply not comparable with each other. Advocates
used overly fuzzy, academic, and optimistic terms. e-Learning “gurus,” like eight-year-olds, were demanding attention without actually saying anything. Conversations between different people from different parts of an organization, or the dreaded research communities, almost inevitably seized up and became intractable.

I directly worked on a few dozen simulation projects. I consulted for about a hundred others. I also talked to thousands of designers and implementers, customers and associates. (I could rely on very few second-hand sources for help with client projects, or for this book. Most of the quotes here have been taken from one-on-one interviews.)

I realized that most people had very different and often conflicting views of educational simulations. Often, what seemed like one conversation about simulations was actually fragments of dozens of different ones.

The vendor community was partially to blame. They also had similar confusions, but that did not stop them from blaring out half-truths and hyperboles like, “learning by doing,” “a safe environment to practice skills,” or “a flight simulator for business skills.”

There was a lot of frustration.

And yet. . . .

And yet something wonderful was happening.

There were some great, and historically important, educational simulation models being implemented. There was incredible value being delivered. People were learning in different ways than ten, even five years ago. And these new ways were working.

Mostly in isolation, and mostly misunderstood in a greater context, but designers were building structures to significantly augment education.

This book is a summary of what I have learned. Where Simulations and the Future of Learning was a map of a small town, complete with sewers and brothels, Learning by Doing is an atlas of the world (and maybe the moon). Where Simulations and the Future of Learning focused in on the almost completely misunderstood deep simulation aspect of an educational experience, Learning by Doing looks at both more accessible simulation models and the game and pedagogical elements of all simulations (Figure F.1).

One request from my clients is to understand the tapestry of simulations available today, to understand when, where, and why they make sense. That is here. Short-term planners and implementers of simulations will be more confident and capable and can avoid costly mistakes by reading this book.

A second goal is to understand next generation educational simulations. Many increasingly want to know what kinds of educational content should, can, and will be created within our planning horizon.
That is especially exciting. This field is wide open, ready to be influenced. At least a handful of people reading this book will, through their work, define the future of learning, just as absolutely as Shakespeare defined drama, Eastman defined photography, the Beatles defined modern music, Ford defined automobiles, Hitchcock defined modern cinema, and Beethoven defined, well, Beethoven.

Regardless of your interest, commitment, or resources, however, everyone who is involved in education will get something from this book. Because even if you never plan to use, build, or procure a simulation, the techniques here will improve any educational experience or program.

We are at a time in the history of education when everything can change. Our minds can be as well-developed and nurtured as our bodies. Productivity and the corresponding standards of living can be raised to the next level. The work of a few people will echo through the ages, changing the very wealth of nations.

It won’t be easy. And the bumps in the road ahead are, ah, non-trivial. But it will happen. And the perspectives in this book, mine and mostly others, will help.

Clark Aldrich

February 2005