

Editors: Masato Kinoshita, Kenji Murata, Kiyoshi Naruse, and Minoru Tanaka

WILEY-BLACKWELL

Includes DVD with additional illustrations and video demonstrations

Medaka

Biology, Management, and Experimental Protocols

Medaka

Biology, Management, and Experimental Protocols

Masato Kinoshita Kenji Murata Kiyoshi Naruse Minoru Tanaka

A John Wiley & Sons, Ltd., Publication

Edition first published 2009 © 2009 Wiley-Blackwell

Blackwell Publishing was acquired by John Wiley & Sons in February 2007. Blackwell's publishing program has been merged with Wiley's global Scientific, Technical, and Medical business to form Wiley-Blackwell.

Editorial Office

2121 State Avenue, Ames, Iowa 50014-8300, USA

For details of our global editorial offices, for customer services, and for information about how to apply for permission to reuse the copyright material in this book, please see our website at www.wiley.com/wiley-blackwell.

Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Blackwell Publishing, provided that the base fee is paid directly to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For those organizations that have been granted a photocopy license by CCC, a separate system of payments has been arranged. The fee codes for users of the Transactional Reporting Service are ISBN-13: 978-0-8138-0871-0/2009.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Disclaimer

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloguing-in-Publication Data

Medaka:biology, management, and experimental protocols/Masato Kinoshita ... [et al.].

p. cm. Includes bibliographical references and index. ISBN 978-0-8138-0871-0 (hardback:alk. paper) 1. Oryzias latipes. I. Kinoshita, Masato. QL638.078M43 2009 639.3'766-dc22

2008053979

A catalog record for this book is available from the U.S. Library of Congress.

Set in 10/12 pt DutchBT by Aptara[®] Inc., New Delhi, India Printed in Singapore

Contents

	ntrib face	utors		xvii xxi
1	Hist	torv and	d Features of Medaka	1
		Histo		1
	1.2	Phylo		3
			Phylogeny and distribution of medaka and relatives	3
			Genetic diversity of medaka	7
	1.3		ntage of Medaka as a Model Fish	9
			Advantageous features in general	9
		1.3.2		11
			1.3.2.1 Introduction and history	11
			1.3.2.2 Body color and chromatophores	12
			1.3.2.3 Genes mutated in body-color mutants	14
			1.3.2.4 Future use of body-color mutants	16
			Wild strains	16
		1.3.4	Inbred strains	18
			1.3.4.1 History for establishing inbred lines	18
	~ .		1.3.4.2 Characteristics of medaka inbred strains	19
	Col	umn 1.	1 For those who cannot decide which medaka to use	20
			1.3.4.3 Polymorphic variation among inbred strains	21
	Cal	1	1.3.4.4 To generate and maintain medaka inbred strains	21
	Con		2 Variation among strains Differences from zebrafish	22 23
		1.3.3	Differences from zeoransii	25
2			anagement	31
	2.1		to Obtain Medaka	31
			Obtain medaka from researchers who are culturing medaka	31
		2.1.2	Contact the National Bio-Resource Project (medaka) in	
			Japan	31
		2.1.3	Purchase medaka from commercial vendors (aquarium	
			shops)	32
	2.2		Catching medaka from the wild	32
	2.2		ng Medaka	33
			Breeding program	33
		2.2.2	Recirculating system (mid-scale system)	35 35
			2.2.2.1 Aquarium system2.2.2.2 Maintenance of recirculating system	55 40
	Cal	.mn 7	1 Soft water is suitable for medaka breeding	40 41
	Con		Large-scale breeding	41
		2.2.3	2.2.3.1 Outline of large-scale water system at JST Kyoto	47
			2.2.3.1 Outline of faige-scale water system at JST Kyoto 2.2.3.2 Water system at JST Kyoto facility	47
			2.2.3.2 Water system at 351 Kyoto facility 2.2.3.3 Water condition	48
				40

	2.2.4	Rearing without water circulation (small-scale system)	49
		2.2.4.1 Room condition, racks, and tanks	49
		2.2.4.2 Water	49
		2.2.4.3 Daily care	49
	2.2.5	Outdoor breeding	50
2.			54
		Feed for adult fish and larvae	54
	2.3.2	Feeding schedule	54
		Feed	55
		2.3.3.1 Brine shrimp (Artemia)	55
		2.3.3.2 Dry feed	59
		2.3.3.3 Paramecium	60
		2.3.3.4 Other feed types	60
2.	4 Disea	ises	60
	2.4.1	Tail rot disease	60
	2.4.2	Matsukasa disease	61
	2.4.3	Trichodina	62
	2.4.4	Water mold	63
	2.4.5	White spot disease	63
		Water mites	64
	2.4.7	Gyrodactylus	64
2.		ls for Medaka	65
р	annaduat	ion of Modeleo	67
		ion of Medaka Determination	67
5.		Sex determination in medaka	67
		Sex determination in the genus <i>Oryzias</i>	68
	3.1.3		69
3.		nonal Control of Gonadal Development	69
5.		Hypothalamic–pituitary–gonadal axis	69
		Oocyte growth and maturation	70
	3.2.2		70 71
3.		nesis and Spermatogenesis	72
5.	\mathcal{O}	Oogenesis	72
		Spermatogenesis	74
3.		Envelope (Chorion)	74
5.	4 Egg 1 3.4.1	Morphology and biochemical characters of the medaka	15
	3.4.1	egg envelope	75
	3.4.2	Origin of the egg envelope in medaka fish	75
	3.4.2		80
	3.4.3	Gene structure of egg envelope glycoproteins in medaka	80
	3.4.4	Molecular mechanisms of liver-specific expression of	81
	3.4.5	Choriogenins' Genes	01
	5.4.5	Assembly of the Choriogenins into the egg envelope in	0.4
	246	the ovary	84
	3.4.6	Egg envelope glycoproteins as the substrates for the	07
	2 4 7	hatching enzyme	86
	3.4.7	Conclusion	86

	3.5	Necessary Conditions for Spawning	87
	3.6	Reproductive Behavior	88
	3.7	Mating	89
	3.8	Embryo Collection	90
		3.8.1 Embryo collection directly from females	90
		3.8.2 Embryo collection from the bottom of the tank	90
	3.9	Embryonic Culture	90
		3.9.1 Cleaning	90
		3.9.2 Incubation	91
	3.10	Larval Culture	91
	3.11	Generation of Sex-Reversed Medaka	91
		3.11.1 Treatment with androgen to generate XX males	92
		3.11.2 Treatment with estrogen to generate XY females	92
		3.11.3 High-temperature treatment to generate XX males	92
	Colu	Imn 3.1 Interstrain Variation in Reproductive Performance	93
4	Stra	in Preservation and Related Techniques	101
	4.1	Shipping	101
		4.1.1 Scheduling	101
		4.1.2 Sorting of eggs or fish	101
		4.1.3 Procedures for packaging	102
		4.1.4 Transgenic medaka	102
		4.1.5 MTA (Material Transfer Agreement)	102
	4.2	Quarantine and Pasteurization	104
		4.2.1 Materials for pasteurization of eggs/embryos	104
		4.2.2 Procedure (Movie M4-1)	104
	4.3	Cryopreservation of Medaka Sperm	105
		4.3.1 Overview	105
		4.3.2 The procedure for cryopreservation	
		(Figure 4-2 and Movies M4-2)	105
		4.3.3 Materials	106
		4.3.4 Solutions	107
		4.3.5 Procedures	107
	4.4	Artificial Insemination Using Frozen Medaka Sperm	110
		4.4.1 Overview	110
		4.4.2 Solutions	111
		4.4.3 Materials	112
	Cal	4.4.4 Procedures (Movies M4-3)	113
	Colu	umn 4.1 Infertile mating method for collecting unfertilized eggs	115
-	Teel		
5	LOOP 5.1	king at Adult Medaka General Morphology	117 117
	5.1	General Morphology 5.1.1 Secondary sexual characters	117
		5.1.1 Secondary sexual characters 5.1.2 Body color	117
		5.1.2 Body color 5.1.2.1 Pigment cells (chromatophores)	118
		5.1.2.2 Structures of the chromatophores	118
		5.1.2.3 Chromatophores in medaka	119
		J.1.2.J Chromatophores in incuaka	119

		5.1.2.4	Chromatophore distribution in medaka	123
			See-through medaka	124
5.2	Anato	omy and H	Histology	124
	5.2.1	Observa	tions of internal organs	124
		5.2.1.1	Observations of internal organs in the live	
			see-through medaka	124
		5.2.1.2	Dissection of adult medaka	126
	5.2.2	Horizon	tal and sagittal sections of juvenile medaka	127
	5.2.3	Nervous	s system	127
		5.2.3.1	Adult central nervous system	127
		5.2.3.2	Adult peripheral nervous system	139
	5.2.4		ne system	147
			Hypothalamo-pituitary system	147
			Pineal organ (epiphysis)	150
			Thyroid gland	152
		5.2.4.4		153
			Interrenal gland and chromaffin cells	153
			Gonads	153
			Endocrine pancreas (islet of Langerhans)	154
		5.2.4.8	Gastrointestinal tract	154
			Ultimobranchial gland	154
			Corpuscle of Stannius	154
			Urophysis	155
			Thymus	155
	5.2.5	Gonads		155
		5.2.5.1		156
		5.2.5.2		157
	5.2.6	Kidney		157
			Pronephros	158
			Mesonephros	158
			Histology of the kidney	158
Colu			o make sections of a meture ovary for histological	
	analys	sis		160
Lool	king at	Medaka	Embryos	165
	-		of Various Tissues and Organs	165
			omental stages	165
			Stage 0; Unfertilized Egg – Figure 6-1	165
		6.1.1.1	Stage 1; activated egg stage (3 minutes) –	
			Figure 6-1	167
		6.1.1.2	Stage 2; blastodisc stage – Figure 6-1	167
		6.1.1.3	Stage 3; two-cell stage (1 hour 5 minutes) –	
			Figure 6-1	167
		6.1.1.4	Stage 4; four-cell stage (1 hour 45 minutes) –	
			Figure 6-1	168
		6.1.1.5	Stage 5; eight-cell stage (2 hours 20 minutes) –	
			Figure 6-1	168
			-	

viii

6.1.1.6	Stage 6; 16-cell stage (2 hours 55 minutes) –	
	Figure 6-2	168
6.1.1.7	Stage 7; 32-cell stage (3 hours 30 minutes) –	
	Figure 6-2	168
6.1.1.8	Stage 8; early morula stage (4 hours 5 minutes) –	
	Figure 6-2	168
6.1.1.9	Stage 9; late morula stage (5 hours 15 minutes) –	
	Figure 6-2	168
6.1.1.10	Stage 10; early blastula stage (6 hours 30 minutes)	
	– Figure 6-2	168
6.1.1.11	Stage 11; late blastula stage (8 hours 15 minutes) –	
	Figure 6-2	170
6.1.1.12	Stage 12; pre-early gastrula stage (10 hours	
	20 minutes) – Figure 6-3	170
6.1.1.13	Stage 13; early gastrula stage (13 hours) –	
	Figure 6-3	170
6.1.1.14	Stage 14; pre-mid-gastrula stage (15 hours) –	
	Figure 6-3	170
6.1.1.15	Stage 15; mid-gastrula stage (17 hours 30 minutes)	
	– Figure 6-3	170
	Stage 16; late gastrula stage (21 hours) – Figure 6-3	170
6.1.1.17	Stage 17; early neurula stage (1 day 1 hour) –	
	Figure 6-3	171
6.1.1.18	Stage 18; late neurula stage (1 day 2 hours) –	1 7 0
6 4 4 4 0	Figure 6-4	172
6.1.1.19	Stage 19; two-somite stage (1 day 3 hours 30	1 7 2
(1100	minutes) – Figure 6-4	172
6.1.1.20	Stage 20; four-somite stage (1 day 7 hours	170
(1101	30 minutes) - Figure 6-4	172
6.1.1.21	Stage 21; six-somite stage (1 day 10 hours) –	170
(11)	Figure 6-4	172
0.1.1.22	Stage 22; nine-somite stage (1 day 14 hours) –	170
6 1 1 22	Figure 6-4	172
0.1.1.23	Stage 23; 12-somite stage (1 day 17 hours) – Figure 6-4	170
61104	6	172
0.1.1.24	Stage 24; 16-somite stage (1 day 20 hours) – Figure 6-5	174
61125	Stage 25; 18–19-somite stage (2 days 2 hours) –	1/4
0.1.1.23	Figure 6-5	175
61126	Stage 26; 22-somite stage (2 days 6 hours) –	175
0.1.1.20	Figure 6-5	175
61127	Stage 27; 24-somite stage (2 days 10 hours) –	175
0.1.1.2/	Figure 6-5	175
61128	Stage 28; 30-somite stage (2 days 16 hours) –	1/5
0.1.1.20	Figure 6-5	175
61120	Stage 29; 34-somite stage (3 days 2 hours) –	115
0.1.1.29	Figure 6-5	175
	1 15410 0-5	1/5

	6.1.1.30	Stage 30; 35-somite stage (3 days 10 hours) –	
		Figure 6-6	176
	6.1.1.31	Stage 31; gill blood vessel formation stage (3 days	
		23 hours) – Figure 6-6	176
	6.1.1.32	Stage 32; somite completion stage (4 days 5	
		hours) – Figure 6-6	176
	6.1.1.33	Stage 33; stage at which notochord vacuolization is	
		completed (4 days 10 hours) – Figure 6-6	176
	6.1.1.34	Stage 34; pectoral fin blood circulation stage	
		(5 days 1 hour) – Figure 6-6	178
	6.1.1.35	Stage 35; stage at which visceral blood vessels form	
		(5 days 12 hours) – Figure 6-6	178
	6.1.1.36	Stage 36; heart development stage (6 days) –	
		Figure 6-7	178
	6.1.1.37	Stage 37; pericardial cavity formation stage	
		(7 days) – Figure 6-7	178
	6.1.1.38	Stage 38; spleen development stage (8 days) –	
		Figure 6-7	178
	6.1.1.39	Stage 39; hatching stage (9 days) – Figure 6-7	178
	6.1.1.40	Stage 40; first larval stage – Figure 6-8	179
	6.1.1.41	Stage 41; second larval stage – Figure 6-8	180
	6.1.1.42	Stage 42; third larval stage – Figure 6-8	180
		Stage 43; first juvenile stage – Figure 6-8	180
		Stage 44; second juvenile stage – Figure 6-8	180
		Stage 45 – Figure 6-8	180
6.1.2	Brain		180
	6.1.2.1	Gastrula step (stages 13–17)	182
	6.1.2.2	Neurula step (stages 17–18)	182
	6.1.2.3	Neural rod step (stages 19–22)	184
	6.1.2.4	Neural tube step (stages 23–27)	184
	6.1.2.5	Late embryonic brain step (stages 28–34)	185
	6.1.2.6	Larval brain step (stages 35–42)	187
6.1.3	Hatchin		187
		Origin of fish hatching gland cells	188
	6.1.3.2	Secretion of hatching enzymes from hatching	
		gland cells	190
6.1.4		elopment	191
	6.1.4.1	Specification of the anterior neural plate	191
	6.1.4.2	Eye field determination and establishment of	
		retinal identity	191
	6.1.4.3	Splitting of the retinal anlage into two retinal	
		primordia	193
	6.1.4.4	Morphogenesis I: evagination of the optic vesicle	194
	6.1.4.5	Morphogenesis II: formation of the optic cup	194
	6.1.4.6	Retinal differentiation I: central retina	196
	6.1.4.7	Retinal differentiation II: CMZ	196
	6.1.4.8	Retinotectal projection	196

	6.1.5	Branchia	al arch and jaws	198
			Skeletal development	198
		6.1.5.2	Muscle development	199
	6.1.6	Vasculat	ture	201
		6.1.6.1	Vascular anatomy of the developing medaka	201
		6.1.6.2		210
		6.1.6.3	Abbreviations	211
		6.1.6.4	Acknowledgment	212
	6.1.7	Blood ce	ells (hematopoiesis)	212
			Overview	212
		6.1.7.2	Observation of Embryonic and Adult Blood Cells	212
	6.1.8	Heart		214
		6.1.8.1	Overview	214
		6.1.8.2	Heart architecture	215
		6.1.8.3	Heart morphogenesis	216
		6.1.8.4	Observation of the developing heart	225
	6.1.9	Kidney		227
		6.1.9.1	Introduction	227
		6.1.9.2	Nephrogenesis	227
			Pronephros	229
		6.1.9.4	Mesonephros	229
	6.1.10	Thymus	•	229
		6.1.10.1	Overview	229
		6.1.10.2	Early development of the thymus	229
			Cortex and medulla	231
		6.1.10.4	Involution of the thymus	231
	6.1.11	Gut and	liver	231
	6.1.12	Bones		234
		6.1.12.1	Vertebral column	234
Colu			ords in bone formation	242
	6.1.13	Fins		243
			Introduction	243
			Fin anatomy	243
		6.1.13.3	Embryonic fin development (from fertilization to	
			stage 39 [hatching stage])	244
		6.1.13.4	Fin development after hatching (after stage 39)	244
		6.1.13.5	Gene expression during fin development	246
	6.1.14	Gonads		247
			Introduction	247
			PGC specification	247
			Formation of gonadal primordium (Figure 6-60B)	249
		6.1.14.4	Sexual dimorphism in germ cell proliferation	
			(Figure 6-61)	249
			Post-hatching period in XX gonads	251
			Post-hatching period in XY gonads	251
6.2			Envelope and Hatching Enzyme	252
	6.2.1	Overview	W	252

	6.2.2	Preparation of a hatching enzyme solution	from
		hatching liquid	254
	6.2.3	Simple method for preparing hatching enzy	yme
		solution	255
	6.2.4	Solubilization of the egg envelope using ha	tching
		enzyme	255
Co	lumn 6	.2 Easy method for preparation of a small as	mount of
		ing enzyme solution (see DVD for figure)	256
6.3		rvation of Embryos (Embedding Embryos)	256
	6.3.1	Anesthesia of Embryos using MS-222	256
	6.3.2	Observation of embryos (mounting)	257
		6.3.2.1 Living embryos	257
		6.3.2.2 Processed Embryos	260
6.4	Whol	e Mount in situ Hybridization (see Section 6	.1.8. for a similar
	proto	col)	261
	6.4.1	Fixation and storage	261
		Rehydration, proteinase K Treatment and	post-fixation
		at RT	262
	6.4.3	Hybridization and washing	263
	6.4.4	Immunoreaction and washing antibodies	263
		Staining	264
6.5	Embe	dding in a Plastic Resin (Technovit 7100)	264
	6.5.1	Agarose mounting (Figure 6-68)	264
	6.5.2	Dehydration and infiltration (Figure 6-68)	265
	6.5.3	Polymerization (Figure 6-68)	265
Co	lumn 6	.3 Pigment cells (Figure 6-69)	266
Co	lumn 6	.4 Kupffer's vesicle	267
Tre	insgene	sis	277
7.1	-	binjection Technique for Medaka Eggs	277
/ • 1		Equipment required	278
	/.1.1	7.1.1.1 Egg holder	278
		7.1.1.2 Glass needles for microinjection	280
		7.1.1.3 Injector and manipulator with nee	
		holder	281
		7.1.1.4 Microscope and light	282
		7.1.1.5 Other tools and fertilized eggs	282
	7.1.2	Microinjection procedure	283
Co		1 Microinjection into nuclei	285
7.2		Microinjection	287
/.2		DNA microinjection for transgenesis and	20,
	,	transient expression	287
	7.2.2	DNA construction for transgenesis	289
Co		.2 Toxicity of DNA	291
		3 The form of DNA for transgenesis	291
7.3		Microinjection	291
		.4 Importance of 3'-UTR	292

	7.4	Gene	Knockdo	own Technology	292
		7.4.1	Morpho	olinos	293
		7.4.2	gripNA	S	293
8	Tox	icology			297
	8.1	Statu	s of Meda	aka in Toxicology	297
	8.2	Fish (Culture fo	or Toxicology	298
		8.2.1	Prepara	tion and acclimation of fish	298
		8.2.2	How to	expose to chemicals	301
	8.3	Stand	lardized]	Toxicity Testings	303
		8.3.1	Interna	tional standardization for toxicity tests	303
		8.3.2	Acute 7	Toxicity Test (OECD TG203)	303
		8.3.3	Early-li	fe stage toxicity test (OECD TG210)	304
	8.4	Appli	ed Toxic	ity Tests for Endocrine Disrupters	305
		8.4.1	Screeni	ng assays using medaka	306
		8.4.2	Fish ful	l lifecycle testing (FFLC) using medaka	306
		8.4.3	Sensitiv	e period to estrogen substances in early life stages	307
	8.5	Vitell	ogenin as	s an Environmental Endocrine Disrupting Chemical	
		Expo	sure Inde	X	310
		8.5.1	Feature	es of VTG	310
		8.5.2	Vitellog	genin measurement	310
		8.5.3	Summa	ry and comments	313
	8.6	New '	Techniqu	es and Other Studies	314
	Colu	ımn 8	.1 Applie	cation of medaka and olyzias Sp. in seawater. Can	
		meda	ka surviv	e in seawater?	315
9	Bioi	nforma	atics		319
	9.1	Meda	ka Geno	me Project and Genome Sequence Database	319
		9.1.1	Genom	e database	320
		9.1.2	Polymo	rphism between the Southern and Northern	
				se populations	323
	Colu	ımn 9	.1 How t	o get BAC/Fosmid clones harboring the	
		target	t gene		324
	9.2	Datal	base for T	Transcribed Sequences	324
		9.2.1	EST da	tabase	324
		9.2.2	Develo	pmental Expression database	326
	9.3	Positi	onal Clo	ning of the Causal Gene in Mutants	327
		9.3.1	Mappir	g mutants using SSLP and RFLP markers	327
			9.3.1.1	Creating mapping panel	330
			9.3.1.2	Identification of the linkage group linked to a	
				mutation using bulk segregation analysis with	
				M markers.	331
			9.3.1.3	Low-resolution mapping	336
			9.3.1.4	Intermediate-Resolution Mapping	338
			9.3.1.5	High-Resolution Mapping	339
			9.3.1.6	In silico chromosome walking	339
			9.3.1.7	Identification of target gene	343
	Colu	ımn 9	.2 Const	ruction of fosmid library	343

10	Adva	nced Techniques	345
		Cell Culture from Medaka Embryo	345
		10.1.1 Flow chart of primary cell culture from medaka embryo	346
		10.1.2 Equipment and materials	347
		10.1.3 Protocol	347
		10.1.4 Notes	348
	10.2	In Vitro Spermatogenesis from Primary Spermatocytes	350
		10.2.1 Flow chart of <i>in vitro</i> spermatogenesis from primary	
		spermatocytes	350
		10.2.2 Required equipment and materials for primary culture of	
		primary spermatocytes	351
		10.2.3 Protocol	352
	10.3	Single Cell Labeling	353
		10.3.1 Flow chart of single cell labeling	354
		10.3.2 Required equipment and materials	354
		10.3.3 Protocol of single cell labeling	356
		10.3.4 Example of cell labeling and tracing	356
	10.4	Imaging of Living Embryos	357
		10.4.1 Flow chart of imaging of living embryos	358
		10.4.2 Fluorescent labeling	358
		10.4.3 Sample preparation	359
		10.4.4 Recording setup	359
		10.4.5 Data analysis	360
		10.4.6 Time-lapse imaging of primordial germ cell migration	360
		10.4.7 Conclusion	361
	10.5	Transplantation	361
		10.5.1 Cell transplantation in embryo. Figure 10-11 shows the	
		procedure of cell transplantation in embryo	
		briefly	362
		10.5.2 Scale	365
	10.6	Nuclear Transplantation	367
		10.6.1 Equipment and materials	368
		10.6.2 Flow chart of the method	368
		10.6.3 Perspectives	368
	10.7	Mutagenesis	369
		10.7.1 Benefits of using medaka	369
		10.7.2 Mutagens that have been used for medaka	370
		10.7.3 Mutagenesis screen using ENU	370
	10.8	Tilling (Gene Knockout)	374
		10.8.1 Outline of the TILLING method	374
		10.8.2 An example of screening and quality of our library	379
		10.8.3 About SNPs	380
		10.8.4 How to obtain a Medaka TILLING library	380
	10.9	Cell Trace Experiment with a Caged Fluorescent Dye During	
		Medaka Gastrulation	381
		10.9.1 Flow chart of cell trace experiment with a caged	
		fluorescent dye	383

10.9	9.2 Equipment and materials	383
10.9	9.3 Protocol (Figure 10-2)	384
10.9	9.4 Notes	386
Appendix 1	Guidelines on Using Medaka in Experiments	389
Appendix 2	Internet Websites Related to Medaka Research	391
Appendix 3	Solutions	397
Appendix 4	Inbred Strains, Closed Colonies, and Mutant Strains	399
Appendix 5	Index of Abbreviation	403
Attributions		407
Index		411

Contributors

Ekaterina Bubenshchikova

Bioscience and Biotechnology Center, Nagoya University, Japan

Tomonori Deguchi

Research Institute for Cell Engineering (RICE), National Institute of Advanced Industrial Science and Technology (AIST), Japan

Misato Fujita

National Insitute of Child Health and Human Development, National Institutes of Health (NIH), USA

Shoji Fukamachi Dept. of Biology, University of Konstanz, Germany

Hisashi Hashimoto

Bioscience and Biotechnology Center, Nagoya University, Japan

Narisato Hirai

National Institute for Environmental Studies, Research Center for Environmental Risk, Japan

Yukihiro Hirose

Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd, Japan

Masayuki Iigo

Dept. of Applied Biochemistry, Faculty of Agriculture, Utsunomiya University, Japan

Keiji Inohaya

Dept. of Biological Information, Tokyo Institute of Technology, Japan

Tomoko Ishikawa

Dept. of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, Japan

Yuji Ishikawa

National Institute of Radiological Sciences, Japan

Ichiro Iuchi

Dept. of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Japan

Norimasa Iwanami

Div. of Experimental Immunology, Institute for Genome Research, University of Tokushima, Japan

Elena Kaftanovskaya

Bioscience and Biotechnology Center, Nagoya University, Japan

Yasuhiro Kamei

Dept. of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, Japan

Takashi Kawasaki

Research Institute for Cell Engineering (RICE), National Institute of Advanced Industrial Science and Technology (AIST), Japan

Masato Kinoshita

Dept. of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Japan

Takeshi Kitano

Dept. of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Japan

Daisuke Kobayashi

Dept. of Anatomy and Developmental Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan

Mariko Kondo

Dept. of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan.

Akira Kudo

Dept. of Biological Information, Tokyo Institute of Technology, Japan

Rie Kusakabe

Dept. of Biology, Graduate School of Science, Kobe University, Japan

Kouichi Maruyama

National Institute of Radiological Sciences, Japan

Kenji Murata

Dept. of Animal Science, University of California Davis, USA

Yuki Nakatani

Dept. of Biological Sciences, Tokyo Institute of Technology, Japan

Kiyoshi Naruse

Lab. of Bioresources, National Institute for Basic Biology (NIBB), Japan

Katsutoshi Niwa

ERATO Kondoh Differentiation Signaling Project, Japan Science and Technology Agency (JST), Japan

Shoji Oda

Lab. of Genome Stability, Dept. of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan

Shogo Oka

Dept. of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan

Kataaki Okubo

Dept. of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan

Daisuke Saito

Lab. of Molecular Genetics for Reproduction, National Institute for Basic Biology (NIBB), Japan

Takao Sasado

Lab. of Bioresources, National Institute for Basic Biology (NIBB), Japan

Masanori Seki

Chemicals Evaluation and Research Institute (CERI), Japan

Xueyan Shen

Lab. of Bioresources, National Institute for Basic Biology (NIBB), Japan

Atsuko Shimada

Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan

Eriko Shimada

Dept. of Animal Science, University of California Davis, USA

Ai Shinomiya Dept. of Biology, Keio University, Japan

Yoshiro Takano

Dept. of Hard Tissue Engineering, Tokyo Medical and Dental University, Japan.

Yusuke Takehana

Lab. of Bioresources, National Institute for Basic Biology (NIBB), Japan

Minoru Tanaka

Lab. of Molecular Genetics for Reproduction, National Institute for Basic Biology (NIBB), Japan

Norihisa Tatarazako

National Institute for Environmental Studies, Research Center for Environmental Risk, Japan

Yasuhiro Tonoyama

Dept. of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan Yuko Wakamatsu

Bioscience and Biotechnology Center, Nagoya University, Japan

Akihiko Watanabe

Dept. of Biology, Faculty of Science, Yamagata University, Japan.

Joachim Wittbrodt

Developmental Biology Unit, EMBL, Germany

Shigeki Yasumasu

Dept. of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Japan

Hiroki Yoda

Developmental Biology Unit, EMBL, Germany

Preface

Medaka, *Oryzias latipes*, is the tiny, fresh water, rice-field fish. In Japan, scientists have used medaka as a model animal, especially since the work of Aida in 1921. Since his work, many Japanese scientists have strived to establish specific strains of medaka and to advance additional experimental methodologies using medaka fish as a model animal. These developments have resulted in the accumulation of basic biological knowledge of medaka, which has contributed to the discovery of new biological facts in both human and other animal systems. They have helped to identify the functional mechanisms of many newly discovered phenomena in areas of both basic and applied research. Furthermore, recent advances in medaka genomics have provided new insights not only into vertebrate genome evolution but also into basic biology, ecological science, medical science, and agricultural science, by comparative analyses with the substantial genomic information that now exists for other vertebrates such as humans, mice, puffer fish, stickleback, and zebrafish. Another recent important activity is a large-scale mutagenesis screening of mutants with specific developmental defects. Currently, more than 500 mutants are available to scientific community (Chapter 10).

There are several principal advantages of using the medaka model for vertebrates over that of the more commonly used zebrafish system (Chapter 1). First, the medaka genome is smaller (ca 800 Mb) (Chapter 9), being about half the size of the zebrafish genome, and one-third that of the human genome. Second, there are highly polymorphic inbred medaka strains derived from genetically distinct wild population (SNP (single nucleotide polymorphism) rate between strains is 4%) and those can be used for both mutagenesis screening, genetic mapping, and Quantitative Trait Loci (QTL) analysis (Chapter 9).

Other advantages include:

- 1. The database of information on the reproductive biology, fertilization, gamete biology, developmental biology, and molecular/structural biology of molecules in medaka is well developed (Chapter 3, Chapter 9, and http://shigen.lab.nig.ac.jp/wgr/wgr/siteList.jsp).
- Medaka live-fish resources including standard strains, transgenic lines, mutants, and wild stocks from different wild populations; and related species are also available from National BioResource Project Medaka (NBRP Medaka; http://www. shigen.nig.ac.jp/medaka/) supported by MEXT, Japan.
- 3. High-quality draft genome sequences are available from Ensembl, UCSC genome browser, and UT genome browser (Chapter 9 and web information in DVD), and the genomic resources (cDNA and BAC/ fosmid clones) accumulated during medaka EST and genome sequencing projects are also available to the public from NBRP Medaka.

This book's purpose is to familiarize scientists worldwide with the advantages of using medaka in experimental designs, the ease of conducting experiments with medaka, and to stimulate their progress in research by adopting medaka as a model animal. The book describes and provides basic knowledge on how to use medaka as a model animal. It demonstrates how to successfully raise medaka fish in stable culture conditions, and describes its anatomy and embryonic development. It describes the accumulated technologies using the fish, including use as a molecular tool in the fields of life science, evolution, ecology, and toxicology. It provides an informational bridge to span the varied research disciplines and abilities ranging from undergraduate education through the level of senior researcher. The selection of contributing authors is intended to demonstrate the wide range of biological and molecular tools and systems in which medaka is used. Authors were chosen because of their expertise and demonstrated ability to conduct experiments involving medaka, and because they are recognized pioneers in the use of medaka as the model animal in their scientific fields. The authors were also asked to describe their experimental protocols in detail and the rationale for the chosen protocols in achieving their conceptual goals.

The book's format is designed to capture the thoughts and methods of researchers using medaka as the model animal, and to make this expertise accessible to students, beginning researchers, and senior researchers who would like to incorporate medaka fish as the model animal in their own works. For this reason the reader is initially guided through the necessary background information, and then presented with step-by-step specifics for each protocol described. The information includes reagents, instrumentation, and other essential requirements. It is anticipated that this highly practical format will permit the reader to bring new concepts into personal practice in a more efficient manner.

The use of medaka fish as a model animal requires experimental insight and an ability for practical troubleshooting of experimental designs. Of equal importance is an overall appreciation of the power and limits of using medaka fish as the model animal. To assist the readers to visualize and understand the medaka fish and the research protocols, we have provided a DVD as an appendix. For example, we have provided illustrations and a digital movie of the entire process of microinjection, a procedure that is difficult to understand just by simply reading the protocol.

The preparation of this book would not have been possible without the dedication of the contributing authors and all the people who have supported and encouraged the authors. The staff at Wiley-Blackwell publishers, Mr. Justin Jeffryes and Ms. Shelby Hayes Allen, have demonstrated great patience with our efforts, and have provided excellent guidance and assistance. Finally, we also express our thanks to the people who assisted to accomplish this project.

Reference

1. Aida, T. (1921) On the inheritance of color in a fresh-water fish *Aplocheilus latipes* Temminck and Schlegel, with special reference to sex-linked inheritance. Genetics 6, 554–573.

> Masato Kinoshita, Kenji Murata (Chief Editors) Minoru Tanaka, Kiyoshi Naruse (Editors)

Medaka

Biology, Management, and Experimental Protocols

Chapter 1 History and Features of Medaka

Medaka, *Oryzias latipes*, is a small egg-laying secondary freshwater fish native to East Asian countries, primarily Japan, Korea, Taiwan, and China. This fish is a member of the atherinomorpha taxon Beloniformes. Other members of order Beloniformes are halfbeaks and garfish, many of which are marine fish. This suggests that the common ancestors of medaka and relatives were marine fish and some species of this group adapted to the freshwater environment. This is one possible reason why there are several species adapted to freshwater or seawater within the same genus (Inoue and Takei, 2003).

1.1 History

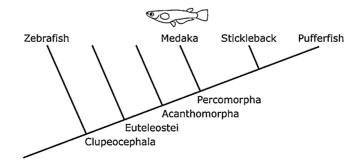
Medaka has been reared as an ornamental fish since the Edo period. Figure 1-1 shows the Ukiyoe painting called "Medaka Scooping," published in 1767–1768. Two girls are scooping medaka and putting them in a small glass tank. In 1835, Motohisa Mori described three medaka strains: wild type, orange-red type, and white type (see also Figure 1-7). The orange-red type strain has a mutation at the *b* locus and the white-type strain is a double mutant at the *b* and *r* loci. As it is not feasible to isolate a double mutant from wild type medaka, it is likely that relatively large numbers of the orange-red type strain were cultured at the end of Edo period.

Medaka was first described in Siebold's Fauna Japonica, and originally assigned to the genus Poecilia by Temminck and Schlegel in 1846. After this description, medaka has been a favorite experimental animal for researchers in Japan and other countries. Several important achievements have been made with the color mutants of medaka described by Motohisa Mori. Aida (1921) found the sex-limited inheritance of the r locus that controls the expression of orange pigment cells (xanthophores). Yamamoto (1953, 1975) established the d-rR strain and demonstrated the artificial induction of sex reversal with estrogen and androgen to fish of the d-rR strain. The d-rR strain showed body-color dimorphism, with the male orange-red and the female white. Because the R allele is on the Y chromosome and the r allele is on the X chromosome, genetic sex can be distinguished by body color. Studies of medaka sex determination and differentiation finally resulted in the identification of the primary sex-determination gene, DMY (Matsuda et al., 2002; Nanda et al., 2002). This gene is the second "primary sex determination gene" isolated in vertebrates, and is the functional equivalent of the Sry gene in mammals. The establishment of an efficient method for making transgenic medaka was also an important achievement (Ozato et al., 1986), and the establishment of several inbred lines from genetically different natural populations is unique to medaka (Hyodo-Taguchi and Egami, 1985). From around 2000, several important studies to establish genetic/genomic resources have been archived. A largescale Expressed Sequence Tag (EST) analysis was done by Kimura et al. (2004). There

Figure 1-1. Ukiyoe painting "Medaka Scooping" by Harunobu Suzuki, 1767–1768. Two girls are scooping medaka and putting them into a small glass tank. Courtesy of http://www .japanism.net/.

are now over 210,000 cDNA/EST sequences deposited in the public DNA database (DDBJ/EMBL/Genbank), and summarized up to about 39,000 unique sequences. A genome-wide linkage map was also established (Naruse et al., 2000, 2004a). The medaka genome sequencing project commenced in 2002 and the draft genome sequence was published by Kasahara et al. (2007). All genetic/genomic data are now open to the public through the UT genome browser (http://medaka.utgenome.org/), Ensembl genome browser (http://www.ensembl.org/Oryzias_latipes/index.html), and UCSC genome browser (http://genome.ucsc.edu/cgi-bin/hgGateway). In addition to these genome resources, mutagenesis screening for the isolation of mutants with a specific phenotype during embryonic development has been conducted by several groups. About 500 mutants with specific phenotypes have been established, and projects to identify the causal gene of the mutants have been conducted in several laboratories

(Furutani-Seiki et al., 2004; Yokoi et al., 2007). Since these studies and activities, medaka has become a representative model for vertebrates.


1.2 Phylogeny

1.2.1 Phylogeny and distribution of medaka and relatives

Teleostei is the most diversified group in the vertebrates, comprising over 26,800 species in 4278 genera, 448 families, and 40 orders (Nelson, 2006). This group includes other model organisms, such as zebrafish (*Danio rerio*), pufferfish (*Takifugu rebripes* and *Tetraodon nigroviridis*), and the three-spined stickleback (*Gasterosteus aculeatus*). Among these fishes, zebrafish (Cypriniformes) belong to the basal teleostean lineage (Ostariophysi) (Inoue et al., 2003). In contrast, the medaka (Beloniformes), pufferfish (Tetraodontiformes), and stickleback (Gasterosteiformes) are members of the higher teleosts (Percomorpha) (Miya et al., 2005; Figure 1-2). The approximate divergence times of the medaka are estimated to be 485 million years ago (mya) with mammals, 324 mya with zebrafish, and 191 mya with the lineage leading to pufferfish and the stickleback (Yamanoue et al., 2006).

The family Adrianichthyidae is a small group native to Asia, containing four genera, *Oryzias* with 20 species, *Adrianichthys* with two species, *Horaichthys* with one species, and *Xenopoecilus* with three species. Before the 1980s, this family was placed in the order Cyprinodontiformes. However, Rosen and Parenti (1981) indicated a monophyly of Adrianichthyidae within the order Beloniformes, based on characters of the gill arch skeleton hyoid apparatus. Nelson (1994, 2006) agreed with this relationship and placed Adrianichthyids within Beloniformes. A recent molecular phylogeny based on entire mitochondrial DNA sequences also supports a monophyly of the group containing the medaka and other beloniform fishes (Miya et al., 2005). Medaka is currently regarded as a member of Beloniformes.

Most fishes in family Adrianichthyidae are confined to freshwater, such as brooks, ponds, canals, paddy fields, and lakes, but some species are found in brackish- and seawater along the coast. Fishes in this family have a wide distribution, from India to Japan, and south along the Indo-Australian archipelago across Wallace's line to Timor, Sulawesi, and Luzon (Table 1-1). Above all, *Oryzias dancena, O. javanicus*, and

Figure 1-2. A simplified phylogenetic tree of Teleostei. The lineage leading to zebrafish is the most basally diverged group, while medaka, stickleback, and pufferfishes are members of Percomorpha.

Species	Distribution	Reference
Adrianichthys kruyti Weber, 1913	Lake Poso in Sulawesi	Parenti and Soeroto (2004)
Adrianichthys roseni Parenti & Soeroto, 2004	Lake Poso in Sulawesi	Parenti and Soeroto (2004)
Horaichthys setnai Kulkarni, 1940	W India	Talwar and Jhingran (1991)
Oryzias carnaticus Jerdon, 1849	E India and Bangladesh	Roberts (1998)
Oryzias celebensis Weber, 1894	S Sulawesi	Parenti and Soeroto (2004)
Oryzias curvinotus Nichols & Pope, 1927	N Vietnam, Hainan, and S China	Uwa and Parenti (1988)
Oryzias dancena Hamilton, 1822	E India, a Bangladesh, Myanmar, and N Malaya	Roberts (1998)
Oryzias haugiangensis Roberts, 1998	S Vietnam	Roberts (1998)
Oryzias hubbsi Roberts, 1998	W Java	Roberts (1998)
Oryzias javanicus Bleeker, 1854	Java, Sumatra, Malaya, Borneo, Sulawesi, and Lombok	Kottelat et al. (1993) and
		Roberts (1998)
Oryzias latipes Temminck & Schlegel, 1846	Japan, Korea, Taiwan, and China	Uwa and Parenti (1988)
Oryzias luzonensis Herre & Ablan, 1934	N Luzon	Formacion and Uwa (1985)
Oryzias marmoratus Aurich, 1935	Lakes Towuti, Mahalona, and Wawontoa in Sulawesi	Kottelat (1990b)
Oryzias matanensis Aurich, 1935	Lake Matano in Sulawesi	Kottelat (1990b)
Oryzias mekongensis Uwa & Magtoon, 1986	NE Thailand	Roberts (1998)
Oryzias minutillus Smith, 1945	Thailand	Roberts (1998)
Oryzias nebulosus Parenti & Soeroto, 2004	Lake Poso in Sulawesi	Parenti and Soeroto (2004)
Oryzias nigrimas Kottelat, 1990a	Lake Poso in Sulawesi	Parenti and Soeroto (2004)
Oryzias orthognathus Kottelat, 1990a	Lake Poso in Sulawesi	Parenti and Soeroto (2004)
Oryzias pectoralis Roberts, 1998	Laos	Roberts (1998)
Oryzias profundicola Kottelat, 1990b	Lake Towuti in Sulawesi	Kottelat (1990b)
Oryzias timorensis Weber & de Beaufort, 1922	Timor	Uwa and Parenti (1988)
Oryzias uwai Roberts, 1998	Myanmar	Roberts (1998)
Xenopoecilus oophorus Kottelat, 1990a	Lake Poso in Sulawesi	Parenti and Soeroto (2004)
Xenopoecilus poptae Weber & de Beaufort, 1922	Lake Poso in Sulawesi	Parenti and Soeroto (2004)
Xenopoecilus sarasinorum Popta, 1905	Lake Lindu in Sulawesi	Parenti and Soeroto (2004)