
COMPUTER
SYSTEM DESIGN

System-on-Chip

Michael J. Flynn

Wayne Luk

A JOHN WILEY & SONS, INC., PUBLICATION

COMPUTER
SYSTEM DESIGN

COMPUTER
SYSTEM DESIGN

System-on-Chip

Michael J. Flynn

Wayne Luk

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at
www.copyright.com. Requests to the Publisher for permission should he addressed to the
Permissions Department, John Wiley & Sons, Inc., II 1 River Street, Hoboken, NJ 07030, (201)
748-601 1, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifi cally disclaim any implied
warranties of merchantability or fi tness for a particular purpose. No warranty may be created
or extended by sales representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a professional
where appropriate. Neither the publisher nor author shall be liable for any loss of profi t or any
other commercial damages, including but not limited to special, incidental, consequential, or
other damages.

For general infor-nation on our other products and services or for technical support, please
contact our Customer Care Department within the United States at (800) 762-2974, outside the
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic formats. For more information about Wiley products,
visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Flynn, M. J. (Michael J.), 1934–
 Computer system design : system-on-chip / Michael J. Flynn, Wayne Luk.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-470-64336-5 (hardback)
 1. Systems on a chip. I. Luk, Wayne. II. Title.
 TK7895.E42F65 2011
 004.1–dc22
 2010040981

Printed in Singapore

oBook ISBN: 9781118009925
ePDF ISBN: 9781118009901
ePub ISBN: 9781118009918

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com

CONTENTS

Preface xiii

List of Abbreviations and Acronyms xvii

1 Introduction to the Systems Approach 1

1.1 System Architecture: An Overview 1
1.2 Components of the System: Processors, Memories,

and Interconnects 2
1.3 Hardware and Software: Programmability

Versus Performance 5
1.4 Processor Architectures 7

1.4.1 Processor: A Functional View 8
1.4.2 Processor: An Architectural View 9

1.5 Memory and Addressing 19
1.5.1 SOC Memory Examples 20
1.5.2 Addressing: The Architecture of Memory 21
1.5.3 Memory for SOC Operating System 22

1.6 System-Level Interconnection 24
1.6.1 Bus-Based Approach 24
1.6.2 Network-on-Chip Approach 25

1.7 An Approach for SOC Design 26
1.7.1 Requirements and Specifi cations 26
1.7.2 Design Iteration 27

1.8 System Architecture and Complexity 29
1.9 Product Economics and Implications for SOC 31

1.9.1 Factors Affecting Product Costs 31
1.9.2 Modeling Product Economics and Technology

Complexity: The Lesson for SOC 33
1.10 Dealing with Design Complexity 34

1.10.1 Buying IP 34
1.10.2 Reconfi guration 35

1.11 Conclusions 37
1.12 Problem Set 38

v

vi CONTENTS

2 Chip Basics: Time, Area, Power, Reliability,
and Confi gurability 39

2.1 Introduction 39
2.1.1 Design Trade-Offs 39
2.1.2 Requirements and Specifi cations 42

2.2 Cycle Time 43
2.2.1 Defi ning a Cycle 43
2.2.2 Optimum Pipeline 44
2.2.3 Performance 46

2.3 Die Area and Cost 47
2.3.1 Processor Area 47
2.3.2 Processor Subunits 50

2.4 Ideal and Practical Scaling 53
2.5 Power 57
2.6 Area–Time–Power Trade-Offs in

Processor Design 60
2.6.1 Workstation Processor 60
2.6.2 Embedded Processor 61

2.7 Reliability 62
2.7.1 Dealing with Physical Faults 62
2.7.2 Error Detection and Correction 65
2.7.3 Dealing with Manufacturing Faults 68
2.7.4 Memory and Function Scrubbing 69

2.8 Confi gurability 69
2.8.1 Why Reconfi gurable Design? 69
2.8.2 Area Estimate of Reconfi gurable Devices 70

2.9 Conclusion 71
2.10 Problem Set 71

3 Processors 74

3.1 Introduction 74
3.2 Processor Selection for SOC 76

3.2.1 Overview 76
3.2.2 Example: Soft Processors 76
3.2.3 Examples: Processor Core Selection 79

3.3 Basic Concepts in Processor Architecture 81
3.3.1 Instruction Set 81
3.3.2 Some Instruction Set Conventions 82
3.3.3 Branches 82
3.3.4 Interrupts and Exceptions 84

CONTENTS vii

3.4 Basic Concepts in Processor Microarchitecture 86
3.5 Basic Elements in Instruction Handling 88

3.5.1 The Instruction Decoder and Interlocks 88
3.5.2 Bypassing 90
3.5.3 Execution Unit 90

3.6 Buffers: Minimizing Pipeline Delays 91
3.6.1 Mean Request Rate Buffers 91
3.6.2 Buffers Designed for a Fixed or Maximum

Request Rate 92
3.7 Branches: Reducing the Cost of Branches 93

3.7.1 Branch Target Capture: Branch Target
Buffers (BTBs) 94

3.7.2 Branch Prediction 97
3.8 More Robust Processors: Vector, Very Long

Instruction Word (VLIW), and Superscalar 101
3.9 Vector Processors and Vector Instruction Extensions 101

3.9.1 Vector Functional Units 103
3.10 VLIW Processors 107
3.11 Superscalar Processors 108

3.11.1 Data Dependencies 109
3.11.2 Detecting Instruction Concurrency 110
3.11.3 A Simple Implementation 112
3.11.4 Preserving State with Out-of-Order

Execution 116
3.12 Processor Evolution and Two Examples 118

3.12.1 Soft and Firm Processor Designs:
The Processor as IP 118

3.12.2 High-Performance, Custom-Designed Processors 118
3.13 Conclusions 119
3.14 Problem Set 120

4 Memory Design: System-on-Chip and Board-Based Systems 123

4.1 Introduction 123
4.2 Overview 125

4.2.1 SOC External Memory: Flash 125
4.2.2 SOC Internal Memory: Placement 126
4.2.3 The Size of Memory 127

4.3 Scratchpads and Cache Memory 128
4.4 Basic Notions 129
4.5 Cache Organization 130
4.6 Cache Data 133
4.7 Write Policies 134

viii CONTENTS

4.8 Strategies for Line Replacement at Miss Time 135
4.8.1 Fetching a Line 136
4.8.2 Line Replacement 136
4.8.3 Cache Environment: Effects of System,

Transactions, and Multiprogramming 137
4.9 Other Types of Cache 138
4.10 Split I- and D-Caches and the Effect of Code Density 138
4.11 Multilevel Caches 139

4.11.1 Limits on Cache Array Size 139
4.11.2 Evaluating Multilevel Caches 140
4.11.3 Logical Inclusion 143

4.12 Virtual-to-Real Translation 143
4.13 SOC (On-Die) Memory Systems 145
4.14 Board-based (Off-Die) Memory Systems 147
4.15 Simple DRAM and the Memory Array 149

4.15.1 SDRAM and DDR SDRAM 152
4.15.2 Memory Buffers 156

4.16 Models of Simple Processor–Memory Interaction 156
4.16.1 Models of Multiple Simple Processors

and Memory 157
4.16.2 The Strecker-Ravi Model 158
4.16.3 Interleaved Caches 160

4.17 Conclusions 161
4.18 Problem Set 161

5 Interconnect 165

5.1 Introduction 165
5.2 Overview: Interconnect Architectures 166
5.3 Bus: Basic Architecture 168

5.3.1 Arbitration and Protocols 170
5.3.2 Bus Bridge 171
5.3.3 Physical Bus Structure 171
5.3.4 Bus Varieties 172

5.4 SOC Standard Buses 173
5.4.1 AMBA 174
5.4.2 CoreConnect 177
5.4.3 Bus Interface Units: Bus Sockets and

Bus Wrappers 179
5.5 Analytic Bus Models 183

5.5.1 Contention and Shared Bus 183
5.5.2 Simple Bus Model: Without Resubmission 184
5.5.3 Bus Model with Request Resubmission 185

CONTENTS ix

5.5.4 Using the Bus Model: Computing the
Offered Occupancy 185

5.5.5 Effect of Bus Transactions and
Contention Time 186

5.6 Beyond the Bus: NOC with Switch Interconnects 187
5.6.1 Static Networks 190
5.6.2 Dynamic Networks 192

5.7 Some NOC Switch Examples 194
5.7.1 A 2-D Grid Example of Direct Networks 194
5.7.2 Asynchronous Crossbar Interconnect for

Synchronous SOC (Dynamic Network) 196
5.7.3 Blocking versus Nonblocking 197

5.8 Layered Architecture and Network Interface Unit 197
5.8.1 NOC Layered Architecture 198
5.8.2 NOC and NIU Example 200
5.8.3 Bus versus NOC 201

5.9 Evaluating Interconnect Networks 201
5.9.1 Static versus Dynamic Networks 202
5.9.2 Comparing Networks: Example 204

5.10 Conclusions 205
5.11 Problem Set 206

6 Customization and Confi gurability 208

6.1 Introduction 208
6.2 Estimating Effectiveness of Customization 209
6.3 SOC Customization: An Overview 210
6.4 Customizing Instruction Processors 212

6.4.1 Processor Customization Approaches 214
6.4.2 Architecture Description 215
6.4.3 Identifying Custom Instructions Automatically 217

6.5 Reconfi gurable Technologies 218
6.5.1 Reconfi gurable Functional Units (FUs) 218
6.5.2 Reconfi gurable Interconnects 222
6.5.3 Software Confi gurable Processors 224

6.6 Mapping Designs Onto Reconfi gurable Devices 226
6.7 Instance-Specifi c Design 228
6.8 Customizable Soft Processor: An Example 231
6.9 Reconfi guration 235

6.9.1 Reconfi guration Overhead Analysis 235
6.9.2 Trade-Off Analysis: Reconfi gurable Parallelism 237

6.10 Conclusions 242
6.11 Problem Set 243

x CONTENTS

7 Application Studies 246

7.1 Introduction 246
7.2 SOC Design Approach 246
7.3 Application Study: AES 251

7.3.1 AES: Algorithm and Requirements 251
7.3.2 AES: Design and Evaluation 253

7.4 Application Study: 3-D Graphics Processors 254
7.4.1 Analysis: Processing 255
7.4.2 Analysis: Interconnection 259
7.4.3 Prototyping 260

7.5 Application Study: Image Compression 262
7.5.1 JPEG Compression 262
7.5.2 Example JPEG System for Digital Still Camera 264

7.6 Application Study: Video Compression 266
7.6.1 MPEG and H.26X Video Compression:

Requirements 268
7.6.2 H.264 Acceleration: Designs 271

7.7 Further Application Studies 276
7.7.1 MP3 Audio Decoding 276
7.7.2 Software-Defi ned Radio with 802.16 279

7.8 Conclusions 281
7.9 Problem Set 282

8 What’s Next: Challenges Ahead 285

8.1 Introduction 285
8.2 Overview 286
8.3 Technology 288
8.4 Powering the ASOC 289
8.5 The Shape of the ASOC 292
8.6 Computer Module and Memory 293
8.7 RF or Light Communications 293

8.7.1 Lasers 294
8.7.2 RF 295
8.7.3 Potential for Laser/RF Communications 295
8.7.4 Networked ASOC 296

8.8 Sensing 296
8.8.1 Visual 296
8.8.2 Audio 297

8.9 Motion, Flight, and the Fruit Fly 298
8.10 Motivation 299
8.11 Overview 300
8.12 Pre-Deployment 302

CONTENTS xi

8.13 Post-Deployment 307
8.13.1 Situation-Specifi c Optimization 308
8.13.2 Autonomous Optimization Control 309

8.14 Roadmap and Challenges 310
8.15 Summary 312

Appendix: Tools for Processor Evaluation 313

References 316

Index 329

 PREFACE

 The next generation of computer system designers will be concerned more
about the elements of a system tailored to particular applications than with
the details of processors and memories.

 Such designers would have rudimentary knowledge of processors and other
elements in the system, but the success of their design would depend on their
skills in making system - level trade - offs that optimize the cost, performance,
and other attributes to meet application requirements.

 This text is organized to introduce issues in computer system design, par-
ticularly for system - on - chip (SOC). Managing such design requires knowledge
of a number of issues, as shown in Figure 1 .

 After Chapter 1 , the introduction chapter, Chapter 2 looks at issues that
defi ne the design space: area, speed, power consumption, and confi gurability.
Chapters 3 – 5 provide background knowledge of the basic elements in a system:
processor, memory, and interconnect.

 The succeeding chapters focus on computer systems tailored to specifi c
applications and technologies. Chapter 6 covers issues in customizing and
confi guring designs. Chapter 7 addresses system - level trade - offs for various
applications, bringing together earlier material in this study. Finally, Chapter
 8 presents future challenges for system design and SOC possibilities.

 The tools that illustrate the material in the text are still being developed.
The Appendix provides an overview of one such tool. Since our tools are
evolving, please check from time to time to see what is available at the com-
panion web site: www.soctextbook.com .

 Moreover, material useful for teaching, such as slides and answers to exer-
cises, is also being prepared.

 This book covers a particular approach to computer system design, with
emphasis on fundamental ideas and analytical techniques that are applicable
to a range of applications and architectures, rather than on specifi c applica-
tions, architectures, languages, and tools. We are aware of complementary
treatments on these and also on other topics, such as electronic system - level
design, embedded software development, and system - level integration and
test. We have included brief descriptions and references to these topics where
appropriate; a more detailed treatment can be covered in future editions or
in different volumes.

 SOC is a quickly developing fi eld. Although we focused on funda-
mental material, we were forced to draw a line on the inclusion of the latest

xiii

xiv PREFACE

 Figure 1 An approach to SOC system design described in this book.

Die size Design
specification

Run-time
requirements

Storage Size, volatility

Operating system On-die/off-die

Interconnect Topology/bandwidth/protocol

Processor

Cache features

Customization/
configurability

Initial design

Chapter 2

Chapter 4

Chapter 5

Chapter 3

Chapter 4

Chapter 6

No

Yes

Optimized design

Meet specification and
run-time requirements?

Finish

PREFACE xv

technological advances for the sake of completing the book. Such advances,
instead, are captured as links to relevant sources of information at the com-
panion web site described above.

 Many colleagues and students, primarily at Imperial College London and
Stanford University, have contributed to this book. We are sorry that we are
not able to mention them all by name here. However, a number of individuals
deserve special acknowledgment. Peter Cheung worked closely with us from
the beginning; his contributions shaped the treatment of many topics, particu-
larly those in Chapter 5 . Tobias Becker, Ray Cheung, Rob Dimond, Scott Guo,
Shay Ping Seng, David Thomas, Steve Wilton, Alice Yu, and Chi Wai Yu con-
tributed signifi cant material to various chapters. Philip Leong and Roger
Woods read the manuscript many times carefully and provided many excellent
suggestions for improvement. We also greatly benefi ted from comments by
Jeffrey Arnold, Peter Boehm, Don Bouldin, Geoffrey Brown, Patrick Hung,
Sebastian Lopez, Oskar Mencer, Kevin Rudd, and several anonymous review-
ers. We thank Kubilay Atasu, Peter Collingbourne, James Huggett, Qiwei Jin,
Adrien Le Masle, Pete Sedcole, and Tim Todman, as well as those who prefer
to remain anonymous, for their invaluable assistance.

 Last, but not least, we thank Cassie Strickland, of Wiley, and Janet Hronek,
of Toppan Best - set, for their help in the timely completion of this text.

 LIST OF ABBREVIATIONS
AND ACRONYMS

 AC Autonomous chip
 A/D Analog to digital
 AES Advanced Encryption Standard
 AG Address generation
 ALU Arithmetic and logic unit
 AMBA Advanced Microcontroller Bus Architecture
 ASIC Application - specifi c integrated circuit
 ASIP Application - specifi c instruction processor
 ASOC Autonomous system - on - chip
 AXI Advanced eXtensible Interface
 BC Branch conditional
 BIST Built - in - self - test
 BRAM Block random access memory
 BTB Branch target buffer
 CAD Computer aided design
 CBWA Copy - back write allocate cache
 CC Condition codes
 CFA Color fi lter array
 CGRA Coarse - grained reconfi gurable architecture
 CIF Common Intermediate Format
 CISC Complex instruction set computer
 CLB Confi gurable Logic Block
 CMOS Complementary metal oxide semiconductor
 CORDIC COordinate Rotation Digital Computer
 CPI Cycles per instruction
 CPU Central processing unit
 DCT Discrete Cosine Transform
 DDR Double data rate
 DES Data Encryption Standard
 3DES Triple Data Encryption Standard

xvii

xviii LIST OF ABBREVIATIONS AND ACRONYMS

 DF Data fetch
 DMA Direct memory access
 DRAM Dynamic random access memory
 DSP Digital signal processing (or processor)
 DTMR Design Target Miss Rates
 ECC Error correcting code
 eDRAM Embedded dynamic random access memory
 EX Execute
 FIFO First in fi rst out
 FIR Finite impulse response
 FO4 Fan - out of four
 FP Floating - point
 FPGA Field programmable gate array
 FPR Floating - point register
 FPU Floating - point unit
 GB Giga bytes, a billion (10 9) bytes
 GIF Graphics interface
 GPP General - purpose processor
 GPR General - purpose register
 GPS Global Positioning System
 GSM Global System for Mobile Communications
 HDTV High defi nition television
 HPC High performance computing
 IC Integrated circuit
 ICU Interconnect interface unit
 ID Instruction decode
 IF Instruction fetch
 ILP Instruction - level parallelism
 I/O Input/output
 IP Intellectual property
 IR Instruction register
 ISA Instruction set architecture
 JPEG Joint Photographic Experts Group (image compression

standard)
 Kb Kilo bits, one thousand (10 3) bits
 KB Kilo bytes, one thousand bytes
 L1 Level 1 (for cache)
 L2 Level 2 (for cache)
 LE Logic Element

LIST OF ABBREVIATIONS AND ACRONYMS xix

 LRU Least recently used
 L/S Load - store
 LSI Large scale integration
 LUT Lookup table
 Mb Mega bits, one million (10 6) bits
 MB Mega bytes, one million bytes
 MEMS Micro electro mechanical systems
 MIMD Multiple instruction streams, multiple data streams
 MIPS Million instructions per second
 MOPS Million operations per second
 MOS Metal oxide semiconductor
 MPEG Motion Picture Experts Group (video compression standard)
 MTBF Mean time between faults
 MUX Multiplexor
 NOC Network on chip
 OCP Open Core Protocol
 OFDM Orthogonal Frequency - Division Multiplexing
 PAN Personal area network
 PCB Printed circuit board
 PLCC Plastic leaded chip carrier
 PROM Programmable read only memory
 QCIF Quarter Common Intermediate Format
 RAM Random access memory
 RAND Random
 RAW Read - after - write
 rbe Register bit equivalent
 RF Radio frequency
 RFID Radio frequency identifi cation
 RISC Reduced instruction set computer
 R/M Register - memory
 ROM Read only memory
 RTL Register transfer language
 SAD Sum of the absolute differences
 SDRAM Synchronous dynamic random access memory
 SECDED Single error correction, double error detection
 SER Soft error rate
 SIA Semiconductor Industry Association
 SIMD Single instruction stream, multiple data streams
 SMT Simultaneous multithreading

xx LIST OF ABBREVIATIONS AND ACRONYMS

 SOC System on chip
 SRAM Static random access memory
 TLB Translation look - aside buffer
 TMR Triple modular redundancy
 UART Universal asynchronous receiver/transmitter
 UMTS Universal mobile telecommunications system
 UV Ultraviolet
 VCI Virtual Component Interface
 VLIW Very long instruction word
 VLSI Very large scale integration
 VPU Vector processing unit
 VR Vector register
 VSIA Virtual Socket Interface Alliance
 WAR Write after read
 WAW Write after write
 WB Write back
 WTNWA Write - through cache, no write allocate

 1 Introduction to the
Systems Approach

 1.1 SYSTEM ARCHITECTURE: AN OVERVIEW

 The past 40 years have seen amazing advances in silicon technology and result-
ing increases in transistor density and performance. In 1966, Fairchild
Semiconductor [84] introduced a quad two input NAND gate with about 10
transistors on a die. In 2008, the Intel quad - core Itanium processor has 2 billion
transistors [226] . Figures 1.1 and 1.2 show the unrelenting advance in improv-
ing transistor density and the corresponding decrease in device cost.

 The aim of this book is to present an approach for computer system design
that exploits this enormous transistor density. In part, this is a direct extension
of studies in computer architecture and design. However, it is also a study of
system architecture and design.

 About 50 years ago, a seminal text, Systems Engineering — An Introduction
to the Design of Large - Scale Systems [111] , appeared. As the authors, H.H.
Goode and R.E. Machol, pointed out, the system ’ s view of engineering was
created by a need to deal with complexity. As then, our ability to deal with
complex design problems is greatly enhanced by computer - based tools.

 A system - on - chip (SOC) architecture is an ensemble of processors, memo-
ries, and interconnects tailored to an application domain. A simple example
of such an architecture is the Emotion Engine [147, 187, 237] for the Sony
PlayStation 2 (Figure 1.3), which has two main functions: behavior simulation
and geometry translation. This system contains three essential components: a
main processor of the reduced instruction set computer (RISC) style [118] and
two vector processing units, VPU0 and VPU1, each of which contains four
parallel processors of the single instruction, multiple data (SIMD) stream style
 [97] . We provide a brief overview of these components and our overall
approach in the next few sections.

 While the focus of the book is on the system, in order to understand the
system, one must fi rst understand the components. So, before returning to the
issue of system architecture later in this chapter, we review the components
that make up the system.

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

1

2 INTRODUCTION TO THE SYSTEMS APPROACH

 1.2 COMPONENTS OF THE SYSTEM: PROCESSORS, MEMORIES,
AND INTERCONNECTS

 The term architecture denotes the operational structure and the user ’ s view
of the system. Over time, it has evolved to include both the functional speci-
fi cation and the hardware implementation. The system architecture defi nes
the system - level building blocks, such as processors and memories, and the

 Figure 1.1 The increasing transistor density on a silicon die.

 1

 100

 10,000

 1e + 06

 1e + 08

 1e + 10

 1960 1970 1980 1990 2000 2010

T
ra

ns
is

to
rs

Year

Transistors per die

 Figure 1.2 The decrease of transistor cost over the years.

 1e – 07

 1e – 06

 1e – 05

 1e – 04

 0.001

 0.01

 0.1

 1.0

1970 1980 1990 2000 2010

C
os

t

Year

Cost per transistor

COMPONENTS OF THE SYSTEM 3

interconnection between them. The processor architecture determines the
processor ’ s instruction set, the associated programming model, its detailed
implementation, which may include hidden registers, branch prediction cir-
cuits and specifi c details concerning the ALU (arithmetic logic unit). The
implementation of a processor is also known as microarchitecture (Figure 1.4).

 The system designer has a programmer ’ s or user ’ s view of the system com-
ponents, the system view of memory, the variety of specialized processors, and

 Figure 1.3 High - level functional view of a system - on - chip: the Emotion Engine of the
Sony PlayStation 2 [147, 187] .

4 FP SIMD
processor
(VPU1)

Tasks synchronized with
the rendering engine

(geometry translation)

BufferBuffer Buffer

Main
processor

(RISC core)

4 FP SIMD
processor
(VPU0)

Tasks synchronized with
the main processor

(behavior simulation)

Rendering
engine

DMA (direct memory
access) path

External memory

Arbiter

+

 Figure 1.4 The processor architecture and its implementation.

Architecture

Implementation

Data Paths Control

Registers

ALU

Memory

Hidden
Registers

Branch
Prediction

Microinstructions

Instruction Set

4 INTRODUCTION TO THE SYSTEMS APPROACH

their interconnection. The next sections cover basic components: the processor
architecture, the memory, and the bus or interconnect architecture.

 Figure 1.5 illustrates some of the basic elements of an SOC system. These
include a number of heterogeneous processors interconnected to one or more
memory elements with possibly an array of reconfi gurable logic. Frequently,
the SOC also has analog circuitry for managing sensor data and analog - to -
 digital conversion, or to support wireless data transmission.

 As an example, an SOC for a smart phone would need to support, in addi-
tion to audio input and output capabilities for a traditional phone, Internet
access functions and multimedia facilities for video communication, document
processing, and entertainment such as games and movies. A possible confi gura-
tion for the elements in Figure 1.5 would have the core processor being imple-
mented by several ARM Cortex - A9 processors for application processing, and
the media processor being implemented by a Mali - 400MP graphics processor
and a Mali - VE video engine. The system components and custom circuitry
would interface with peripherals such as the camera, the screen, and the wire-
less communication unit. The elements would be connected together by AXI
(Advanced eXtensible Interface) interconnects.

 If all the elements cannot be contained on a single chip, the implementation
is probably best referred to as a system on a board, but often is still called a
SOC. What distinguishes a system on a board (or chip) from the conventional
general - purpose computer plus memory on a board is the specifi c nature of
the design target. The application is assumed to be known and specifi ed so
that the elements of the system can be selected, sized, and evaluated during
the design process. The emphasis on selecting, parameterizing, and confi guring
system components tailored to a target application distinguishes a system
architect from a computer architect.

 Figure 1.5 A basic SOC system model.

Media
Processor

Core
Processor

Vector
Coprocessor

Interconnects

Memory
Analog and

Custom
Circuitry

System
Components

HARDWARE AND SOFTWARE 5

 In this chapter, we primarily look at the higher - level defi nition of the
processor — the programmer ’ s view or the instruction set architecture (ISA),
the basics of the processor microarchitecture, memory hierarchies, and the
interconnection structure. In later chapters, we shall study in more detail the
implementation issues for these elements.

 1.3 HARDWARE AND SOFTWARE: PROGRAMMABILITY
VERSUS PERFORMANCE

 A fundamental decision in SOC design is to choose which components in the
system are to be implemented in hardware and in software. The major benefi ts
and drawbacks of hardware and software implementations are summarized in
Table 1.1 .

 A software implementation is usually executed on a general - purpose pro-
cessor (GPP), which interprets instructions at run time. This architecture offers
fl exibility and adaptability, and provides a way of sharing resources among
different applications; however, the hardware implementation of the ISA is
generally slower and more power hungry than implementing the correspond-
ing function directly in hardware without the overhead of fetching and decod-
ing instructions.

 Most software developers use high - level languages and tools that enhance
productivity, such as program development environments, optimizing com-
pilers, and performance profi lers. In contrast, the direct implementation of
applications in hardware results in custom application - specifi c integrated
circuits (ASICs), which often provides high performance at the expense of
programmability — and hence fl exibility, productivity, and cost.

 Given that hardware and software have complementary features, many
SOC designs aim to combine the individual benefi ts of the two. The obvious
method is to implement the performance - critical parts of the application in
hardware, and the rest in software. For instance, if 90% of the software execu-
tion time of an application is spent on 10% of the source code, up to a 10 - fold
speedup is achievable if that 10% of the code is effi ciently implemented in
hardware. We shall make use of this observation to customize designs in
Chapter 6 .

 Custom ASIC hardware and software on GPPs can be seen as two extremes
in the technology spectrum with different trade - offs in programmability and

 TABLE 1.1 Benefi ts and Drawbacks of Software and Hardware Implementations

 Benefi ts Drawbacks

 Hardware Fast, low power consumption Infl exible, unadaptable, complex
to build and test

 Software Flexible, adaptable, simple to
build and test

 Slow, high power consumption

6 INTRODUCTION TO THE SYSTEMS APPROACH

performance; there are various technologies that lie between these two
extremes (Figure 1.6). The two more well - known ones are application - specifi c
instruction processors (ASIPs) and fi eld - programmable gate arrays (FPGAs).

 An ASIP is a processor with an instruction set customized for a specifi c
application or domain. Custom instructions effi ciently implemented in hard-
ware are often integrated into a base processor with a basic instruction set.
This capability often improves upon the conventional approach of using
standard instruction sets to fulfi ll the same task while preserving its fl exibil-
ity. Chapters 6 and 7 explore further some of the issues involving custom
instructions.

 An FPGA typically contains an array of computation units, memories, and
their interconnections, and all three are usually programmable in the fi eld by
application builders. FPGA technology often offers a good compromise: It is
faster than software while being more fl exible and having shorter development
times than custom ASIC hardware implementations; like GPPs, they are
offered as off - the - shelf devices that can be programmed without going through
chip fabrication. Because of the growing demand for reducing the time to
market and the increasing cost of chip fabrication, FPGAs are becoming more
popular for implementing digital designs.

 Most commercial FPGAs contain an array of fi ne - grained logic blocks, each
only a few bits wide. It is also possible to have the following:

 Figure 1.6 A simplifi ed technology comparison: programmability versus performance.
GPP, general - purpose processor; CGRA, coarse - grained reconfi gurable architecture.

FPGA

Custom
ASIC

Structured
ASIC

CGRA

ASIP

DSP

GPP

Programmability

P
ea

k
pe

rf
or

m
an

ce
: n

um
be

r
of

 o
pe

ra
tio

ns
 p

er
 w

at
t

Low High

PROCESSOR ARCHITECTURES 7

 • Coarse - Grained Reconfi gurable Architecture (CGRA) . It contains logic
blocks that process byte - wide or multiple byte - wide data, which can form
building blocks of datapaths.

 • Structured ASIC . It allows application builders to customize the resources
before fabrication. While it offers performance close to that of ASIC, the
need for chip fabrication can be an issue.

 • Digital Signal Processors (DSPs) . The organization and instruction set
for these devices are optimized for digital signal processing applications.
Like microprocessors, they have a fi xed hardware architecture that cannot
be reconfi gured.

 Figure 1.6 compares these technologies in terms of programmability and per-
formance. Chapters 6 – 8 provide further information about some of these
technologies.

 1.4 PROCESSOR ARCHITECTURES

 Typically, processors are characterized either by their application or by their
architecture (or structure), as shown in Tables 1.2 and 1.3 . The requirements
space of an application is often large, and there is a range of implementation
options. Thus, it is usually diffi cult to associate a particular architecture with
a particular application. In addition, some architectures combine different
implementation approaches as seen in the PlayStation example of Section
 1.1 . There, the graphics processor consists of a four - element SIMD array of
vector processing functional units (FUs). Other SOC implementations consist
of multiprocessors using very long instruction word (VLIW) and/or supersca-
lar processors.

 TABLE 1.2 Processor Examples as Identifi ed by Function

 Processor Type Application

 Graphics processing unit (GPU) 3 - D graphics; rendering, shading, texture
 Digital signal processor (DSP) Generic, sometimes used with wireless
 Media processor Video and audio signal processing
 Network processor Routing, buffering

 TABLE 1.3 Processor Examples as Identifi ed by Architecture

 Processor Type Architecture/Implementation Approach

 SIMD Single instruction applied to multiple functional units (processors)
 Vector (VP) Single instruction applied to multiple pipelined registers
 VLIW Multiple instructions issued each cycle under compiler control
 Superscalar Multiple instructions issued each cycle under hardware control

8 INTRODUCTION TO THE SYSTEMS APPROACH

 From the programmer ’ s point of view, sequential processors execute
one instruction at a time. However, many processors have the capability to
execute several instructions concurrently in a manner that is transparent to
the programmer, through techniques such as pipelining, multiple execution
units, and multiple cores. Pipelining is a powerful technique that is used
in almost all current processor implementations. Techniques to extract and
exploit the inherent parallelism in the code at compile time or run time are
also widely used.

 Exploiting program parallelism is one of the most important goals in com-
puter architecture.

 Instruction - level parallelism (ILP) means that multiple operations can be
executed in parallel within a program. ILP may be achieved with hardware,
compiler, or operating system techniques. At the loop level, consecutive loop
iterations are ideal candidates for parallel execution, provided that there is no
data dependency between subsequent loop iterations. Next, there is parallel-
ism available at the procedure level, which depends largely on the algorithms
used in the program. Finally, multiple independent programs can execute in
parallel.

 Different computer architectures have been built to exploit this inherent
parallelism. In general, a computer architecture consists of one or more inter-
connected processor elements (PEs) that operate concurrently, solving a single
overall problem.

 1.4.1 Processor: A Functional View

 Table 1.4 shows different SOC designs and the processor used in each design.
For these examples, we can characterize them as general purpose, or special
purpose with support for gaming or signal processing applications. This func-
tional view tells little about the underlying hardware implementation. Indeed,
several quite different architectural approaches could implement the same
generic function. The graphics function, for example, requires shading, render-
ing, and texturing functions as well as perhaps a video function. Depending

 TABLE 1.4 Processor Models for Different SOC Examples

 SOC Application Base ISA Processor Description

 Freescale e600 [101] DSP PowerPC Superscalar with
vector extension

 ClearSpeed
CSX600 [59]

 General Proprietary ISA Array processor of 96
processing elements

 PlayStation 2
 [147, 187, 237]

 Gaming MIPS Pipelined with two
vector coprocessors

 ARM VFP11 [23] General ARM Confi gurable vector
coprocessor

