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 PREFACE     

  The next generation of computer system designers will be concerned more 
about the elements of a system tailored to particular applications than with 
the details of processors and memories. 

 Such designers would have rudimentary knowledge of processors and other 
elements in the system, but the success of their design would depend on their 
skills in making system - level trade - offs that optimize the cost, performance, 
and other attributes to meet application requirements. 

 This text is organized to introduce issues in computer system design, par-
ticularly for system - on - chip (SOC). Managing such design requires knowledge 
of a number of issues, as shown in Figure  1 .   

 After Chapter  1 , the introduction chapter, Chapter  2  looks at issues that 
defi ne the design space: area, speed, power consumption, and confi gurability. 
Chapters  3  –  5  provide background knowledge of the basic elements in a system: 
processor, memory, and interconnect. 

 The succeeding chapters focus on computer systems tailored to specifi c 
applications and technologies. Chapter  6  covers issues in customizing and 
confi guring designs. Chapter  7  addresses system - level trade - offs for various 
applications, bringing together earlier material in this study. Finally, Chapter 
 8  presents future challenges for system design and SOC possibilities. 

 The tools that illustrate the material in the text are still being developed. 
The Appendix provides an overview of one such tool. Since our tools are 
evolving, please check from time to time to see what is available at the com-
panion web site:  www.soctextbook.com . 

 Moreover, material useful for teaching, such as slides and answers to exer-
cises, is also being prepared. 

 This book covers a particular approach to computer system design, with 
emphasis on fundamental ideas and analytical techniques that are applicable 
to a range of applications and architectures, rather than on specifi c applica-
tions, architectures, languages, and tools. We are aware of complementary 
treatments on these and also on other topics, such as electronic system - level 
design, embedded software development, and system - level integration and 
test. We have included brief descriptions and references to these topics where 
appropriate; a more detailed treatment can be covered in future editions or 
in different volumes. 

 SOC is a quickly developing fi eld. Although we focused on funda-
mental material, we were forced to draw a line on the inclusion of the latest 

xiii
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     Figure 1     An approach to SOC system design described in this book.  
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technological advances for the sake of completing the book. Such advances, 
instead, are captured as links to relevant sources of information at the com-
panion web site described above. 
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  1    Introduction to the 
Systems Approach     

    1.1    SYSTEM ARCHITECTURE: AN OVERVIEW 

 The past 40 years have seen amazing advances in silicon technology and result-
ing increases in transistor density and performance. In 1966, Fairchild 
Semiconductor  [84]  introduced a quad two input NAND gate with about 10 
transistors on a die. In 2008, the Intel quad - core Itanium processor has 2 billion 
transistors  [226] . Figures  1.1  and  1.2  show the unrelenting advance in improv-
ing transistor density and the corresponding decrease in device cost.   

 The aim of this book is to present an approach for computer system design 
that exploits this enormous transistor density. In part, this is a direct extension 
of studies in computer architecture and design. However, it is also a study of 
system architecture and design. 

 About 50 years ago, a seminal text,  Systems Engineering — An Introduction 
to the Design of Large - Scale Systems   [111] , appeared. As the authors, H.H. 
Goode and R.E. Machol, pointed out, the system ’ s view of engineering was 
created by a need to deal with complexity. As then, our ability to deal with 
complex design problems is greatly enhanced by computer - based tools. 

 A system - on - chip (SOC) architecture is an ensemble of processors, memo-
ries, and interconnects tailored to an application domain. A simple example 
of such an architecture is the Emotion Engine  [147, 187, 237]  for the Sony 
PlayStation 2 (Figure  1.3 ), which has two main functions: behavior simulation 
and geometry translation. This system contains three essential components: a 
main processor of the reduced instruction set computer (RISC) style  [118]  and 
two vector processing units, VPU0 and VPU1, each of which contains four 
parallel processors of the single instruction, multiple data (SIMD) stream style 
 [97] . We provide a brief overview of these components and our overall 
approach in the next few sections.   

 While the focus of the book is on the system, in order to understand the 
system, one must fi rst understand the components. So, before returning to the 
issue of system architecture later in this chapter, we review the components 
that make up the system.  

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

1



2  INTRODUCTION TO THE SYSTEMS APPROACH 

   1.2    COMPONENTS OF THE SYSTEM: PROCESSORS, MEMORIES, 
AND INTERCONNECTS 

 The term  architecture  denotes the operational structure and the user ’ s view 
of the system. Over time, it has evolved to include both the functional speci-
fi cation and the hardware implementation. The system architecture defi nes 
the system - level building blocks, such as processors and memories, and the 

     Figure 1.1     The increasing transistor density on a silicon die.  
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     Figure 1.2     The decrease of transistor cost over the years.  
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COMPONENTS OF THE SYSTEM  3

interconnection between them. The processor architecture determines the 
processor ’ s instruction set, the associated programming model, its detailed 
implementation, which may include hidden registers, branch prediction cir-
cuits and specifi c details concerning the ALU (arithmetic logic unit). The 
implementation of a processor is also known as  microarchitecture  (Figure  1.4 ).   

 The system designer has a programmer ’ s or user ’ s view of the system com-
ponents, the system view of memory, the variety of specialized processors, and 

     Figure 1.3     High - level functional view of a system - on - chip: the Emotion Engine of the 
Sony PlayStation 2  [147, 187] .  
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     Figure 1.4     The processor architecture and its implementation.  
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4  INTRODUCTION TO THE SYSTEMS APPROACH 

their interconnection. The next sections cover basic components: the processor 
architecture, the memory, and the bus or interconnect architecture. 

 Figure  1.5  illustrates some of the basic elements of an SOC system. These 
include a number of heterogeneous processors interconnected to one or more 
memory elements with possibly an array of reconfi gurable logic. Frequently, 
the SOC also has analog circuitry for managing sensor data and analog - to -
 digital conversion, or to support wireless data transmission.   

 As an example, an SOC for a smart phone would need to support, in addi-
tion to audio input and output capabilities for a traditional phone, Internet 
access functions and multimedia facilities for video communication, document 
processing, and entertainment such as games and movies. A possible confi gura-
tion for the elements in Figure  1.5  would have the core processor being imple-
mented by several ARM Cortex - A9 processors for application processing, and 
the media processor being implemented by a Mali - 400MP graphics processor 
and a Mali - VE video engine. The system components and custom circuitry 
would interface with peripherals such as the camera, the screen, and the wire-
less communication unit. The elements would be connected together by AXI 
(Advanced eXtensible Interface) interconnects. 

 If all the elements cannot be contained on a single chip, the implementation 
is probably best referred to as a system on a board, but often is still called a 
SOC. What distinguishes a system on a board (or chip) from the conventional 
general - purpose computer plus memory on a board is the specifi c nature of 
the design target. The application is assumed to be known and specifi ed so 
that the elements of the system can be selected, sized, and evaluated during 
the design process. The emphasis on selecting, parameterizing, and confi guring 
system components tailored to a target application distinguishes a system 
architect from a computer architect. 

     Figure 1.5     A basic SOC system model.  
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HARDWARE AND SOFTWARE  5

 In this chapter, we primarily look at the higher - level defi nition of the 
processor — the programmer ’ s view or the instruction set architecture (ISA), 
the basics of the processor microarchitecture, memory hierarchies, and the 
interconnection structure. In later chapters, we shall study in more detail the 
implementation issues for these elements.  

   1.3    HARDWARE AND SOFTWARE: PROGRAMMABILITY 
VERSUS PERFORMANCE 

 A fundamental decision in SOC design is to choose which components in the 
system are to be implemented in hardware and in software. The major benefi ts 
and drawbacks of hardware and software implementations are summarized in 
Table  1.1 .   

 A software implementation is usually executed on a general - purpose pro-
cessor (GPP), which interprets instructions at run time. This architecture offers 
fl exibility and adaptability, and provides a way of sharing resources among 
different applications; however, the hardware implementation of the ISA is 
generally slower and more power hungry than implementing the correspond-
ing function directly in hardware without the overhead of fetching and decod-
ing instructions. 

 Most software developers use high - level languages and tools that enhance 
productivity, such as program development environments, optimizing com-
pilers, and performance profi lers. In contrast, the direct implementation of 
applications in hardware results in custom application - specifi c integrated 
circuits (ASICs), which often provides high performance at the expense of 
programmability — and hence fl exibility, productivity, and cost. 

 Given that hardware and software have complementary features, many 
SOC designs aim to combine the individual benefi ts of the two. The obvious 
method is to implement the performance - critical parts of the application in 
hardware, and the rest in software. For instance, if 90% of the software execu-
tion time of an application is spent on 10% of the source code, up to a 10 - fold 
speedup is achievable if that 10% of the code is effi ciently implemented in 
hardware. We shall make use of this observation to customize designs in 
Chapter  6 . 

 Custom ASIC hardware and software on GPPs can be seen as two extremes 
in the technology spectrum with different trade - offs in programmability and 

  TABLE 1.1    Benefi ts and Drawbacks of Software and Hardware Implementations 

        Benefi ts     Drawbacks  

  Hardware    Fast, low power consumption    Infl exible, unadaptable, complex 
to build and test  

  Software    Flexible, adaptable, simple to 
build and test  

  Slow, high power consumption  
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performance; there are various technologies that lie between these two 
extremes (Figure  1.6 ). The two more well - known ones are application - specifi c 
instruction processors (ASIPs) and fi eld - programmable gate arrays (FPGAs).   

 An ASIP is a processor with an instruction set customized for a specifi c 
application or domain. Custom instructions effi ciently implemented in hard-
ware are often integrated into a base processor with a basic instruction set. 
This capability often improves upon the conventional approach of using 
standard instruction sets to fulfi ll the same task while preserving its fl exibil-
ity. Chapters  6  and  7  explore further some of the issues involving custom 
instructions. 

 An FPGA typically contains an array of computation units, memories, and 
their interconnections, and all three are usually programmable in the fi eld by 
application builders. FPGA technology often offers a good compromise: It is 
faster than software while being more fl exible and having shorter development 
times than custom ASIC hardware implementations; like GPPs, they are 
offered as off - the - shelf devices that can be programmed without going through 
chip fabrication. Because of the growing demand for reducing the time to 
market and the increasing cost of chip fabrication, FPGAs are becoming more 
popular for implementing digital designs. 

 Most commercial FPGAs contain an array of fi ne - grained logic blocks, each 
only a few bits wide. It is also possible to have the following:

     Figure 1.6     A simplifi ed technology comparison: programmability versus performance. 
GPP, general - purpose processor; CGRA, coarse - grained reconfi gurable architecture.  

FPGA

Custom
ASIC

Structured
ASIC

CGRA

ASIP

DSP

GPP

Programmability

P
ea

k 
pe

rf
or

m
an

ce
: n

um
be

r 
of

 o
pe

ra
tio

ns
 p

er
 w

at
t

Low High



PROCESSOR ARCHITECTURES  7

    •      Coarse - Grained Reconfi gurable Architecture (CGRA) .      It contains logic 
blocks that process byte - wide or multiple byte - wide data, which can form 
building blocks of datapaths.  

   •      Structured ASIC .      It allows application builders to customize the resources 
before fabrication. While it offers performance close to that of ASIC, the 
need for chip fabrication can be an issue.  

   •      Digital Signal Processors (DSPs) .      The organization and instruction set 
for these devices are optimized for digital signal processing applications. 
Like microprocessors, they have a fi xed hardware architecture that cannot 
be reconfi gured.    

 Figure  1.6  compares these technologies in terms of programmability and per-
formance. Chapters  6  –  8  provide further information about some of these 
technologies.  

   1.4    PROCESSOR ARCHITECTURES 

 Typically, processors are characterized either by their application or by their 
architecture (or structure), as shown in Tables  1.2  and  1.3 . The requirements 
space of an application is often large, and there is a range of implementation 
options. Thus, it is usually diffi cult to associate a particular architecture with 
a particular application. In addition, some architectures combine different 
implementation approaches as seen in the PlayStation example of Section 
 1.1 . There, the graphics processor consists of a four - element SIMD array of 
vector processing functional units (FUs). Other SOC implementations consist 
of multiprocessors using very long instruction word (VLIW) and/or supersca-
lar processors.   

  TABLE 1.2    Processor Examples as Identifi ed by Function 

   Processor Type     Application  

  Graphics processing unit (GPU)    3 - D graphics; rendering, shading, texture  
  Digital signal processor (DSP)    Generic, sometimes used with wireless  
  Media processor    Video and audio signal processing  
  Network processor    Routing, buffering  

  TABLE 1.3    Processor Examples as Identifi ed by Architecture 

   Processor Type     Architecture/Implementation Approach  

  SIMD    Single instruction applied to multiple functional units (processors)  
  Vector (VP)    Single instruction applied to multiple pipelined registers  
  VLIW    Multiple instructions issued each cycle under compiler control  
  Superscalar    Multiple instructions issued each cycle under hardware control  
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 From the programmer ’ s point of view, sequential processors execute 
one instruction at a time. However, many processors have the capability to 
execute several instructions concurrently in a manner that is transparent to 
the programmer, through techniques such as pipelining, multiple execution 
units, and multiple cores. Pipelining is a powerful technique that is used 
in almost all current processor implementations. Techniques to extract and 
exploit the inherent parallelism in the code at compile time or run time are 
also widely used. 

 Exploiting program parallelism is one of the most important goals in com-
puter architecture. 

  Instruction - level parallelism  (ILP) means that multiple operations can be 
executed in parallel within a program. ILP may be achieved with hardware, 
compiler, or operating system techniques. At the loop level, consecutive loop 
iterations are ideal candidates for parallel execution, provided that there is no 
data dependency between subsequent loop iterations. Next, there is parallel-
ism available at the procedure level, which depends largely on the algorithms 
used in the program. Finally, multiple independent programs can execute in 
parallel. 

 Different computer architectures have been built to exploit this inherent 
parallelism. In general, a computer architecture consists of one or more inter-
connected processor elements (PEs) that operate concurrently, solving a single 
overall problem. 

   1.4.1    Processor: A Functional View 

 Table  1.4  shows different SOC designs and the processor used in each design. 
For these examples, we can characterize them as general purpose, or special 
purpose with support for gaming or signal processing applications. This func-
tional view tells little about the underlying hardware implementation. Indeed, 
several quite different architectural approaches could implement the same 
generic function. The graphics function, for example, requires shading, render-
ing, and texturing functions as well as perhaps a video function. Depending 

  TABLE 1.4    Processor Models for Different  SOC  Examples 

   SOC     Application     Base ISA     Processor Description  

  Freescale e600  [101]     DSP    PowerPC    Superscalar with 
vector extension  

  ClearSpeed 
CSX600  [59]   

  General    Proprietary ISA    Array processor of 96 
processing elements  

  PlayStation 2 
 [147, 187, 237]   

  Gaming    MIPS    Pipelined with two 
vector coprocessors  

  ARM VFP11  [23]     General    ARM    Confi gurable vector 
coprocessor  


