Formulas and Calculations for Drilling Operations

G. Robello Samuel
Formulas and Calculations for Drilling Operations
Formulas and Calculations for Drilling Operations

G. Robello Samuel
...An elegant Euler's formula wrapped with imaginary and real numbers resulting in nothing depicts the relationship between the Creator and human intellect...

\[e^{i\pi} + 1 = 0 \]

To

Cynthia, Nishanth and Sharon
This page intentionally left blank
Contents

Preface xv

1 Basic Calculations 1

1.1 Capacities 1
1.2 Displacement 2
 1.2.1 Displacement of the Pipe Based on the Thickness of the Pipe 2
1.3 Buoyancy, Buoyed Weight, and Buoyancy Factor (BF) 3
1.4 Effective Weight 4
1.5 Modulus of Elasticity 8
1.6 Poisson's Ratio 9
1.7 Minimum Yield Strength 9
1.8 Ultimate Tensile Strength 10
1.9 Fatigue Endurance Limit 10
1.10 Twist 11
1.11 Composite Materials 14
1.12 Friction 15
 1.12.1 Coefficient of Friction 15
 1.12.2 Types of Friction 16
 1.12.3 Friction and Rotational Speed 18
1.13 Gauge and Absolute Pressures 19
 1.13.1 Hydrostatic Pressure 20
 1.13.2 Mud Gradient 20
 1.13.3 Measurement of Pressure 22
1.14 Temperature 23
1.15 Horsepower 25
1.16 Flow Velocity 27
2 Rig Equipment

2.1 Overall Efficiency of Engines 29
2.2 Energy Transfer 30
2.3 Blocks and Drilling Line 33
2.4 Derrick Load 34
 2.4.1 Block Efficiency Factor 35
 2.4.2 Block Line Strength 35
2.5 Ton-Miles (TM) Calculations 44
 2.5.1 Drilling Ton-Miles Calculations 44
 2.5.2 Coring Ton-Miles Calculations 44
 2.5.3 Casing Ton-Miles Calculations 45
2.6 Crown Block Capacity 48
2.7 Line Pull Efficiency Factor 49
2.8 Rotary Power 50
2.9 Mud Pumps 56
 2.9.1 Volumetric Efficiency 56
 2.9.2 Pump Factor 57
2.10 Energy Transfer 58
2.11 Offshore Vessels 72
 2.11.1 Environmental Forces 73
 2.11.2 Riser Angle 76

3 Well Path Design

3.1 Average Curvature – Average Dogleg Severity (DLS) 79
3.2 Vertical and Horizontal Curvatures 80
3.3 Borehole Curvature 80
 3.3.1 Borehole Radius of Curvature 81
3.4 Bending Angle 82
3.5 Tool Face Angle 82
3.6 Borehole Torsion 86
 3.6.1 Borehole Torsion – Cylindrical Helical Method 86
3.7 Wellpath Length Calculations 87
 3.7.1 Wellpath Trajectory Calculations from Survey Data 88
 3.7.1.1 Minimum Curvature Method 88
 3.7.1.2 Radius of Curvature Method 89
3.7.2 Natural Curve Method 92
3.7.3 Constant Tool Face Angle Method 92
3.8 Types Of Designs 98
3.9 Tool Face Angle Change 99
3.10 Horizontal Displacement 103
3.11 Tortuosity 105
 3.11.1 Absolute and Relative Tortuosity 105
 3.11.2 Sine Wave Method 106
 3.11.3 Helical Method 107
 3.11.4 Random Inclination Azimuth Method 107
 3.11.5 Random Inclination Dependent Azimuth Method 108
3.12 Well Profile Energy 109
3.13 Magnetic Reference and Interference 110
3.14 Wellbore Trajectory Uncertainty 112

4 Fluids 119
 4.1 Equivalent Mud Weight 119
 4.2 Mud Weighting 121
 4.3 Common Weighting Materials 123
 4.4 Diluting Mud 127
 4.5 Base Fluid - Water-Oil Ratios 142
 4.6 Fluid Loss 145
 4.7 Acidity-Alkalinity 147
 4.8 Marsh Funnel 149
 4.9 Mud Rheology 150
 4.10 Plastic Viscosity, Yield Point and Zero-Sec-Gel 152
 4.10.1 Bingham Plastic Model 152
 4.10.2 Shear Stress and Shear Rate 152
 4.10.3 Power Law 153

5 Hydraulics 159
 5.1 Equivalent Mud Weight 159
 5.2 Equivalent Circulating Density 160
 5.3 Hydraulics: Basic Calculations 161
 5.3.1 Critical Velocity 161
 5.3.2 Pump Calculations 162
5.4 Bit Hydraulics 165
 5.4.1 Basic Calculations 165
 5.4.2 Optimization Calculations 167
 5.4.2.1 Limitation 1 – Available Pump Horsepower 168
 5.4.2.2 Limitation 2 – Surface Operating Pressure 168

5.5 Bingham Plastic Model 177
 5.5.1 Reynolds Number 177

5.6 Power Law Model 183

5.7 Gel Breaking Pressure 196

5.8 Hole Cleaning – Cuttings Transport 197

5.9 Transport Velocity 198

6 Tubular Mechanics 205
 6.1 Drill Collar Length 205
 6.2 Bending Stress Ratio (BSR) 207
 6.3 Pipe Wall Thickness 207
 6.4 Resonant Frequency 209
 6.5 Tensions 209
 6.6 Drag Force 210
 6.7 Side Force Calculation 211
 6.8 Torque and Makeup Torque 213
 6.9 Buckling 215
 6.9.1 Buckling Criteria 215
 6.10 Maximum Permissible Dogleg 217
 6.11 Length Change Calculations 218
 6.11.1 Stretch Due to Axial Load 218
 6.11.2 Stretch Due to the Pressure Effect (Ballooning) 218
 6.11.3 Stretch Due to Buckling 219
 6.11.4 Stretch Due to Temperature 220
 6.12 Stresses 221
 6.12.1 Radial Stress 221
 6.12.2 Hoop Stress (Tangential or Circumferential Stress) 222
 6.12.3 Axial Stress 223
 6.12.4 Bending Stress with Hole Curvature 224
6.12.5 Bending Stress with Hole Curvature, Pipe Curvature, and Tensile Force 228
6.12.6 Torsional or Twisting Shear Stress 230
6.12.7 Transverse Shear Stress 230
6.12.8 von Mises Stress 233
6.12.9 Stress Ratio 234
6.13 Fatigue Ratio 238
6.14 Bending Stress Magnification Factor 239
 6.14.1 BSMF for Tensile Force 239
 6.14.2 BSMF for Compressive Force 241
6.15 Slip Crushing 245
6.16 Cumulative Fatigue Calculation 247

7 Drilling Tools 253
 7.1 Stretch Calculations 253
 7.2 Backoff Calculations 254
 7.3 Overpull/Slack-Off Calculations 257
 7.4 Motor Calculations 259
 7.4.1 Type I Motor 260
 7.4.2 Type II Motor 261
 7.4.3 Type III Motor 262
 7.4.4 Type IV Motor 263
 7.5 Stabilizer Calculations 265
 7.5.1 Stabilizer Jamming Angle 265
 7.5.2 Alignment Angle of Stabilizers with the Wellbore 266
 7.6 Percussion Hammer 270
 7.7 Positive Displacement Motor (PDM) 271
 7.8 Rotor Nozzle Sizing 274
 7.9 Downhole Turbine 276
 7.10 Jar Calculations 279
 7.10.1 Force Calculations for up Jars 279
 7.10.2 Force Calculations For Down Jars 279
 7.11 Specific Energy 282

8 Pore Pressure and Fracture Gradient 287
 8.1 Formation Pressure 287
 8.1.1 The Hubert and Willis Method 287
8.1.2 Matthews and Kelly’s Correlation 288
8.1.3 Eaton’s Method 290
8.1.4 Christman’s Method 291
8.2 Leak-off Pressure 296

9 Well Control 301
9.1 Kill Mud Weight 301
9.2 The Length and Density of the Kick 303
 9.2.1 Type of Kick 303
 9.2.2 Kick Classification 304
 9.2.3 Kick Tolerance 305
9.3 Hydrostatic Pressure due to the Gas Column 307
9.4 Leak-off Pressure 307
9.5 Maximum Allowable Annular Surface Pressure (MAASP) 309
9.6 Accumulators 310
9.7 Driller’s Method Operational Procedure 312
9.8 Kill Methods 315
9.9 The Riser Margin 316

10 Drilling Problems 317
10.1 Stuck Point Calculations 317
10.2 Differential Sticking Force 321
 10.2.1 Method 1 322
 10.2.2 Method 2 322
 10.2.3 Method 3 324
10.3 Spotting Fluid Requirements 327
10.4 Loss Circulation 328
10.5 Increased ECD Due to Cuttings 330
10.6 Mud Weight Increase Due to Cuttings 331
10.7 Hole Cleaning – Slip Velocity Calculations 333
 10.7.1 The Chien Correlation 333
 10.7.2 The Moore Correlation 334
 10.7.3 The Walker Mays Correlation 335
10.8 Transport Velocity and Transport Ratio 335
10.9 Keyseating 339
Contents

11 Cementing
11.1 Cement Slurry Requirements 341
11.2 Yield of Cement 341
11.3 Slurry Density 342
11.4 Hydrostatic Pressure Reduction 342
11.5 Contact Time 342
11.6 Gas Migration Potential 347
11.7 Cement Plug 350

12 Well Cost 355
12.1 Drilling Costs 355
 12.1.1 Cost Per Foot 355
 12.1.2 Coring Costs 360
12.2 Future Value (FV) 361
12.3 Expected Value (EV) 362
12.4 Price Elasticity 362
 12.4.1 Ranges of Elasticity 363

Appendix: Useful Conversion Factors 365
Bibliography 371
Index 377
About the Author 387
This page intentionally left blank
Preface

This book is an introductory exposition for drilling engineers, students, lecturers, teachers, software programmers, testers, and researchers. The intent is to provide basic equations and formulas with the calculations for downhole drilling. This book may be a tutorial guide for students, to lecturers and teachers it may be a solution manual, and drilling engineers may find that it is a source for solving problems. Software programmers and testers may use it as a guide as they code, unit test, and validate their implementation, and researchers may use it as a source for further development. Of course, it is very difficult to cover all the aspects and areas of drilling, but this book aims to provide an introduction to exploring the vastness and complexity of drilling engineering. The readers are advised to refer to the books in the bibliography for more details regarding underlying theory. This book is a companion to my other books, Drilling Engineering, Downhole Drilling Tools, Advanced Drilling Engineering, and the upcoming Applied Drilling Engineering Optimization.

I am grateful to the contributors, the publisher, Phil Carmical, and copyeditor Brittyne Jackson and Mohana Sundaram from Exeter Premedia Services. Also, I thank Dr. João Carlos Plácido and Dr. Dali Gao for helping in formulating some problems. I thank them for their invaluable help. A work of this magnitude with many equations and numbers is bound to have errors even though painstaking efforts have been taken. Needless to say, I request that the readers send errors and comments in effort towards the improvement of this book.

Houston, Texas
Basic Calculations

This chapter focuses on different basic calculations such as buoyancy, weight, tension, etc.

1.1 Capacities

Capacities of the pipe, annular capacity, and annular volume can be calculated using the following equations.

The linear capacity of the pipe is

\[C_i = \frac{A_i}{808.5} \text{ bbl/ft,} \] \hspace{1cm} (1.1)

where \(A_i \) is a cross-sectional area of the inside pipe in square inches and equals \(0.7854 \times D_i^2 \), and \(D_i \) is the inside diameter of the pipe in inches.

Volume capacity is

\[V = C_i \times L \text{ bbl,} \] \hspace{1cm} (1.2)

where \(L \) = the length of the pipe, ft.
Annular linear capacity against the pipe is

\[C_o = \frac{A_o}{808.5} \text{ bbl/ft}, \quad (1.3) \]

where \(A_o \), a cross-sectional area of the annulus in square inches, is

\[0.7854 \times (D_h^2 - D_i^2). \quad (1.4) \]

\(D_o = \) the outside side diameter of the pipe, in., and \(D_h = \) the diameter of the hole or the inside diameter of the casing against the pipe, in. Annular volume capacity is

\[V = C_o \times L \text{ bbl.} \quad (1.5) \]

1.2 Displacement

1.2.1 Displacement of the Pipe Based on the Thickness of the Pipe

Open-ended displacement volume of the pipe is

\[V_o = \frac{0.7854(D_o^2 - D_i^2)}{808.5} \text{ bbl/ft.} \quad (1.6) \]

Displacement volume = \(V_o \times L \) bbl. \(\quad (1.7) \)

Close-ended displacement volume of the pipe is

\[V_c = \frac{0.7854D_o^2}{808.5} \text{ bbl/ft.} \quad (1.8) \]

Displacement volume = \(V_c \times L \) bbl. \(\quad (1.9) \)
Problem 1.1

Calculate the drill pipe capacity, open-end displacement, closed end displacement, annular volume, and total volume for the following condition: 5,000 feet of 5" drill pipe with an inside diameter of 4.276" inside a hole of 8½".

Solution:

Linear capacity of pipe, using equation 1.1, is

$$C_i = \frac{A_i}{808.5} = \frac{0.7854 \times D_i^2}{808.5} = \frac{0.7854 \times 4.276^2}{808.5} = 0.017762 \text{ bbl/ft.}$$

Pipe volume capacity = 0.017762 \times 5000 = 88.81 \text{ bbl.}

Open-end displacement of pipe, using equation 1.6, is

$$V_o = \frac{0.7854 \left(D_o^2 - D_i^2 \right)}{808.5} = \frac{0.7854 \left(8.5^2 - 4.276^2 \right)}{808.5} = 0.006524 \text{ bbl/ft.}$$

Close-end displacement of pipe, using equation 1.8 is

$$V_c = \frac{0.7854 \left(D_o^2 \right)}{808.5} = \frac{0.7854 \left(8.5^2 \right)}{808.5} = 0.024286 \text{ bbl/ft.}$$

Annular volume, using equation 1.5 is

$$V = C_o \times L = \frac{A_o}{808.5} \times L = \frac{0.7854}{808.5} \times \left(D_h - D_o \right) \times L$$

$$= \frac{0.7854}{808.5} \times (8.5^2 - 5^2) \times 5000 = 229.5 \text{ bbl.}$$

Total volume = Pipe volume + Annular volume = 88.81 + 229.50 = 318.31 \text{ bbl.}

1.3 Buoyancy, Buoyed Weight, and Buoyancy Factor (BF)

The calculations are based on one fluid.
4 Formulas and Calculations for Drilling Operations

\[\text{Buoyancy} = \frac{\text{Weight of material in air}}{\text{Density of material}} \times \text{Fluid density}. \] (1.10)

\[\text{Buoyed weight} = \left(\frac{\text{Density of material} - \text{Fluid density}}{\text{Density of material}} \right) \times \text{Weight of material in air}. \] (1.11)

\[\text{Buoyancy factor} = \left(\frac{\text{Density of material} - \text{Fluid density}}{\text{Density of material}} \right). \] (1.12)

\[\text{Buoyancy factor} = \left(\frac{\rho_s - \rho_m}{\rho_s} \right) = \left(1 - \frac{\rho_m}{\rho_s} \right), \] (1.13)

where \(\rho_s \) is the density of the steel/material, and \(\rho_m \) is the density of the fluid/mud.

When the inside and outside fluid densities are different, the buoyancy factor can be given as

\[\text{Buoyancy factor (BF)} = \frac{A_o \left(1 - \frac{\rho_o}{\rho_s} \right) - A_i \left(1 - \frac{\rho_i}{\rho_s} \right)}{A_o - A_i}, \] (1.14)

where \(A_o \) is the external area of the component, and \(A_i \) is the internal area of the component.

1.4 Effective Weight

Effective weight per unit length can be calculated using the following relation. Weight per foot in drilling mud is the
weight per foot in air minus the weight per foot of the displaced drilling mud:

\[w_B = w_s + \rho_i A_i - \rho_o A_o, \]

(1.15)

\[A_o = \frac{\pi}{4} \left(0.95 \times D_o^2 + 0.05 \times D_{oj}^2 \right), \]

(1.16)

\[A_i = \frac{\pi}{4} \left(0.95 \times D_i^2 + 0.05 \times D_{ij}^2 \right). \]

(1.17)

Without tool joints, \(A_i = 0.7854 \times D_i^2 \), and \(A_o = 0.7854 \times D_o^2 \).

Using equation 1.15, \(w_B = w_s + \rho_i A_i - \rho_o A_o \).

In the above equation, unit weight of the steel can be given as

\[w_s = \rho_s A_s, \]

(1.18)

When the inside and outside fluid densities are the same,

\[w_B = A_s \left(\rho_s - \rho_o \right) = A_s \rho_s \left(1 - \frac{\rho_o}{\rho_s} \right) = w_s \left(1 - \frac{\rho_o}{\rho_s} \right), \]

(1.19)

where \(1 - \left(\rho_o / \rho_s \right) \) is the buoyancy factor, and where the following values are as follows:

- \(D_o \) = outside diameter of component body
- \(D_{oj} \) = outside diameter of tool joint
- \(D_i \) = inside diameter of component body
- \(D_{ij} \) = inside diameter of tool joint
- \(A_s \) = cross-sectional area of the steel/material
- \(\rho_o \) = annular mud weight at component depth in the wellbore
- \(\rho_i \) = internal mud weight at component depth inside the component
- \(\rho_s \) = density of the steel/material
Problem 1.2

Calculate the buoyancy factor and buoyed weight of 6,000 ft of 6 5/8" 27.7 ppf E grade drill pipe in mud of density 10 ppg.

Solution:

Using equation 1.13 and a steel density of 65.4 ppg,

\[
\text{Buoyancy factor} = \left(1 - \frac{\rho_m}{\rho_s}\right) = \left(1 - \frac{10}{65.4}\right) = 0.847.
\]

Buoyed weight can be calculated using equation 1.11:

\[
\text{Buoyed weight} = 0.847 \times 27.7 \times 6000
\]

\[
= 140771.4 \text{ lbf} = 140.8 \text{ kips.}
\]

Problem 1.3

Calculate the buoyed weight of 5,000 ft of 20" 106.5 ppf casing with drilling mud of density 9 ppg inside and 11 ppg cement outside the casing. Also, estimate the buoyed weight of the casing with the same drilling fluid inside and outside before pumping cement. Neglect the tool joint effects.

Solution:

After pumping cement with full cement behind the casing, the inside diameter of the casing is 18.98 in.

Using equation 1.14 and a steel density of 65.4 ppg,

\[
\text{BF} = \frac{A_o \left(1 - \frac{\rho_o}{\rho_s}\right) - A_i \left(1 - \frac{\rho_i}{\rho_s}\right)}{A_o - A_i}
\]

\[
= \frac{0.7854 \times 20^2 \left(1 - \frac{11}{65.4}\right) - 0.7854 \times 19^2 \left(1 - \frac{9}{65.4}\right)}{0.7854 \times 20^2 - 0.7854 \times 18.98^2}
\]

\[
= 0.5382.
\]
Buoyed weight can be calculated using equation 1.11:

\[
\text{Buoyed weight} = 0.5382 \times 106.5 \times 5000 \\
= 286618 \text{ lbf} = 287 \text{ kips.}
\]

Before pumping cement, the buoyed weight can be estimated using equation 1.13 and a steel density of 65.4 ppg:

\[
\text{Buoyancy factor} = \left(1 - \frac{\rho_m}{\rho_s}\right) = \left(1 - \frac{9}{65.4}\right) = 0.8623.
\]

Buoyed weight can be calculated using equation 1.11:

\[
\text{Buoyed weight} = 0.8623 \times 106.5 \times 5000 \\
= 459220.2 \text{ lbf} = 459.2 \text{ kips.}
\]

Problem 1.4

Calculate the air weight, buoyed weight in drilling fluid, buoyed weight when cement is inside and drilling fluid is in the annulus, buoyed weight when cement is outside and drilling fluid is inside. Casing outside diameter is 9 5/8", casing inside diameter is 8.681", drilling fluid density is 10 ppg, cement slurry density is 12 ppg, and the depth of the well is 5,000 ft.

Solution:

Air weight = 47 × 5000 = 235000 lbf = 235 kips.

\[
\text{Buoyed weight with drilling fluid} = \left(1 - \frac{10}{65.4}\right) \times 5000 \times 47 \\
= 199067 \text{ lbf} = 199 \text{ kips.}
\]
Buoyed weight with cement inside and drilling fluid outside is

\[
BF = \frac{A_o \left(1 - \frac{\rho_o}{\rho_s}\right) - A_i \left(1 - \frac{\rho_i}{\rho_s}\right)}{A_o - A_i}
\]

\[
= \frac{0.7854 \times 9.625^2 \left(1 - \frac{10}{65.4}\right) - 0.7854 \times 8.681^2 \left(1 - \frac{12}{65.4}\right)}{0.7854 \times 9.625^2 - 0.7854 \times 8.681^2}
\]

\[= 0.98,\]

\[= 0.98 \times 5000 \times 47 = 230406 \text{ lbf} = 230 \text{ kips}.\]

Buoyed weight with cement outside and drilling fluid inside is

\[
BF = \frac{A_o \left(1 - \frac{\rho_o}{\rho_s}\right) - A_i \left(1 - \frac{\rho_i}{\rho_s}\right)}{A_o - A_i}
\]

\[
= \frac{0.7854 \times 9.625^2 \left(1 - \frac{12}{65.4}\right) - 0.7854 \times 8.681^2 \left(1 - \frac{10}{65.4}\right)}{0.7854 \times 9.625^2 - 0.7854 \times 8.681^2}
\]

\[= 0.6831,\]

\[= 0.6831 \times 5000 \times 47 = 160541 \text{ lbf} = 160 \text{ kips}.\]

1.5 Modulus of Elasticity

Modulus of elasticity is

\[
E = \frac{\sigma}{\varepsilon} = \frac{F/A}{\Delta L/L} \text{ psi,}\quad (1.20)
\]

where \(\sigma\) = unit stress, psi, \(\varepsilon\) = unit strain in inch per inch, \(F\) = axial force, lbf, \(A\) = cross sectional area, in\(^2\), \(\Delta L\) = total strain or elongation, in., and \(L\) = original length, in.
1.6 Poisson’s Ratio

\[v = \frac{\varepsilon_{lat}}{\varepsilon_{long}}, \quad (1.21) \]

where \(\varepsilon_{lat} = \) lateral strain in inches, and \(\varepsilon_{long} = \) longitudinal or axial strain in inches.

For most metals, Poisson’s ratio varies from \(\frac{1}{4} - \frac{1}{3}. \)

Modulus of elasticity and shear modulus are related to Poisson’s ratio as follows:

\[E = 2G(1 + \nu). \quad (1.22) \]

Modulus of elasticity, shear modulus, and Poisson’s ratio for common materials are given in Table 1.1.

1.7 Minimum Yield Strength

Yield strength is defined as the stress that will result in specific permanent deformation in the material. The yield strength can be conveniently determined from the stress strain diagram. Based on the test results, minimum and maximum yield strengths for the tubulars are specified.

<table>
<thead>
<tr>
<th>Metal Alloy</th>
<th>Modulus of Elasticity</th>
<th>Shear Modulus</th>
<th>Poisson’s Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Psi (\times 10^6)</td>
<td>MPa (\times 10^6)</td>
<td>Psi (\times 10^6)</td>
</tr>
<tr>
<td>Aluminum</td>
<td>10</td>
<td>6.9</td>
<td>3.8</td>
</tr>
<tr>
<td>Copper</td>
<td>16</td>
<td>11</td>
<td>6.7</td>
</tr>
<tr>
<td>Steel</td>
<td>30</td>
<td>20.7</td>
<td>12</td>
</tr>
<tr>
<td>Titanium</td>
<td>15.5</td>
<td>10.7</td>
<td>6.5</td>
</tr>
<tr>
<td>Tungsten</td>
<td>59</td>
<td>40.7</td>
<td>23.2</td>
</tr>
</tbody>
</table>
1.8 Ultimate Tensile Strength

The ultimate tensile strength (UTS) of a material in tension, compression, or shear, respectively, is the maximum tensile, compressive, or shear stress resistance to fracture or rupture. It is equivalent to the maximum load that can be applied over the cross-sectional area on which the load is applied. The term can be modified as the ultimate tensile, compressive, or shearing strength. Ultimate tensile strength of few API pipes are shown in Table 1.2.

1.9 Fatigue Endurance Limit

The endurance limit pertains to the property of a material and is defined as the highest stress or range of cyclic stress that a material can be subjected to indefinitely without causing failure or fracture. In other words, the endurance limit is the maximum stress reversal that can be indefinitely subjected a large number of times without producing fracture. The magnitude of the endurance limit of a material is usually determined from a fatigue test that uses a sample piece of the material.

Table 1.2 API pipe properties.

<table>
<thead>
<tr>
<th>API Grade</th>
<th>Yield Stress, psi</th>
<th>Minimum Ultimate Tensile, psi</th>
<th>Minimum Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-40</td>
<td>Minimum: 40,000</td>
<td>Maximum: 80,000</td>
<td>60,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J-55</td>
<td>Minimum: 55,000</td>
<td>Maximum: 80,000</td>
<td>75,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-55</td>
<td>Minimum: 55,000</td>
<td>Maximum: 80,000</td>
<td>95,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-80</td>
<td>Minimum: 80,000</td>
<td>Maximum: 110,000</td>
<td>100,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-80</td>
<td>Minimum: 80,000</td>
<td>Maximum: 95,000</td>
<td>95,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-90</td>
<td>Minimum: 90,000</td>
<td>Maximum: 105,000</td>
<td>100,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-95</td>
<td>Minimum: 95,000</td>
<td>Maximum: 110,000</td>
<td>105,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-95</td>
<td>Minimum: 95,000</td>
<td>Maximum: 110,000</td>
<td>105,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-110</td>
<td>Minimum: 110,000</td>
<td>Maximum: 140,000</td>
<td>125,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q-125</td>
<td>Minimum: 125,000</td>
<td>Maximum: 150,000</td>
<td>135,000</td>
</tr>
</tbody>
</table>
1.10 Twist

When a rod is subjected to torque it undergoes twist, which is given as

\[\theta = \frac{TL}{GJ} \text{ radians,} \quad (1.23) \]

where \(\theta = \) angle of twist (radians) (can be >2\(\pi \)), \(L = \) length of section, ft, \(T = \) torque, ft-lbf, and \(G = \) modulus of rigidity, psi.

\[G = \frac{E}{2(1+\nu)}, \quad (1.24) \]

\[J = \text{Polar moment of inertia (in.}^4\text{)} = \frac{\pi}{32} \left(D_o^4 - D_i^4 \right), \quad (1.25) \]

and \(E = \) modulus of elasticity, psi, and \(\nu = \) Poisson’s ratio.

Problem 1.5

Consider a pipe with the following dimensions carrying an applied tensile load of 5,000 lbs at the bottom. Calculate the maximum stress in the string. The pipe outside diameter = 5 in, the pipe inside diameter = 4 in, the pipe density = 490 lb/ft\(^3\), and the pipe length = 30 ft.

Solution:

The cross sectional area of the pipe is

\[A = \frac{\pi}{4} \left(5^2 - 4^2 \right) = 7.08 \text{ in}^2. \]

Weight of the pipe = \(\frac{\pi}{4} \left(5^2 - 4^2 \right) \times 490 \times 30 \times 12 = 721.6 \text{ lbf.} \)
Total force acting at the top of the pipe:

\[F = \text{Weight of the pipe} + \text{Load applied}, \]
\[F = 721.6 + 5000 = 5721.6 \text{ lbf}. \]

Maximum stress at the top of the pipe:

\[\sigma = \frac{F}{A} = \frac{5721.6}{7.08} = 809 \text{ psi}. \]

Problem 1.6

Calculate the elongation of a cylindrical pipe of 5" in outside diameter, 4.0 in inside diameter and 10,000 ft long when a tensile load of 20,000 lbf is applied. Assume that the deformation is totally elastic and modulus of elasticity = \(30 \times 10^6\) psi.

Solution:

From equation \(E = \frac{F/A}{\Delta L/L}\), the elongation can be written as follows:

\[\Delta L = \frac{F/A}{E/L} = \frac{L \times F}{E \times A} = \frac{L \times F}{E \times \pi \left(\frac{D_o^2 - D_i^2}{4}\right)} = \frac{4L \times F}{E \times \pi \times \left(\frac{D_o^2 - D_i^2}{4}\right)}. \]

Substituting the values,

\[= \frac{4 \times 10000 \times 12 \times 20000}{30 \times 10^6 \times \pi \times (5^2 - 4^2)} = 11.32 \text{ in.} \]

Problem 1.7

A downhole tool with a length of 30 ft, an outside diameter of 5.5 in., and an inside diameter of 4.75 in. is compressed by an axial force of 30 kips. The material has a modulus of elasticity 30,000 ksi and Poisson's ratio 0.3. Assume the tool is in the elastic range.

Calculate the following:

A. Shortening of tool
B. Lateral strain