The easy way to get down with statistics

Stymied by statistics? Fear not! In easy-to-understand terms, this friendly guide shows you how to collect, graph, and critique data; decipher distributions; calculate confidence intervals and hypothesis tests; analyze data with correlation, regression, and two-way tables; and much more.

- The world of statistics — get a handle on the quantity and quality of statistics you encounter in everyday life
- Get the big picture — explore data using graphs and charts and describe data using means, medians, standard scores, percentiles, and more
- Results may vary — understand common statistical distributions and find out how to work with random variables, standard error, the Central Limit Theorem, and more
- Guessestimate with confidence — use standard error, confidence intervals, and hypothesis tests to make conclusions about a population
- Dig into statistical studies and their analyses — get the scoop on polls, experiments, correlation, linear regression, two-way tables, and independence

Learn to:
- Grasp statistical ideas, techniques, formulas, and calculations
- Interpret and critique graphs and charts, determine probability, and work with confidence intervals
- Critique and analyze data from polls and experiments

Go to Dummies.com® for videos, step-by-step examples, how-to articles, or to shop!

Deborah J. Rumsey, PhD, is a professor of statistics and the director of the Mathematics and Statistics Learning Center at The Ohio State University. She is the author of Statistics Workbook For Dummies, Statistics II For Dummies, and Probability For Dummies.
Get More and Do More at Dummies.com®

Start with FREE Cheat Sheets
Cheat Sheets include
• Checklists
• Charts
• Common Instructions
• And Other Good Stuff!

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/statistics

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s of answers on everything from removing wallpaper to using the latest version of Windows.

Check out our
• Videos
• Illustrated Articles
• Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering our Dummies.com sweepstakes.*

Want a weekly dose of Dummies? Sign up for Newsletters on
• Digital Photography
• Microsoft Windows & Office
• Personal Finance & Investing
• Health & Wellness
• Computing, iPods & Cell Phones
• eBay
• Internet
• Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

There’s a Dummies App for This and That

With more than 200 million books in print and over 1,600 unique titles, Dummies is a global leader in how-to information. Now you can get the same great Dummies information in an App. With topics such as Wine, Spanish, Digital Photography, Certification, and more, you’ll have instant access to the topics you need to know in a format you can trust.

To get information on all our Dummies apps, visit the following:
www.Dummies.com/go/mobile from your computer.
About the Author

Deborah J. Rumsey, PhD, is a Statistics Education Specialist and Auxiliary Professor in the Department of Statistics at The Ohio State University. Dr. Rumsey is a Fellow of the American Statistical Association. She has won the Presidential Teaching Award from Kansas State University and has been inducted into the Wall of Inspiration at her high school alma mater, Burlington High School, in Burlington, Wisconsin. She is also the author of Statistics II For Dummies, Statistics Workbook For Dummies, Probability For Dummies, and Statistics Essentials For Dummies. She has published numerous papers and given many professional presentations and workshops on the subject of statistics education. She is the original conference designer of the biennial United States Conference on Teaching Statistics (USCOTS). Her passions include being with her family, camping and bird watching, getting seat time on her Kubota tractor, and cheering the Ohio State Buckeyes on to their next national championship.

Dedication

To my husband Eric: My sun rises and sets with you. To my son Clint: I love you up to the moon and back.

Author’s Acknowledgments

My heartfelt thanks to Lindsay LeBevere and Kathy Cox for the opportunity to write For Dummies books for Wiley; to my project editors Georgette Beatty, Corbin Collins, and Tere Drenth for their unwavering support and vision; to Marjorie Bond, Monmouth College, for agreeing to be my technical editor (again!); to Paul Stephenson, who also provided technical editing; and to Caitie Copple and Janet Dunn for great copy editing.

Special thanks to Elizabeth Stasny, Joan Garfield, Kythie Silva, Kit Kilen, Peg Steigerwald, Mike O’Leary, Tony Barkauskas, Ken Berk, and Jim Higgins for inspiration and support along the way; and to my entire family for their steadfast love and encouragement.
Publisher’s Acknowledgments

We’re proud of this book; please send us your comments at http://dummies.custhelp.com. For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media Development

Project Editor: Corbin Collins
(Previous Edition: Tere Drenth)
Senior Project Editor: Georgette Beatty
Executive Editor: Lindsay Sandman Lefevere
Copy Editor: Caitlin Copple
(Previous Edition: Janet S. Dunn, PhD)
Assistant Editor: David Lutton
Technical Editors: Marjorie E. Bond,
Paul L. Stephenson III
Editorial Manager: Michelle Hacker
Editorial Supervisor and Reprint Editor:
Carmen Krikorian
Editorial Assistant: Jennette ElNaggar
Cover Photo: © iStockphoto.com/Norebbo
Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Sheree Montgomery
Layout and Graphics: Carrie A. Cesavice,
Corrie Socolovitch
Proofreaders: Dwight Ramsey,
Shannon Ramsey
Indexer: Christine Karpeles

Publishing and Editorial for Consumer Dummies

Diane Graves Steele, Vice President and Publisher, Consumer Dummies
Kristin Ferguson-Wagstaffe, Product Development Director, Consumer Dummies
Ensley Eikenburg, Associate Publisher, Travel
Kelly Regan, Editorial Director, Travel

Publishing for Technology Dummies

Andy Cummings, Vice President and Publisher, Dummies Technology/General User

Composition Services

Debbie Stailey, Director of Composition Services
Contents at a Glance

Introduction ................................................................. 1

Part I: Vital Statistics about Statistics ......................... 7
Chapter 1: Statistics in a Nutshell ................................... 9
Chapter 2: The Statistics of Everyday Life ...................... 23
Chapter 3: Taking Control: So Many Numbers, So Little Time ... 33
Chapter 4: Tools of the Trade ....................................... 43

Part II: Number-Crunching Basics ............................. 65
Chapter 5: Means, Medians, and More ......................... 67
Chapter 6: Getting the Picture: Graphing Categorical Data ... 91
Chapter 7: Going by the Numbers: Graphing Numerical Data ... 103

Part III: Distributions and the Central Limit Theorem .... 129
Chapter 8: Random Variables and the Binomial Distribution 131
Chapter 9: The Normal Distribution .............................. 143
Chapter 10: The $t$-Distribution ..................................... 157
Chapter 11: Sampling Distributions and the Central Limit Theorem 163

Part IV: Guesstimating and Hypothesizing with Confidence 179
Chapter 12: Leaving Room for a Margin of Error ............ 181
Chapter 13: Confidence Intervals: Making Your Best Guesstimate 193
Chapter 14: Claims, Tests, and Conclusions ................ 215
Chapter 15: Commonly Used Hypothesis Tests: Formulas and Examples 227

Part V: Statistical Studies and the Hunt for a Meaningful Relationship 243
Chapter 16: Polls, Polls, and More Polls ...................... 245
Chapter 17: Experiments: Medical Breakthroughs or Misleading Results? ... 261
Chapter 18: Looking for Links: Correlation and Regression ... 279
Chapter 19: Two-Way Tables and Independence .............. 295
Part VI: The Part of Tens ....................................................... 317
Chapter 20: Ten Tips for the Statistically Savvy Sleuth .................................................. 319
Chapter 21: Ten Surefire Exam Score Boosters ........................................................... 331

Appendix: Tables for Reference ................................................................. 347
Index ........................................................................................................ 357
# Table of Contents

## Introduction ............................................................................. 1

- About This Book ........................................................................... 1
- Conventions Used in This Book .................................................... 2
- What You’re Not to Read ............................................................ 2
- Foolish Assumptions .................................................................... 3
- How This Book Is Organized ........................................................ 3
  - Part I: Vital Statistics about Statistics ......................................... 3
  - Part II: Number-Crunching Basics ............................................ 4
  - Part III: Distributions and the Central Limit Theorem ................... 4
  - Part IV: Guesstimating and Hypothesizing with Confidence ......... 4
  - Part V: Statistical Studies and the Hunt for a Meaningful Relationship .................................................. 5
  - Part VI: The Part of Tens .......................................................... 5
- Icons Used in This Book ............................................................. 6
- Where to Go from Here ............................................................... 6

## Part I: Vital Statistics about Statistics ................................. 7

### Chapter 1: Statistics in a Nutshell ........................................ 9

- Thriving in a Statistical World ....................................................... 9
- Designing Appropriate Studies ................................................... 11
  - Surveys ....................................................................................... 11
  - Experiments ............................................................................. 12
- Collecting Quality Data ............................................................... 12
  - Selecting a good sample ............................................................ 13
  - Avoiding bias in your data ....................................................... 13
- Creating Effective Summaries .................................................... 14
  - Descriptive statistics ............................................................... 14
  - Charts and graphs .................................................................... 15
- Determining Distributions ......................................................... 16
- Performing Proper Analyses ...................................................... 17
  - Margin of error and confidence intervals .................................... 17
  - Hypothesis tests ...................................................................... 18
  - Correlation, regression, and two-way tables ............................... 20
- Drawing Credible Conclusions ................................................. 21
  - Reeling in overstated results .................................................... 21
  - Questioning claims of cause and effect ..................................... 21
  - Becoming a Sleuth, Not a Skeptic ............................................ 22
## Table of Contents

Distribution and normal distribution .................................................. 54  
Central Limit Theorem ........................................................................ 55  
z-values ................................................................................................ 56  
Experiments .......................................................................................... 56  
Surveys (Polls) ..................................................................................... 58  
Margin of error ..................................................................................... 58  
Confidence interval .............................................................................. 59  
Hypothesis testing ............................................................................... 60  
p-values ................................................................................................ 61  
Statistical significance ......................................................................... 61  
Correlation versus causation ............................................................. 63

### Part II: Number-Crunching Basics ............................... 65

#### Chapter 5: Means, Medians, and More  .................. 67
  Summing Up Data with Descriptive Statistics ............................... 67  
  Crunching Categorical Data: Tables and Percents ............................ 68  
  Measuring the Center with Mean and Median ................................. 71  
    Averaging out to the mean ................................................................. 71  
    Splitting your data down the median .............................................. 73  
    Comparing means and medians: Histograms .................................... 74  
  Accounting for Variation ................................................................... 76  
    Reporting the standard deviation ...................................................... 77  
    Being out of range ........................................................................... 80  
  Examining the Empirical Rule (68-95-99.7) ........................................ 81  
  Measuring Relative Standing with Percentiles ............................... 84  
    Calculating percentiles ..................................................................... 84  
    Interpreting percentiles .................................................................... 85  
    Gathering a five-number summary .................................................. 89  
    Exploring interquartile range ............................................................ 90

#### Chapter 6: Getting the Picture: Graphing Categorical Data ... 91
  Take Another Little Piece of My Pie Chart ......................................... 92  
  Tallying personal expenses ................................................................. 92  
  Bringing in a lotto revenue ................................................................. 92  
  Ordering takeout ................................................................................ 94  
  Projecting age trends ......................................................................... 95  
  Raising the Bar on Bar Graphs ............................................................. 97  
  Tracking transportation expenses ...................................................... 97  
  Making a lotto profit .......................................................................... 99  
  Tipping the scales on a bar graph ...................................................... 100  
  Pondering pet peeves ....................................................................... 101
Chapter 7: Going by the Numbers: Graphing Numerical Data . . . . . 103
Handling Histograms ................................................................. 103
Making a histogram ................................................................. 104
Interpreting a histogram ......................................................... 106
Putting numbers with pictures ................................................ 110
Detecting misleading histograms .............................................. 112
Examining Boxplots .................................................................. 115
Making a boxplot ....................................................................... 115
Interpreting a boxplot ............................................................. 117
Tackling Time Charts .................................................................. 123
Interpreting time charts .......................................................... 123
Understanding variability: Time charts versus histograms ...... 124
Spotting misleading time charts ............................................... 124

Part III: Distributions and the Central Limit Theorem... 129

Chapter 8: Random Variables and the Binomial Distribution . . . . . 131
Defining a Random Variable ...................................................... 131
Discrete versus continuous ....................................................... 132
Probability distributions .......................................................... 133
The mean and variance of a discrete random variable .............. 134
Identifying a Binomial ............................................................... 135
Checking binomial conditions step by step ................................ 135
No fixed number of trials ......................................................... 136
More than success or failure .................................................... 136
Trials are not independent ...................................................... 137
Probability of success ($p$) changes .......................................... 137
Finding Binomial Probabilities Using a Formula ....................... 137
Finding Probabilities Using the Binomial Table ......................... 140
Finding probabilities for specific values of $X$ ......................... 140
Finding probabilities for $X$ greater-than, less-than, or between two values ......................................................... 141
Checking Out the Mean and Standard Deviation of the Binomial ... 142

Chapter 9: The Normal Distribution ........................................ 143
Exploring the Basics of the Normal Distribution ....................... 143
Meeting the Standard Normal ($Z$) Distribution ......................... 146
Checking out $Z$ ....................................................................... 146
Standardizing from $X$ to $Z$ .................................................... 147
Finding probabilities for $Z$ with the $Z$-table ............................ 148
Finding Probabilities for a Normal Distribution ....................... 149
Finding $X$ When You Know the Percent ................................... 152
Figuring out a percentile for a normal distribution .................. 152
Translating tricky wording in percentile problems ................... 154
Normal Approximation to the Binomial .................................... 155
# Table of Contents

## Chapter 10: The \( t \)-Distribution

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basics of the ( t )-Distribution</td>
<td>157</td>
</tr>
<tr>
<td>Comparing the ( t ) - and ( Z )-distributions</td>
<td>157</td>
</tr>
<tr>
<td>Discovering the effect of variability on ( t )-distributions</td>
<td>159</td>
</tr>
<tr>
<td>Using the ( t )-Table</td>
<td>159</td>
</tr>
<tr>
<td>Finding probabilities with the ( t )-table</td>
<td>160</td>
</tr>
<tr>
<td>Figuring percentiles for the ( t )-distribution</td>
<td>160</td>
</tr>
<tr>
<td>Picking out ( t^* )-values for confidence intervals</td>
<td>161</td>
</tr>
<tr>
<td>Studying Behavior Using the ( t )-Table</td>
<td>162</td>
</tr>
</tbody>
</table>

## Chapter 11: Sampling Distributions and the Central Limit Theorem

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defining a Sampling Distribution</td>
<td>163</td>
</tr>
<tr>
<td>The Mean of a Sampling Distribution</td>
<td>164</td>
</tr>
<tr>
<td>Measuring Standard Error</td>
<td>166</td>
</tr>
<tr>
<td>Sample size and standard error</td>
<td>166</td>
</tr>
<tr>
<td>Population standard deviation and standard error</td>
<td>168</td>
</tr>
<tr>
<td>Looking at the Shape of a Sampling Distribution</td>
<td>169</td>
</tr>
<tr>
<td>Case 1: The distribution of ( X ) is normal</td>
<td>170</td>
</tr>
<tr>
<td>Case 2: The distribution of ( X ) is not normal —</td>
<td>170</td>
</tr>
<tr>
<td>enter the Central Limit Theorem</td>
<td>170</td>
</tr>
<tr>
<td>Finding Probabilities for the Sample Mean</td>
<td>173</td>
</tr>
<tr>
<td>The Sampling Distribution of the Sample Proportion</td>
<td>175</td>
</tr>
<tr>
<td>Finding Probabilities for the Sample Proportion</td>
<td>177</td>
</tr>
</tbody>
</table>

## Part IV: Guesstimating and Hypothesizing with Confidence

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 12: Leaving Room for a Margin of Error</td>
<td>181</td>
</tr>
<tr>
<td>Seeing the Importance of That Plus or Minus</td>
<td>181</td>
</tr>
<tr>
<td>Finding the Margin of Error: A General Formula</td>
<td>183</td>
</tr>
<tr>
<td>Measuring sample variability</td>
<td>183</td>
</tr>
<tr>
<td>Calculating margin of error for a sample proportion</td>
<td>184</td>
</tr>
<tr>
<td>Reporting results</td>
<td>186</td>
</tr>
<tr>
<td>Calculating margin of error for a sample mean</td>
<td>187</td>
</tr>
<tr>
<td>Being confident you’re right</td>
<td>188</td>
</tr>
<tr>
<td>Determining the Impact of Sample Size</td>
<td>189</td>
</tr>
<tr>
<td>Sample size and margin of error</td>
<td>189</td>
</tr>
<tr>
<td>Bigger isn’t always (that much) better!</td>
<td>189</td>
</tr>
<tr>
<td>Keeping margin of error in perspective</td>
<td>190</td>
</tr>
</tbody>
</table>

## Chapter 13: Confidence Intervals: Making Your Best Guesstimate

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not All Estimates Are Created Equal</td>
<td>193</td>
</tr>
<tr>
<td>Linking a Statistic to a Parameter</td>
<td>194</td>
</tr>
</tbody>
</table>
Getting with the Jargon ................................................................. 195
Interpreting Results with Confidence ........................................... 196
Zooming In on Width ........................................................................ 197
Choosing a Confidence Level ........................................................... 198
Factoring In the Sample Size ............................................................ 199
Counting On Population Variability ............................................... 201
Calculating a Confidence Interval for a Population Mean ............... 201
  Case 1: Population standard deviation is known ......................... 202
  Case 2: Population standard deviation
  is unknown and/or $n$ is small ..................................................... 203
Figuring Out What Sample Size You Need ...................................... 204
Determining the Confidence Interval for
  One Population Proportion .......................................................... 206
Creating a Confidence Interval for the Difference of Two Means .... 207
  Case 1: Population standard deviations are known .................. 208
  Case 2: Population standard deviations are unknown
  and/or sample sizes are small ..................................................... 210
Estimating the Difference of Two Proportions ................................ 211
Spotting Misleading Confidence Intervals ...................................... 213

Chapter 14: Claims, Tests, and Conclusions ................................ 215
  Setting Up the Hypotheses ............................................................. 216
  Defining the null ........................................................................... 216
  What’s the alternative? ................................................................. 216
  Gathering Good Evidence (Data) ................................................... 217
  Compiling the Evidence: The Test Statistic ................................... 218
    Gathering sample statistics ....................................................... 218
    Measuring variability using standard errors ............................... 218
    Understanding standard scores ............................................... 219
    Calculating and interpreting the test statistic ......................... 219
  Weighing the Evidence and Making Decisions: $p$-Values ............ 220
    Connecting test statistics and $p$-values ................................. 220
    Defining a $p$-value .................................................................... 221
    Calculating a $p$-value ............................................................... 222
  Making Conclusions ..................................................................... 223
    Setting boundaries for rejecting $H_0$ ....................................... 224
    Testing varicose veins ............................................................... 224
    Assessing the Chance of a Wrong Decision ............................... 225
      Making a false alarm: Type-1 errors ...................................... 225
      Missing out on a detection: Type-2 errors ......................... 226

Chapter 15: Commonly Used Hypothesis Tests:
  Formulas and Examples .............................................................. 227
  Testing One Population Mean ....................................................... 228
  Handling Small Samples and Unknown
    Standard Deviations: The $t$-Test .............................................. 229
      Putting the $t$-test to work ...................................................... 230
      Relating $t$ to $Z$ ...................................................................... 231
Table of Contents

Handling negative $t$-values ............................................................... 231
Examining the not-equal-to alternative ............................................ 232
Testing One Population Proportion .................................................... 232
Comparing Two (Independent) Population Averages ......................... 234
Testing for an Average Difference (The Paired $t$-Test) ......................... 236
Comparing Two Population Proportions ............................................. 240

Part V: Statistical Studies and the Hunt for a Meaningful Relationship ................................. 243

Chapter 16: Polls, Polls, and More Polls ........................................ 245
Recognizing the Impact of Polls........................................................... 245
Getting to the source ........................................................................ 246
Surveying what’s hot ......................................................................... 248
Impacting lives ................................................................................ 248
Behind the Scenes: The Ins and Outs of Surveys ............................. 250
Planning and designing a survey ..................................................... 250
Selecting the sample ....................................................................... 254
Carrying out a survey ...................................................................... 256
Interpreting results and finding problems ...................................... 259

Chapter 17: Experiments: Medical Breakthroughs or Misleading Results? ......................... 261
Boiling Down the Basics of Studies .................................................... 262
Looking at the lingo of studies ......................................................... 262
Observing observational studies ..................................................... 263
Examining experiments .................................................................... 264
Designing a Good Experiment ........................................................... 264
Designing the experiment to make comparisons ............................ 265
Selecting the sample size ............................................................... 267
Choosing the subjects .................................................................... 268
Making random assignments .......................................................... 269
Controlling for confounding variables ................................ .......... 270
Respecting ethical issues .............................................................. 272
Collecting good data ....................................................................... 273
Analyzing the data properly .......................................................... 274
Making appropriate conclusions ..................................................... 275
Making Informed Decisions ............................................................. 277

Chapter 18: Looking for Links: Correlation and Regression ................... 279
Picturing a Relationship with a Scatterplot ....................................... 280
Making a scatterplot ......................................................................... 281
Interpreting a scatterplot ................................................................ 281
Quantifying Linear Relationships Using the Correlation ................... 282
Calculating the correlation ............................................................ 283
Interpreting the correlation ............................................................ 284
Examining properties of the correlation .......................................... 286
Working with Linear Regression ................................................................. 286  
Figuring out which variable is X and which is Y ...................................... 287  
Checking the conditions ....................................................................... 287  
Calculating the regression line ............................................................... 288  
Interpreting the regression line ............................................................. 290  
Putting it all together with an example:  
  The regression line for the crickets ...................................................... 291  
Making Proper Predictions .................................................................... 292  
Explaining the Relationship: Correlation versus Cause and Effect ......... 293

Chapter 19: Two-Way Tables and Independence ................................. 295  
Organizing a Two-Way Table ................................................................. 296  
  Setting up the cells .............................................................................. 297  
  Figuring the totals ............................................................................... 297  
Interpreting Two-Way Tables ................................................................. 298  
  Singling out variables with marginal distributions ........................... 299  
  Examining all groups — a joint distribution ....................................... 302  
  Comparing groups with conditional distributions ............................ 305  
Checking Independence and Describing Dependence ......................... 308  
  Checking for independence ................................................................. 308  
  Describing a dependent relationship .................................................. 311  
Cautiously Interpreting Results ............................................................. 312  
  Checking for legitimate cause and effect .......................................... 313  
  Projecting from sample to population ............................................... 314  
  Making prudent predictions ............................................................... 315  
  Resisting the urge to jump to conclusions ....................................... 315

Part VI: The Part of Tens ........................................................................ 317

Chapter 20: Ten Tips for the Statistically Savvy Sleuth ......................... 319

Chapter 21: Ten Surefire Exam Score Boosters .................................... 331

Appendix: Tables for Reference ............................................................. 347

Index ...................................................................................................... 357
You get hit with an incredible amount of statistical information on a daily basis. You know what I’m talking about: charts, graphs, tables, and headlines that talk about the results of the latest poll, survey, experiment, or other scientific study. The purpose of this book is to develop and sharpen your skills in sorting through, analyzing, and evaluating all that info, and to do so in a clear, fun, and pain-free way. You also gain the ability to decipher and make important decisions about statistical results (for example, the results of the latest medical studies), while being ever aware of the ways that people can mislead you with statistics. And you see how to do it right when it’s your turn to design the study, collect the data, crunch the numbers, and/or draw the conclusions.

This book is also designed to help those of you out there who are taking an introductory statistics class and can use some back-up. You’ll gain a working knowledge of the big ideas of statistics and gather a boatload of tools and tricks of the trade that’ll help you get ahead of the curve when you take your exams.

This book is chock-full of real examples from real sources that are relevant to your everyday life — from the latest medical breakthroughs, crime studies, and population trends to the latest U.S. government reports. I even address a survey on the worst cars of the millennium! By reading this book, you’ll understand how to collect, display, and analyze data correctly and effectively, and you’ll be ready to critically examine and make informed decisions about the latest polls, surveys, experiments, and reports that bombard you every day. You even find out how to use crickets to gauge temperature!

You also get to enjoy poking a little fun at statisticians (who take themselves too seriously at times). After all, with the right skills and knowledge, you don’t have to be a statistician to understand introductory statistics.

About This Book

This book departs from traditional statistics texts, references, supplemental books, and study guides in the following ways:

- It includes practical and intuitive explanations of statistical concepts, ideas, techniques, formulas, and calculations found in an introductory statistics course.
- It shows you clear and concise step-by-step procedures that explain how you can intuitively work through statistics problems.
It includes interesting real-world examples relating to your everyday life and workplace.

It gives you upfront and honest answers to your questions like, “What does this really mean?” and “When and how will I ever use this?”

**Conventions Used in This Book**

You should be aware of three conventions as you make your way through this book:

- **Definition of sample size (n):** When I refer to the size of a sample, I mean the final number of individuals who participated in and provided information for the study. In other words, \( n \) stands for the size of the final data set.

- **Dual-use of the word statistics:** In some situations, I refer to statistics as a subject of study or as a field of research, so the word is a singular noun. For example, “Statistics is really quite an interesting subject.” In other situations, I refer to statistics as the plural of statistic, in a numerical sense. For example, “The most common statistics are the mean and the standard deviation.”

- **Use of the word data:** You’re probably unaware of the debate raging amongst statisticians about whether the word data should be singular (“data is . . .”) or plural (“data are . . .”). It got so bad that recently one group of statisticians had to develop two different versions of a statistics T-shirt: “Messy Data Happens” and “Messy Data Happen.” At the risk of offending some of my colleagues, I go with the plural version of the word data in this book.

- **Use of the term standard deviation:** When I use the term standard deviation, I mean \( s \), the sample standard deviation. (When I refer to the population standard deviation, I let you know.)

Here are a few other basic conventions to help you navigate this book:

- I use *italics* to let you know a new statistical term is appearing on the scene.

- If you see a *boldfaced* term or phrase in a bulleted list, it’s been designated as a keyword or key phrase.

- Addresses for Web sites appear in *monofont.*

**What You’re Not to Read**

I like to think that you won’t skip anything in this book, but I also know you’re a busy person. So to save time, feel free to skip anything marked with the
Technical Stuff icon as well as text in sidebars (the shaded gray boxes that appear throughout the book). These items feature information that’s interesting but not crucial to your basic knowledge of statistics.

Foolish Assumptions

I don’t assume that you’ve had any previous experience with statistics, other than the fact that you’re a member of the general public who gets bombarded every day with statistics in the form of numbers, percents, charts, graphs, “statistically significant” results, “scientific” studies, polls, surveys, experiments, and so on.

What I do assume is that you can do some of the basic mathematical operations and understand some of the basic notation used in algebra, such as the variables \( x \) and \( y \), summation signs, taking the square root, squaring a number, and so on. If you need to brush up on your algebra skills, check out *Algebra I For Dummies*, 2nd Edition, by Mary Jane Sterling (Wiley).

I don’t want to mislead you: You do encounter formulas in this book, because statistics does involve a bit of number crunching. But don’t let that worry you. I take you slowly and carefully through each step of any calculations you need to do. I also provide examples for you to work along with this book, so that you can become familiar and comfortable with the calculations and make them your own.

How This Book Is Organized

This book is organized into five parts that explore the major areas of introductory statistics, along with a final part that offers some quick top-ten nuggets for your information and enjoyment. Each part contains chapters that break down each major area of statistics into understandable pieces.

Part 1: Vital Statistics about Statistics

This part helps you become aware of the quantity and quality of statistics you encounter in your workplace and your everyday life. You find out that a great deal of that statistical information is incorrect, either by accident or by design. You take a first step toward becoming statistically savvy by recognizing some of the tools of the trade, developing an overview of statistics as a process for getting and interpreting information, and getting up to speed on some statistical jargon.
Part II: Number-Crunching Basics

This part helps you become more familiar and comfortable with making, interpreting, and evaluating data displays (otherwise known as charts, graphs, and so on) for different types of data. You also find out how to summarize and explore data by calculating and combining some commonly used statistics as well as some statistics you may not know about yet.

Part III: Distributions and the Central Limit Theorem

In this part, you get into all the details of the three most common statistical distributions: the binomial distribution, the normal (and standard normal, also known as Z-distribution), and the t-distribution. You discover the characteristics of each distribution and how to find and interpret probabilities, percentiles, means, and standard deviations. You also find measures of relative standing (like percentiles).

Finally, you discover how statisticians measure variability from sample to sample and why a measure of precision in your sample results is so important. And you get the lowdown on what some statisticians describe as the “Crowning Jewel of all Statistics”: the Central Limit Theorem (CLT). I don’t use quite this level of flourishing language to describe the CLT; I just tell my students it’s an MDR (“Mighty Deep Result”; coined by my PhD adviser). As for how my students describe their feelings about the CLT, I’ll leave that to your imagination.

Part IV: Guesstimating and Hypothesizing with Confidence

This part focuses on the two methods for taking the results from a sample and generalizing them to make conclusions about an entire population. (Statisticians call this process statistical inference.) These two methods are confidence intervals and hypothesis tests.

In this part, you use confidence intervals to come up with good estimates for one or two population means or proportions, or for the difference between them (for example, the average number of hours teenagers spend watching TV per week or the percentage of men versus women in the United States who take arthritis medicine every day). You get the nitty-gritty on how confidence intervals are formed, interpreted, and evaluated for correctness and credibility. You explore the factors that influence the width of a confidence
interval (such as sample size) and work through formulas, step-by-step calculations, and examples for the most commonly used confidence intervals.

The hypothesis tests in this part show you how to use your data to test someone’s claim about one or two population means or proportions, or the difference between them. (For example, a company claims their packages are delivered in two days on average — is this true?) You discover how researchers (should) go about forming and testing hypotheses and how you can evaluate their results for accuracy and credibility. You also get detailed step-by-step directions and examples for carrying out and interpreting the results of the most commonly used hypothesis tests.

**Part V: Statistical Studies and the Hunt for a Meaningful Relationship**

This part gives an overview of surveys, experiments, and observational studies. You find out what these studies do, how they are conducted, what their limitations are, and how to evaluate them to determine whether you should believe the results.

You also get all the details on how to examine pairs of numerical variables and categorical variables to look for relationships; this is the object of a great number of studies. For pairs of categorical variables, you create two-way tables and find joint, conditional, and marginal probabilities and distributions. You check for independence, and if a dependent relationship is found, you describe the nature of the relationship using probabilities. For numerical variables you create scatterplots, find and interpret correlation, perform regression analyses, study the fit of the regression line and the impact of outliers, describe the relationship using the slope, and use the line to make predictions. All in a day’s work!

**Part VI: The Part of Tens**

This quick and easy part shares ten ways to be a statistically savvy sleuth and root out suspicious studies and results, as well as ten surefire ways to boost your statistics exam score.

Some statistical calculations involve the use of statistical tables, and I provide quick and easy access to all the tables you need for this book in the appendix. These tables are the $Z$-table (for the standard normal, also called the $Z$-distribution), the $t$-table (for the $t$-distribution), and the binomial table (for — you guessed it — the binomial distribution). Instructions and examples for using these three tables are provided in their corresponding sections of this book.
Icons Used in This Book

Icons are used in this book to draw your attention to certain features that occur on a regular basis. Here’s what they mean:

This icon refers to helpful hints, ideas, or shortcuts that you can use to save time. It also highlights alternative ways to think about a particular concept.

This icon is reserved for particular ideas that I hope you’ll remember long after you read this book.

This icon refers to specific ways that researchers or the media can mislead you with statistics and tells you what you can do about it. It also points out potential problems and cautions to keep an eye out for on exams.

This icon is a sure bet if you have a special interest in understanding the more technical aspects of statistical issues. You can skip this icon if you don’t want to get into the gory details.

Where to Go from Here

This book is written in such a way that you can start anywhere and still be able to understand what’s going on. So you can take a peek at the table of contents or the index, look up the information that interests you, and flip to the page listed. However if you have a specific topic in mind and are eager to dive into it, here are some directions:

✔ To work on finding and interpreting graphs, charts, means or medians, and the like, head to Part II.

✔ To find info on the normal, $Z$, $t$, or binomial distributions or the Central Limit Theorem, see Part III.

✔ To focus on confidence intervals and hypothesis tests of all shapes and sizes, flip to Part IV.

✔ To delve into surveys, experiments, regression, and two-way tables, see Part V.

Or if you aren’t sure where you want to start, you may just go with Chapter 1 for the big picture and then plow your way through the rest of the book. Happy reading!
Part I

Vital Statistics about Statistics

The 5th Wave

By Rich Tennant

"Is it just me or did the whole ‘50% satisfaction’ statistic seem a little unimpressive?"
When you turn on the TV or open a newspaper, you’re bombarded with numbers, charts, graphs, and statistical results. From today’s poll to the latest major medical breakthroughs, the numbers just keep coming. Yet much of the statistical information you’re asked to consume is actually wrong — by accident or even by design. How is a person to know what to believe? By doing a lot of good detective work.

This part helps awaken the statistical sleuth that lies within you by exploring how statistics affect your everyday life and your job, how bad much of the information out there really is, and what you can do about it. This part also helps you get up to speed with some useful statistical jargon.
Chapter 1

Statistics in a Nutshell

In This Chapter
▶ Finding out what the process of statistics is all about
▶ Gaining success with statistics in your everyday life, your career, and in the classroom

The world today is overflowing with data to the point where anyone (even me!) can be overwhelmed. I wouldn’t blame you if you were cynical right now about statistics you read about in the media — I am too at times. The good news is that while a great deal of misleading and incorrect information is lying out there waiting for you, a lot of great stuff is also being produced; for example, many studies and techniques involving data are helping improve the quality of our lives. Your job is to be able to sort out the good from the bad and be confident in your ability to do that. Through a strong understanding of statistics and statistical procedures, you gain power and confidence with numbers in your everyday life, in your job, and in the classroom. That’s what this book is all about.

In this chapter, I give you an overview of the role statistics plays in today’s data-packed society and what you can do to not only survive but thrive. You get a much broader view of statistics as a partner in the scientific method — designing effective studies, collecting good data, organizing and analyzing the information, interpreting the results, and making appropriate conclusions. (And you thought statistics was just number-crunching!)

Thriving in a Statistical World

It’s hard to get a handle on the flood of statistics that affect your daily life in large and small ways. It begins the moment you wake up in the morning and check the news and listen to the meteorologist give you her predictions for the weather based on her statistical analyses of past data and present weather conditions. You pore over nutritional information on the side of your
cereal box while you eat breakfast. At work you pull numbers from charts and tables, enter data into spreadsheets, run diagnostics, take measurements, perform calculations, estimate expenses, make decisions using statistical baselines, and order inventory based on past sales data.

At lunch you go to the No. 1 restaurant based on a survey of 500 people. You eat food that was priced based on marketing data. You go to your doctor’s appointment where they take your blood pressure, temperature, weight, and do a blood test; after all the information is collected, you get a report showing your numbers and how you compare to the statistical norms.

You head home in your car that’s been serviced by a computer running statistical diagnostics. When you get home, you turn on the news and hear the latest crime statistics, see how the stock market performed, and discover how many people visited the zoo last week.

At night, you brush your teeth with toothpaste that’s been statistically proven to fight cavities, read a few pages of your *New York Times* Best-Seller (based on statistical sales estimates), and go to sleep — only to start it all over again the next morning. But how can you be sure that all those statistics you encounter and depend on each day are correct? In Chapter 2, I discuss in more depth a few examples of how statistics is involved in our lives and workplaces, what its impact is, and how you can raise your awareness of it.

Some statistics are vague, inappropriate, or just plain wrong. You need to become more aware of the statistics you encounter each day and train your mind to stop and say “wait a minute!”, sift through the information, ask questions, and raise red flags when something’s not quite right. In Chapter 3, you see ways in which you can be misled by bad statistics and develop skills to think critically and identify problems before automatically believing results.

Like any other field, statistics has its own set of jargon, and I outline and explain some of the most commonly used statistical terms in Chapter 4. Knowing the language increases your ability to understand and communicate statistics at a higher level without being intimidated. It raises your credibility when you use precise terms to describe what’s wrong with a statistical result (and why). And your presentations involving statistical tables, graphs, charts, and analyses will be informational and effective. (Heck, if nothing else, you need the jargon because I use it throughout this book; don’t worry though, I always review it.)

In the next sections, you see how statistics is involved in each phase of the scientific method.
Designing Appropriate Studies

Everyone’s asking questions, from drug companies to biologists; from marketing analysts to the U.S. government. And ultimately, everyone will use statistics to help them answer their questions. In particular, many medical and psychological studies are done because someone wants to know the answer to a question. For example,

- Will this vaccine be effective in preventing the flu?
- What do Americans think about the state of the economy?
- Does an increase in the use of social networking Web sites cause depression in teenagers?

The first step after a research question has been formed is to design an effective study to collect data that will help answer that question. This step amounts to figuring out what process you’ll use to get the data you need. In this section, I give an overview of the two major types of studies — surveys and experiments — and explore why it’s so important to evaluate how a study was designed before you believe the results.

Surveys

An observational study is one in which data is collected on individuals in a way that doesn’t affect them. The most common observational study is the survey. Surveys are questionnaires that are presented to individuals who have been selected from a population of interest. Surveys take many different forms; paper surveys sent through the mail, questionnaires on Web sites, call-in polls conducted by TV networks, phone surveys, and so on.

If conducted properly, surveys can be very useful tools for getting information. However, if not conducted properly, surveys can result in bogus information. Some problems include improper wording of questions, which can be misleading, lack of response by people who were selected to participate, or failure to include an entire group of the population. These potential problems mean a survey has to be well thought out before it’s given.

Many researchers spend a great deal of time and money to do good surveys, and you’ll know (by the criteria I discuss in Chapter 16) that you can trust them. However, as you are besieged with so many different types of surveys found in the media, in the workplace, and in many of your classes, you need
to be able to quickly examine and critique how a survey was designed and conducted and be able to point out specific problems in a well-informed way. The tools you need for sorting through surveys are found in Chapter 16.

**Experiments**

An experiment imposes one or more treatments on the participants in such a way that clear comparisons can be made. After the treatments are applied, the responses are recorded. For example, to study the effect of drug dosage on blood pressure, one group may take 10 mg of the drug, and another group may take 20 mg. Typically, a control group is also involved, in which subjects each receive a fake treatment (a sugar pill, for example), or a standard, non-experimental treatment (like the existing drugs given to AIDS patients.)

Good and credible experiments are designed to minimize bias, collect lots of good data, and make appropriate comparisons (treatment group versus control group). Some potential problems that occur with experiments include researchers and/or subjects who know which treatment they got, factors not controlled for in the study that affect the outcome (such as weight of the subject when studying drug dosage), or lack of a control group (leaving no baseline to compare the results with).

But when designed correctly, an experiment can help a researcher establish a cause-and-effect relationship if the difference in responses between the treatment group and the control group is statistically significant (unlikely to have occurred just by chance).

Experiments are credited with helping to create and test drugs, determining best practices for making and preparing foods, and evaluating whether a new treatment can cure a disease, or at least reduce its impact. Our quality of life has certainly been improved through the use of well-designed experiments. However, not all experiments are well-designed, and your ability to determine which results are credible and which results are incredible (pun intended) is critical, especially when the findings are very important to you. All the info you need to know about experiments and how to evaluate them is found in Chapter 17.

**Collecting Quality Data**

After a study has been designed, be it a survey or an experiment, the individuals who will participate have to be selected, and a process must be in place to collect the data. This phase of the process is critical to producing credible data in the end, and this section hits the highlights.
Selecting a good sample

Statisticians have a saying, “Garbage in equals garbage out.” If you select your subjects (the individuals who will participate in your study) in a way that is biased — that is, favoring certain individuals or groups of individuals — then your results will also be biased. It’s that simple.

Suppose Bob wants to know the opinions of people in your city regarding a proposed casino. Bob goes to the mall with his clipboard and asks people who walk by to give their opinions. What’s wrong with that? Well, Bob is only going to get the opinions of a) people who shop at that mall; b) on that particular day; c) at that particular time; d) and who take the time to respond.

Those circumstances are too restrictive — those folks don’t represent a cross section of the city. Similarly, Bob could put up a Web site survey and ask people to use it to vote. However, only people who know about the site, have Internet access, and want to respond will give him data, and typically only those with strong opinions will go to such trouble. In the end, all Bob has is a bunch of biased data on individuals that don’t represent the city at all.

To minimize bias in a survey, the key word is random. You need to select your sample of individuals randomly — that is, with some type of “draw names out of a hat” process. Scientists use a variety of methods to select individuals at random, and you see how they do it in Chapter 16.

Note that in designing an experiment, collecting a random sample of people and asking them to participate often isn’t ethical because experiments impose a treatment on the subjects. What you do is send out requests for volunteers to come to you. Then you make sure the volunteers you select from the group represent the population of interest and that the data is well collected on those individuals so the results can be projected to a larger group. You see how that’s done in Chapter 17.

After going through Chapters 16 and 17, you’ll know how to dig down and analyze others’ methods for selecting samples and even be able to design a plan you can use to select a sample. In the end, you’ll know when to say “Garbage in equals garbage out.”

Avoiding bias in your data

Bias is the systematic favoritism of certain individuals or certain responses. Bias is the nemesis of statisticians, and they do everything they can to minimize it. Want an example of bias? Say you’re conducting a phone survey
on job satisfaction of Americans; if you call people at home during the day between 9 a.m. and 5 p.m., you miss out on everyone who works during the day. Maybe day workers are more satisfied than night workers.

You have to watch for bias when collecting survey data. For instance: Some surveys are too long — what if someone stops answering questions halfway through? Or what if they give you misinformation and tell you they make $100,000 a year instead of $45,000? What if they give you answers that aren’t on your list of possible answers? A host of problems can occur when collecting survey data, and you need to be able to pinpoint those problems.

Experiments are sometimes even more challenging when it comes to bias and collecting data. Suppose you want to test blood pressure; what if the instrument you’re using breaks during the experiment? What if someone quits the experiment halfway through? What if something happens during the experiment to distract the subjects or the researchers? Or they can’t find a vein when they have to do a blood test exactly one hour after a dose of a drug is given? These problems are just some examples of what can go wrong in data collection for experiments, and you have to be ready to look for and find these problems.

After you go through Chapter 16 (on samples and surveys) and Chapter 17 (on experiments), you’ll be able to select samples and collect data in an unbiased way, being sensitive to little things that can really influence the results. And you’ll have the ability to evaluate the credibility of statistical results and to be heard, because you’ll know what you’re talking about.

Creating Effective Summaries

After good data have been collected, the next step is to summarize them to get a handle on the big picture. Statisticians describe data in two major ways: with numbers (called descriptive statistics) and with pictures (that is, charts and graphs).

Descriptive statistics

Descriptive statistics are numbers that describe a data set in terms of its important features:

- If the data are categorical (where individuals are placed into groups, such as gender or political affiliation), they are typically summarized using the number of individuals in each group (called the frequency) or the percentage of individuals in each group (called the relative frequency).