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PREFACE 

Many numerical problems in science, engineering, finance, and statistics are solved 
nowadays through M o n t e Carlo methods; that is, through random experiments 
on a computer. As the popularity of these methods continues to grow, and new 
methods are developed in rapid succession, the staggering number of related tech-
niques, ideas, concepts, and algorithms makes it difficult to maintain an overall 
picture of the Monte Carlo approach. In addition, the study of Monte Carlo tech-
niques requires detailed knowledge in a wide range of fields; for example, probability 
to describe the random experiments and processes, statistics to analyze the data, 
computational science to efficiently implement the algorithms, and mathematical 
programming to formulate and solve optimization problems. This knowledge may 
not always be readily available to the Monte Carlo practitioner or researcher. 

The purpose of this Handbook is to provide an accessible and comprehensive 
compendium of Monte Carlo techniques and related topics. It contains a mix of 
theory (summarized), algorithms (pseudo + actual), and applications. The book 
is intended to be an essential guide to Monte Carlo methods, to be used by both 
advanced undergraduates and graduates/researchers to quickly look up ideas, pro-
cedures, formulas, pictures, etc., rather than purely a research monograph or a 
textbook. 

As Monte Carlo methods can be used in many ways and for many different 
purposes, the Handbook is organized as a collection of independent chapters, each 
focusing on a separate topic, rather than following a mathematical development. 
The theory is cross-referenced with other parts of the book where a related topic is 
discussed — the symbol »s· in the margin points to the corresponding page number. 
The theory is illustrated with worked examples and MATLAB code, so that it is easy 

xvii 
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to implement in practice. The code in this book can also be downloaded from the 
Handbook's website: www.montecarlohandbook.org. 

Accessible references to proofs and literature are provided within the text and at 
the end of each chapter. Extensive appendices on probability, statistics, and opti-
mization have been included to provide the reader with a review of the main ideas 
and results in these areas relevant to Monte Carlo simulation. A comprehensive 
index is given at the end of the book. 

The Handbook starts with a discussion on uniform (pseudo)random number 
generators, which are at the heart of any Monte Carlo method. We discuss what 
constitutes a "good" uniform random number generator, give various approaches 
for constructing such generators, and provide theoretical and empirical tests for 
randomness. Chapter 2 discusses methods for generating quasirandom numbers, 
which exhibit much more regularity than their pseudorandom counterparts, and 
are well-suited to estimating multidimensional integrals. Chapter 3 discusses gen-
eral methods for random variable generation from arbitrary distributions, whereas 
Chapter 4 gives a list of specific generation algorithms for the major univariate and 
multivariate probability distributions. Chapter 5 lists the main random processes 
used in Monte Carlo simulation, along with their properties and how to generate 
them. Various Markov chain Monte Carlo techniques are discussed in Chapter 6, all 
of which aim to (approximately) generate samples from complicated distributions. 
Chapter 7 deals with simulation modeling and discrete event simulation, using the 
fundamental random variables and processes in Chapters 4 and 5 as building blocks. 
The simulation of such models then allows one to estimate quantities of interest 
related to the system. 

The statistical analysis of simulation data is discussed in Chapter 8, which sur-
veys a number of techniques available to obtain estimates and confidence intervals 
for quantities of interest, as well as methods to test hypotheses related to the data. 
Chapter 9 provides a comprehensive overview of variance reduction techniques for 
use in Monte Carlo simulation. The efficient estimation of rare-event probabili-
ties is discussed in Chapter 10, including specific variance reduction techniques. 
Chapter 11 details the main methods for estimating derivatives with respect to the 
parameters of interest. 

Monte Carlo is not only used for estimation but also for optimization. Chapter 12 
discusses various randomized optimization techniques, including stochastic gradi-
ent methods, the simulated annealing technique, and the cross-entropy method. 
The cross-entropy method, which relates rare-event simulation to randomized op-
timization, is further explored in Chapter 13, while Chapter 14 focuses on particle 
splitting methods for rare-event simulation and combinatorial optimization. 

Applications of Monte Carlo methods in finance and in network reliability are 
given in Chapters 15 and 16, respectively. Chapter 17 highlights the use of Monte 
Carlo to obtain approximate solutions to complex systems of differential equations. 

Appendix A provides background material on probability theory and stochastic 
processes. Fundamental material from mathematical statistics is summarized in 
Appendix B. Appendix C reviews a number of key optimization concepts and tech-
niques, and presents some common optimization problems. Finally, Appendix D 
summarizes miscellaneous results on exponential families, tail probabilities, differ-
entiation, and the EM algorithm. 

DIRK KROESE, THOMAS TAIMRE, AND ZDRAVKO BOTEV 

Brisbane and Montreal 

September, 2010 



ACKNOWLEDGMENTS 

This book has benefited from the input of many people. We thank Tim Brere-
ton, Josh Chan, Nicolas Chopin, Georgina Davies, Adam Grace, Pierre L'Ecuyer, 
Ben Petschel, Ad Ridder, and Virgil Stokes, for their valuable feedback on the 
manuscript. Most of all, we would like to thank our families — without their 
support, love, and patience this book could not have been written. 

This work was financially supported by the Australian Research Council un-
der grant number DP0985177 and the Isaac Newton Institute for Mathematical 
Sciences, Cambridge, U.K. 

DPK, TT, ZIB 

XIX 



This page intentionally left blank



CHAPTER 1 

UNIFORM RANDOM NUMBER 
GENERATION 

This chapter gives an overview of the main techniques and algorithms for generating 
uniform random numbers, including those based on linear recurrences, modulo 2 
arithmetic, and combinations of these. A range of theoretical and empirical tests 
is provided to assess the quality of a uniform random number generator. We refer 
to Chapter 3 for a discussion on methods for random variable generation from «®" 43 
arbitrary distributions — such methods are invariably based on uniform random 
number generators. 

1.1 RANDOM NUMBERS 

At the heart of any Monte Carlo method is a random number generator: a 
procedure that produces an infinite stream 

£/ 1 , [ / 2 , [ / 3 , . . .~Dist 

of random variables that are independent and identically distributed (iid) according 
to some probability distribution Dist. When this distribution is the uniform dis-
tribution on the interval (0,1) (that is, Dist = U(0,1)), the generator is said to be 
a uniform random number generator. Most computer languages already con-
tain a built-in uniform random number generator. The user is typically requested 
only to input an initial number, called the seed, and upon invocation the random 
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2 UNIFORM RANDOM NUMBER GENERATION 

number generator produces a sequence of independent uniform random variables on 
the interval (0,1). In MATLAB, for example, this is provided by the rand function. 

The concept of an infinite iid sequence of random variables is a mathematical 
abstraction that may be impossible to implement on a computer. The best one can 
hope to achieve in practice is to produce a sequence of "random" numbers with 
statistical properties that are indistinguishable from those of a true sequence of 
iid random variables. Although physical generation methods based on universal 
background radiation or quantum mechanics seem to offer a stable source of such 
true randomness, the vast majority of current random number generators are based 
on simple algorithms that can be easily implemented on a computer. Following 
L'Ecuyer [10], such algorithms can be represented as a tuple (S,f^,U,g), where 

• iS is a finite set of s tates , 

• / is a function from S to <S, 

• μ is a probability distribution on S, 

• U is the output space; for a uniform random number generator U is the 
interval (0,1), and we will assume so from now on, unless otherwise specified, 

• g is a function from S to U. 

A random number generator then has the following structure: 

Algor i thm 1.1 (Generic R a n d o m N u m b e r Generator) 

1. Initialize: Draw the seed SQ from the distribution μ on S. Set t = 1. 

2. Transition: Set St = f{St-i). 

3. Output : SetUt = g(St). 

4- Repea t : Set t = t + 1 and return to Step 2. 

The algorithm produces a sequence U\, U2, U3,... of pseudorandom numbers 
— we will refer to them simply as random numbers. Starting from a certain 
seed, the sequence of states (and hence of random numbers) must repeat itself, 
because the state space is finite. The smallest number of steps taken before enter-
ing a previously visited state is called the period length of the random number 
generator. 

1.1.1 Properties of a Good Random Number Generator 

What constitutes a good random number generator depends on many factors. It 
is always advisable to have a variety of random number generators available, as 
different applications may require different properties of the random generator. 
Below are some desirable, or indeed essential, properties of a good uniform random 
number generator; see also [39]. 

1. Pass statistical tests: The ultimate goal is that the generator should produce 
a stream of uniform random numbers that is indistinguishable from a genuine 
uniform iid sequence. Although from a theoretical point of view this criterion 
is too imprecise and even infeasible (see Remark 1.1.1), from a practical point 
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of view this means that the generator should pass a battery of simple statis-
tical tests designed to detect deviations from uniformity and independence. 
We discuss such tests in Section 1.5.2. 

2. Theoretical support: A good generator should be based on sound mathemat-
ical principles, allowing for a rigorous analysis of essential properties of the 
generator. Examples are linear congruential generators and multiple-recursive 
generators discussed in Sections 1.2.1 and 1.2.2. 

3. Reproducible: An important property is that the stream of random numbers 
is reproducible without having to store the complete stream in memory. This 
is essential for testing and variance reduction techniques. Physical generation 
methods cannot be repeated unless the entire stream is recorded. 

4. Fast and efficient: The generator should produce random numbers in a fast 
and efficient manner, and require little storage in computer memory. Many 
Monte Carlo techniques for optimization and estimation require billions or 
more random numbers. Current physical generation methods are no match 
for simple algorithmic generators in terms of speed. 

5. Large period: The period of a random number generator should be extremely 
large — on the order of 1050 — in order to avoid problems with duplication 
and dependence. Evidence exists [36] that in order to produce N random 
numbers, the period length needs to be at least lOiV2. Most early algorithmic 
random number generators „were fundamentally inadequate in this respect. 

6. Multiple streams: In many applications it is necessary to run multiple in-
dependent random streams in parallel. A good random number generator 
should have easy provisions for multiple independent streams. 

7. Cheap and easy: A good random number generator should be cheap and not 
require expensive external equipment. In addition, it should be easy to install, 
implement, and run. In general such a random number generator is also more 
easily portable over different computer platforms and architectures. 

8. Not produce 0 or 1: A desirable property of a random number generator is 
that both 0 and 1 are excluded from the sequence of random numbers. This 
is to avoid division by 0 or other numerical complications. 

Remark 1.1.1 (Computat ional Complexi ty) From a theoretical point of 
view, a finite-state random number generator can always be distinguished from 
a true iid sequence, after observing the sequence longer than its period. How-
ever, from a practical point of view this may not be feasible within a "reasonable" 
amount of time. This idea can be formalized through the notion of computational 
complexity; see, for example, [33]. 

1.1.2 Choosing a Good Random Number Generator 

As Pierre L'Ecuyer puts it [12], choosing a good random generator is like choosing 
a new car: for some people or applications speed is preferred, while for others 
robustness and reliability are more important. For Monte Carlo simulation the 
distributional properties of random generators are paramount, whereas in coding 
and cryptography unpredictability is crucial. 
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Nevertheless, as with cars, there are many poorly designed and outdated mod-
els available that should be avoided. Indeed several of the standard generators 
that come with popular programming languages and computing packages can be 
appallingly poor [13]. 

Two classes of generators that have overall good performance are: 

1. Combined multiple recursive generators, some of which have excellent statis-
tical properties, are simple, have large period, support multiple streams, and 
are relatively fast. A popular choice is L'Ecuyer's MRG32k3a (see Section 1.3), 
which has been implemented as one of the core generators in MATLAB (from 
version 7), VSL, SAS, and the simulation packages SSJ, Arena, and Automod. 

2. Twisted general feedback shift register generators, some of which have very 
good equidistributional properties, are among the fastest generators available 
(due to their essentially binary implementation), and can have extremely long 
periods. A popular choice is Matsumoto and Nishimura's Mersenne twister 
MT19937ar (see Section 1.2.4), which is currently the default generator in 
MATLAB. 

In general, a good uniform number generator has overall good performance, in 
terms of the criteria mentioned above, but is not usually the top performer over 
all these criteria. In choosing an appropriate generator it pays to remember the 
following. 

• Faster generators are not necessarily better (indeed, often the contrary is 
true). 

• A small period is in general bad, but a larger period is not necessarily better. 

• Good equidistribution is a necessary requirement for a good generator but 
not a sufficient requirement. 

1.2 GENERATORS BASED ON LINEAR RECURRENCES 

The most common methods for generating pseudorandom sequences use simple 
linear recurrence relations. 

1.2.1 Linear Congruential Generators 

A linear congruential generator (LCG) is a random number generator of the 
form of Algorithm 1.1, with state St = Xt G { 0 , . . . , m — 1} for some strictly positive 
integer m called the modulus , and state transitions 

Xt = (aXt-i +c) mod m , ί = 1,2, . . . , (1.1) 

where the multiplier a and the increment c are integers. Applying the modulo-m 
operator in (1.1) means that aXt~\ +c is divided by TO, and the remainder is taken 
as the value for Xt. Note that the multiplier and increment may be chosen in the 
set { 0 , . . . , TO — 1}. When c = 0, the generator is sometimes called a multipl icative 
congruential generator. Most existing implementations of LCGs are of this form 



GENERATORS BASED ON LINEAR RECURRENCES 5 

— in general the increment does not have a large impact on the quality of an LCG. 
The output function for an LCG is simply 

■ EXAMPLE 1.1 (Minimal Standard LCG) 

An often-cited LCG is that of Lewis, Goodman, and Miller [24], who proposed 
the choice a = 75 = 16807, c = 0, and m = 23 1 - 1 = 2147483647. This LCG 
passes many of the standard statistical tests and has been successfully used in 
many applications. For this reason it is sometimes viewed as the minimal standard 
LCG, against which other generators should be judged. 

Although the generator has good properties, its period (231 — 2) and statistical 
properties no longer meet the requirements of modern Monte Carlo applications; 
see, for example, [20]. 

A comprehensive list of classical LCGs and their properties can be found on Karl 
Entacher's website: 

http : / / r a n d o m . m a t . s b g . a c . a t / r e s u l t s / k a r l / s e r v e r / 

The following recommendations for LCGs are reported in [20]: 

• All LCGs with modulus 2P for some integer p are badly behaved and should 
not be used. 

• All LCGs with modulus up to 26 1 « 2 x 1018 fail several tests and should be 
avoided. 

1.2.2 Multiple-Recursive Generators 

A multiple-recursive generator (MRG) of order A; is a random number gen-
erator of the form of Algorithm 1.1, with state St = Xt = (Xt-k+i, ■ ■ ■ ,Xt)T £ 
{ 0 , . . . , TO — l} f c for some modulus TO and state transitions defined by 

Xt = (a^Xt-i H h akXt-k) mod m , t = k,k + l,..., (1.2) 

where the multipliers {OJ,Z 
function is often taken as 

The maximum period length for this generator is mk — 1, which is obtained if (a) 
TO is a prime number and (b) the polynomial p(z) — zk — Σί=ι a,iZk~l is primitive 
using modulo m arithmetic. Methods for testing primitivity can be found in [8, 
Pages 30 and 439]. To yield fast algorithms, all but a few of the {a{\ should be 0. 

MRGs with very large periods can be implemented efficiently by combining sev-
eral smaller-period MRGs (see Section 1.3). 

1 , . . . , k} lie in the set { 0 , . . . , m — 1}. The output 

Xt 
TO 
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1.2.3 Matrix Congruential Generators 

An MRG can be interpreted and implemented as a matr ix mult ipl icative con-
gruential generator, which is a random number generator of the form of Algo-
rithm 1.1, with state S t = X t € { 0 , . . . , m — l}k for some modulus m, and state 
transitions 

X t = ( 4 X t _ i ) mod TO, ΐ = 1,2, . . . , (1.3) 

where A is an invertible kxk matrix and Xt is a k x 1 vector. The output function 
is often taken as 

U t = * i , (1.4) 
TO 

yielding a vector of uniform numbers in (0,1). Hence, here the output space U for 
the algorithm is (0, l)k. For fast random number generation, the matrix A should 
be sparse. 

To see that the multiple-recursive generator is a special case, take 

A = 

/ 0 1 · 

0 0 
\flfc flfc-1 · 

·· o\ 

.. 1 
·· aij 

and X t — 
( Xt \ Xt+l 

\Xt+k-lJ 

(1.5) 

Obviously, the matrix multiplicative congruential generator is the fc-dimensional 
generalization of the multiplicative congruential generator. A similar generaliza-
tion of the multiplicative recursive generator — replacing the multipliers {<ij} with 
matrices, and the scalars {Xt} with vectors in (1.2) —, yields the class of matr ix 
multiplicative recursive generators; see, for example, [34]. 

1.2.4 Modulo 2 Linear Generators 

Good random generators must have very large state spaces. For an LCG this 
means that the modulus TO must be a large integer. However, for multiple recursive 
and matrix generators it is not necessary to take a large modulus, as the state 
space can be as large as mk. Because binary operations are in general faster than 
floating point operations (which are in turn faster than integer operations), it makes 
sense to consider random number generators that are based on linear recurrences 
modulo 2. A general framework for such random number generators is given in 
[18], where the state is a fc-bit vector X t = {Xt,i, ■ ■ ■, Xt,k)T that is mapped via a 
linear transformation to a w-bit output vector Y t = (it . i i · · · , Yt,w)T, from which 
the random number Ut G (0,1) is obtained by bitwise decimation as follows. More 
precisely, the procedure is as follows. 

Algor i thm 1.2 (Generic Linear Recurrence M o d u l o 2 Generator) 

1. Initialize: Draw the seed Xo from the distribution μ on the state space S ■ 
{0, l} f c . Sett = l. 

2. Transition; Set X t = A X t _ i . 

3. Output : Set Y t = ßX E and return 

w 

4- Repea t : Set t = t + 1 and return to Step 2. 

file:///flfc
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Here, A and B are kxk and wxk binary matrices, respectively, and all operations 
are performed modulo 2. In algebraic language, the operations are performed over 
the finite field F2, where addition corresponds to the bitwise XOR operation (in 
particular, 1 + 1 = 0). The integer w can be thought of as the word length of the 
computer (that is, w = 32 or 64). Usually (but there are exceptions, see [18]) k is 
taken much larger than w. 

■ EXAMPLE 1.2 (Linear Feedback Shift Register Generator) 

The Tausworthe or linear feedback shift register (LFSR) generator is an MRG 
of the form (1.2) with m = 2, but with output function 

w 

e=i 

for some w ^ k and s ^ 1 (often one takes s = w). Thus, a binary sequence 
Χο,Χι,... is generated according to the recurrence (1.2), and the ί-th "word" 
{Xts, ■ ■ ■, Xts+w-i)T, t = 0 , 1 , . . . is interpreted as the binary representation of the 
ί-th random number. 

This generator can be put in the framework of Algorithm 1.2. Namely, the 
state at iteration t is given by the vector X t = (Xts, ■ ■ ■, Xts+k-i)T, and the state 
is updated by advancing the recursion (1.2) over s time steps. As a result, the 
transition matrix A in Algorithm 1.2 is equal to the s-th power of the "1-step" 
transition matrix given in (1.5). The output vector Y t is obtained by simply taking 
the first w bits of X ( ; hence B = [Iw O œ x (£_„,)], where Iw is the identity matrix 
of dimension w and Owx^-w) the w x (k — w) matrix of zeros. 

For fast generation most of the multipliers {ai} are 0; in many cases there is 
often only one other non-zero multiplier ar apart from α^, in which case 

Xt = Xt-r Θ Xt-k , (1.6) 

where ® signifies addition modulo 2. The same recurrence holds for the states 
(vectors of bits); that is, 

X* = X t - r ® Xt-fc > 

where addition is defined componentwise. 
The LFSR algorithm derives its name from the fact that it can be implemented 

very efficiently on a computer via feedback shift registers — binary arrays that 
allow fast shifting of bits; see, for example, [18, Algorithm L] and [7, Page 40]. 

Generalizations of the LFSR generator that all fit the framework of Algorithm 1.2 
include the generalized feedback shift register generators [25] and the twis ted 
versions thereof [30], the most popular of which are the Mersenne twisters [31]. 
A particular instance of the Mersenne twister, MT19937, has become widespread, 
and has been implemented in software packages such as SPSS and MATLAB. It has a 
huge period length of 2 1 9 9 3 7 — 1, is very fast, has good equidistributional properties, 
and passes most statistical tests. The latest version of the code may be found at 

h t t p : / / w w w . m a t h . s e i . h i r o s h i m a - u . a c . j p/~m-mat/MT/emt.html 

Two drawbacks are that the initialization procedure and indeed the implementa-
tion itself is not straightforward. Another potential problem is that the algorithm 
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recovers too slowly from the states near zero. More precisely, after a state with 
very few Is is hit, it may take a long time (several hundred thousand steps) before 
getting back to some state with a more equal division between Os and Is. Some 
other weakness are discussed in [20, Page 23]. 

The development of good and fast modulo 2 generators is important, both from 
a practical and theoretical point of view, and is still an active area of research, 
not in the least because of the close connection to coding and cryptography. Some 
recent developments include the WELL (well-equidistributed long-period linear) 
generators by Panneton et al. [35], which correct some weaknesses in MT19937, and 
the SIMD-oriented fast Mersenne twister [38], which is significantly faster than 
the standard Mersenne twister, has better equidistribution properties, and recovers 
faster from states with many 0s. 

1.3 COMBINED GENERATORS 

A significant leap forward in the development of random number generators was 
made with the introduction of combined generators. Here the output of several 
generators, which individually may be of poor quality, is combined, for example by 
shuffling, adding, and/or selecting, to make a superior quality generator. 

■ EXAMPLE 1.3 (Wichman-Hi l l ) 

One of the earliest combined generators is the Wichman-Hill generator [41], which 
combines three LCGs: 

Xt = (171 Xt_x) mod mi (mi = 30269) , 

Yt = (172 Yt_i ) mod m 2 (m2 = 30307) , 

Zt = (170 Z t _i ) mod m 3 (m3 = 30323) . 

These random integers are then combined into a single random number 

TT Xt , Yt , Zt , 
Ut = 1 1 mod 1 . 

mi m 2 ™3 

The period of the sequence of triples (Xt,Yt, Zt) is shown [42] to be (mi — l ) (m 2 — 
l)("T-3 — l ) / 4 ~ 6.95 x 1012, which is much larger than the individual periods. Zeisel 
[43] shows that the generator is in fact equivalent (produces the same output) as 
a multiplicative congruential generator with modulus m = 27817185604309 and 
multiplier a = 16555425264690. 

The Wichman-Hill algorithm performs quite well in simple statistical tests, but 
since its period is not sufficiently large, it fails various of the more sophisticated 
tests, and is no longer suitable for high-performance Monte Carlo applications. 

One class of combined generators that has been extensively studied is that of 
the combined multiple-recursive generators, where a small number of MRGs 
are combined. This class of generators can be analyzed theoretically in the same 
way as single MRG: under appropriate initialization the output stream of random 
numbers of a combined MRG is exactly the same as that of some larger-period 


