
Handbook of
Monte Carlo Methods

Dirk P. Kroese
University of Queensland

Thomas Taimre
University of Queensland

Zdravko I. Botev
Université de Montréal

WILEY
A JOHN WILEY & SONS, INC., PUBLICATION

This page intentionally left blank

Handbook of
Monte Carlo Methods

WILEY SERIES IN PROBABILITY AND STATISTICS

Established by WALTER A. SHEWHART and SAMUEL S. WILKS

Editors: David J. Balding, Noel A. C. Cressie, Garrett M. Fitzmaurice,
Iain M. Johnstone, Geert Molenberghs, David W. Scott, Adrian F. M. Smith,
Ruey S. Tsay, Sanford Weisberg
Editors Emeriti: Vic Barnett, J. Stuart Hunter, Joseph B. Kadane, JozefL. Teugels

A complete list of the titles in this series appears at the end of this volume.

Handbook of
Monte Carlo Methods

Dirk P. Kroese
University of Queensland

Thomas Taimre
University of Queensland

Zdravko I. Botev
Université de Montréal

WILEY
A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Kroese, Dirk P.
Handbook for Monte Carlo methods / Dirk P. Kroese, Thomas Taimre, Zdravko I. Botev.

p. cm. — (Wiley series in probability and statistics ; 706)
Includes index.

ISBN 978-0-470-17793-8 (hardback)
1. Monte Carlo method. I. Taimre, Thomas, 1983- II. Botev, Zdravko I., 1982- III. Title.
QA298.K76 2011
518'.282—dc22 2010042348

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

To Lesley
— DPK

To Aita and Ilmar
— TT

To my parents, Maya and Ivan
— ziB

This page intentionally left blank

CONTENTS

Preface xvii

Acknowledgments xix

1 Uniform Random Number Generation 1

1.1 Random Numbers 1

1.1.1 Properties of a Good Random Number Generator 2

1.1.2 Choosing a Good Random Number Generator 3

1.2 Generators Based on Linear Recurrences 4

1.2.1 Linear Congruential Generators 4

1.2.2 Multiple-Recursive Generators 5

1.2.3 Matrix Congruential Generators 6

1.2.4 Modulo 2 Linear Generators 6

1.3 Combined Generators 8

1.4 Other Generators 10

1.5 Tests for Random Number Generators 11

1.5.1 Spectral Test 12

1.5.2 Empirical Tests 14

References 21

VIII CONTENTS

2 Quasirandom Number Generation 25

2.1 Multidimensional Integration 25

2.2 Van der Corput and Digital Sequences 27

2.3 Halton Sequences 29

2.4 Faure Sequences 31

2.5 SoboP Sequences 33

2.6 Lattice Methods 36

2.7 Randomization and Scrambling 38

References 40

3 Random Variable Generation 43

3.1 Generic Algorithms Based on Common Transformations 44

3.1.1 Inverse-Transform Method 45

3.1.2 Other Transformation Methods 47

3.1.3 Table Lookup Method 55

3.1.4 Alias Method 56

3.1.5 Acceptance-Rejection Method 59

3.1.6 Ratio of Uniforms Method 66

3.2 Generation Methods for Multivariate Random Variables 67

3.2.1 Copulas 68

3.3 Generation Methods for Various Random Objects 70

3.3.1 Generating Order Statistics 70

3.3.2 Generating Uniform Random Vectors in a Simplex 71

3.3.3 Generating Random Vectors Uniformly Distributed in

a Unit Hyperball and Hypersphere 74

3.3.4 Generating Random Vectors Uniformly Distributed in

a Hyperellipsoid 75

3.3.5 Uniform Sampling on a Curve 75

3.3.6 Uniform Sampling on a Surface 76

3.3.7 Generating Random Permutations 79

3.3.8 Exact Sampling From a Conditional Bernoulli

Distribution 80

References 83

4 Probability Distributions 85

4.1 Discrete Distributions 85

4.1.1 Bernoulli Distribution 85

4.1.2 Binomial Distribution 86

4.1.3 Geometric Distribution 91

4.1.4 Hypergeometric Distribution 93

4.1.5 Negative Binomial Distribution 94

CONTENTS IX

4.1.6 Phase-Type Distribution (Discrete Case) 96

4.1.7 Poisson Distribution 98

4.1.8 Uniform Distribution (Discrete Case) 101

4.2 Continuous Distributions 102

4.2.1 Beta Distribution 102

4.2.2 Cauchy Distribution 106

4.2.3 Exponential Distribution 108

4.2.4 F Distribution 109

4.2.5 Fréchet Distribution 111

4.2.6 Gamma Distribution 112

4.2.7 Gumbel Distribution 116

4.2.8 Laplace Distribution 118

4.2.9 Logistic Distribution 119

4.2.10 Log-Normal Distribution 120

4.2.11 Normal Distribution 122

4.2.12 Pareto Distribution 125

4.2.13 Phase-Type Distribution (Continuous Case) 126

4.2.14 Stable Distribution 129

4.2.15 Student's t Distribution 131

4.2.16 Uniform Distribution (Continuous Case) 134

4.2.17 Wald Distribution 135

4.2.18 Weibull Distribution 137

4.3 Multivariate Distributions 138

4.3.1 Dirichlet Distribution 139

4.3.2 Multinomial Distribution 141

4.3.3 Multivariate Normal Distribution 143

4.3.4 Multivariate Student's t Distribution 147

4.3.5 Wishart Distribution 148

References 150

5 Random Process Generation 153

5.1 Gaussian Processes 154

5.1.1 Markovian Gaussian Processes 159

5.1.2 Stationary Gaussian Processes and the F F T 160

5.2 Markov Chains 162

5.3 Markov Jump Processes 166

5.4 Poisson Processes 170

5.4.1 Compound Poisson Process 174

5.5 Wiener Process and Brownian Motion 177

5.6 Stochastic Differential Equations and Diffusion Processes 183

5.6.1 Euler's Method 185

5.6.2 Milstein's Method 187

X CONTENTS

5.6.3 Implicit Euler 188
5.6.4 Exact Methods 189
5.6.5 Error and Accuracy 191

5.7 Brownian Bridge 193
5.8 Geometric Brownian Motion 196
5.9 Ornstein-Uhlenbeck Process 198

5.10 Reflected Brownian Motion 200
5.11 Fractional Brownian Motion 203
5.12 Random Fields 206

5.13 Levy Processes 208
5.13.1 Increasing Levy Processes 211
5.13.2 Generating Levy Processes 214

5.14 Time Series 219
References 222

Markov Chain Monte Carlo 225

6.1 Metropolis-Hastings Algorithm 226
6.1.1 Independence Sampler 227
6.1.2 Random Walk Sampler 230

6.2 Gibbs Sampler 233
6.3 Specialized Samplers 240

6.3.1 Hit-and-Run Sampler 240
6.3.2 Shake-and-Bake Sampler 251
6.3.3 Metropolis-Gibbs Hybrids 256
6.3.4 Multiple-Try Metropolis-Hastings 257
6.3.5 Auxiliary Variable Methods 259
6.3.6 Reversible Jump Sampler 269

6.4 Implementation Issues 273
6.5 Perfect Sampling 274

References 276

Discrete Event Simulation 281

7.1 Simulation Models 281
7.2 Discrete Event Systems 283
7.3 Event-Oriented Approach 285
7.4 More Examples of Discrete Event Simulation 289

7.4.1 Inventory System 289
7.4.2 Tandem Queue 293
7.4.3 Repairman Problem 296
References 300

CONTENTS XI

Statistical Analysis of Simulation Data 301

8.1 Simulation Data 301

8.1.1 Data Visualization 302

8.1.2 Data Summarization 303

8.2 Estimation of Performance Measures for Independent Data 305

8.2.1 Delta Method 308

8.3 Estimation of Steady-State Performance Measures 309

8.3.1 Covariance Method 309

8.3.2 Batch Means Method 311

8.3.3 Regenerative Method 313

8.4 Empirical Cdf 316

8.5 Kernel Density Estimation 319

8.5.1 Least Squares Cross Validation 321

8.5.2 Plug-in Bandwidth Selection 326

8.6 Resampling and the Bootstrap Method 331

8.7 Goodness of Fit 333

8.7.1 Graphical Procedures 334

8.7.2 Kolmogorov-Smirnov Test 336

8.7.3 Anderson-Darling Test 339

8.7.4 x2 Tests 340

References 343

Variance Reduction 347

9.1 Variance Reduction Example 348

9.2 Antithetic Random Variables 349

9.3 Control Variables 351

9.4 Conditional Monte Carlo 354

9.5 Stratified Sampling 356

9.6 Latin Hypercube Sampling 360

9.7 Importance Sampling 362

9.7.1 Minimum-Variance Density 363

9.7.2 Variance Minimization Method 364

9.7.3 Cross-Entropy Method 366

9.7.4 Weighted Importance Sampling 368

9.7.5 Sequential Importance Sampling 369

9.7.6 Response Surface Estimation via Importance Sampling 373

9.8 Quasi Monte Carlo 376

References 379

XII CONTENTS

10 Rare-Event Simulation 381

10.1 Efficiency of Estimators 382
10.2 Importance Sampling Methods for Light Tails 385

10.2.1 Estimation of Stopping Time Probabilities 386
10.2.2 Estimation of Overflow Probabilities 389
10.2.3 Estimation For Compound Poisson Sums 391

10.3 Conditioning Methods for Heavy Tails 393
10.3.1 Estimation for Compound Sums 394
10.3.2 Sum of Nonidentically Distributed Random Variables 396

10.4 State-Dependent Importance Sampling 398
10.5 Cross-Entropy Method for Rare-Event Simulation 404
10.6 Splitting Method 409

References 416

11 Estimation of Derivatives 421

11.1 Gradient Estimation 421
11.2 Finite Difference Method 423
11.3 Infinitesimal Perturbation Analysis 426
11.4 Score Function Method 428

11.4.1 Score Function Method With Importance Sampling 430
11.5 Weak Derivatives 433
11.6 Sensitivity Analysis for Regenerative Processes 435

References 438

12 Randomized Optimization 441

12.1 Stochastic Approximation 441
12.2 Stochastic Counterpart Method 446
12.3 Simulated Annealing 449
12.4 Evolutionary Algorithms 452

12.4.1 Genetic Algorithms 452
12.4.2 Differential Evolution 454
12.4.3 Estimation of Distribution Algorithms 456

12.5 Cross-Entropy Method for Optimization 457
12.6 Other Randomized Optimization Techniques 460

References 461

13 Cross-Entropy Method 463

13.1 Cross-Entropy Method 463
13.2 Cross-Entropy Method for Estimation 464
13.3 Cross-Entropy Method for Optimization 468

13.3.1 Combinatorial Optimization 469

CONTENTS XIII

13.3.2 Continuous Optimization 471

13.3.3 Constrained Optimization 473

13.3.4 Noisy Optimization 476

References 477

14 Particle Methods 481

14.1 Sequential Monte Carlo 482

14.2 Particle Splitting 485

14.3 Splitting for Static Rare-Event Probability Estimation 486

14.4 Adaptive Splitting Algorithm 493

14.5 Estimation of Multidimensional Integrals 495

14.6 Combinatorial Optimization via Splitting 504

14.6.1 Knapsack Problem 505

14.6.2 Traveling Salesman Problem 506

14.6.3 Quadratic Assignment Problem 508

14.7 Markov Chain Monte Carlo With Splitting 509

References 517

15 Applications to Finance 521

15.1 Standard Model 521

15.2 Pricing via Monte Carlo Simulation 526

15.3 Sensitivities 538

15.3.1 Pathwise Derivative Estimation 540

15.3.2 Score Function Method 542

References 546

16 Applications to Network Reliability 549

16.1 Network Reliability 549

16.2 Evolution Model for a Static Network 551

16.3 Conditional Monte Carlo 554

16.3.1 Leap-Evolve Algorithm 560

16.4 Importance Sampling for Network Reliability 562

16.4.1 Importance Sampling Using Bounds 562

16.4.2 Importance Sampling With Conditional Monte Carlo 565

16.5 Splitting Method 567

16.5.1 Acceleration Using Bounds 573

References 574

17 Applications to Differential Equations 577

17.1 Connections Between Stochastic and Partial Differential

Equations 577

XIV CONTENTS

17.1.1 Boundary Value Problems 579

17.1.2 Terminal Value Problems 584

17.1.3 Terminal-Boundary Problems 585

17.2 Transport Processes and Equations 587

17.2.1 Application to Transport Equations 589

17.2.2 Boltzmann Equation 593

17.3 Connections to ODEs Through Scaling 597

References 602

Appendix A: Probability and Stochastic Processes 605

A.l Random Experiments and Probability Spaces 605

A. 1.1 Properties of a Probability Measure 607

A.2 Random Variables and Probability Distributions 607

A.2.1 Probability Density 610

A.2.2 Joint Distributions 611

A.3 Expectation and Variance 612

A.3.1 Properties of the Expectation 614

A.3.2 Variance 615

A.4 Conditioning and Independence 616

A.4.1 Conditional Probability 616

A.4.2 Independence 616

A.4.3 Covariance 617

A.4.4 Conditional Density and Expectation 618

A.5 W Space 619

A.6 Functions of Random Variables 620

A.6.1 Linear Transformations 620

A.6.2 General Transformations 620

A.7 Generating Function and Integral Transforms 621

A.7.1 Probability Generating Function 621

A.7.2 Moment Generating Function and Laplace Transform 621

A.7.3 Characteristic Function 622

A.8 Limit Theorems 623

A.8.1 Modes of Convergence 623

A.8.2 Converse Results on Modes of Convergence 624

A.8.3 Law of Large Numbers and Central Limit Theorem 625

A.9 Stochastic Processes 626

A.9.1 Gaussian Property 627

A.9.2 Markov Property 628

A.9.3 Martingale Property 629

A.9.4 Regenerative Property 630

A.9.5 Stationarity and Reversibility 631

A. 10 Markov Chains 632

CONTENTS XV

A.10.1 Classification of States 633

A.10.2 Limiting Behavior 633

A. 10.3 Reversibility 635

A. 11 Markov Jump Processes 635

A. 11.1 Limiting Behavior 638

A. 12 Itô Integral and Itô Processes 639

A.13 Diffusion Processes 643

A. 13.1 Kolmogorov Equations 646

A. 13.2 Stationary Distribution 648

A. 13.3 Feynman-Kac Formula 648

A.13.4 Exit Times 649

References 650

Appendix B: Elements of Mathematical Statistics 653

B.l Statistical Inference 653

B. l . l Classical Models 654

B.l.2 Sufficient Statistics 655

B.l . 3 Estimation 656

B.l.4 Hypothesis Testing 660

B.2 Likelihood 664

B.2.1 Likelihood Methods for Estimation 667

B.2.2 Numerical Methods for Likelihood Maximization 669

B.2.3 Likelihood Methods for Hypothesis Testing 671

B.3 Bayesian Statistics 672

B.3.1 Conjugacy 675

References 676

Appendix C: Optimization 677

C.l Optimization Theory 677

C.l . l Lagrangian Method 683

C.l.2 Duality 684

C.2 Techniques for Optimization 685

C.2.1 Transformation of Constrained Problems 685

C.2.2 Numerical Methods for Optimization and Root Finding 687

C.3 Selected Optimization Problems 694

C.3.1 Satisfiability Problem 694

C.3.2 Knapsack Problem 694

C.3.3 Max-Cut Problem 695

C.3.4 Traveling Salesman Problem 695

C.3.5 Quadratic Assignment Problem 695

C.3.6 Clustering Problem 696

XVI CONTENTS

C.4 Continuous Problems 696

C.4.1 Unconstrained Problems 696

C.4.2 Constrained Problems 697

References 699

Appendix D: Miscellany 701

D.l Exponential Families 701

D.2 Properties of Distributions 703

D.2.1 Tail Properties 703

D.2.2 Stability Properties 705

D.3 Cholesky Factorization 706

D.4 Discrete Fourier Transform, FFT, and Circulant Matrices 706

D.5 Discrete Cosine Transform 708

D.6 Differentiation 709

D.7 Expectation-Maximization (EM) Algorithm 711

D.8 Poisson Summation Formula 714

D.9 Special Functions 715

D.9.1 Beta Function B(a, ß) 715

D.9.2 Incomplete Beta Function Ix(α, β) 715

D.9.3 Error Function erf (a) 715

D.9.4 Digamma function φ{χ) 716

D.9.5 Gamma Function Γ(α) 716

D.9.6 Incomplete Gamma Function P(a, x) 716

D.9.7 Hypergeometric Function 2^1(0, &;c;z) 716

D.9.8 Confluent Hypergeometric Function 1F1 (a; 7; x) 717

D.9.9 Modified Bessel Function of the Second Kind Kv{x) 717

References 717

Acronyms and Abbreviations 719

List of Symbols 721

List of Distributions 724

Index 727

PREFACE

Many numerical problems in science, engineering, finance, and statistics are solved
nowadays through M o n t e Carlo methods; that is, through random experiments
on a computer. As the popularity of these methods continues to grow, and new
methods are developed in rapid succession, the staggering number of related tech-
niques, ideas, concepts, and algorithms makes it difficult to maintain an overall
picture of the Monte Carlo approach. In addition, the study of Monte Carlo tech-
niques requires detailed knowledge in a wide range of fields; for example, probability
to describe the random experiments and processes, statistics to analyze the data,
computational science to efficiently implement the algorithms, and mathematical
programming to formulate and solve optimization problems. This knowledge may
not always be readily available to the Monte Carlo practitioner or researcher.

The purpose of this Handbook is to provide an accessible and comprehensive
compendium of Monte Carlo techniques and related topics. It contains a mix of
theory (summarized), algorithms (pseudo + actual), and applications. The book
is intended to be an essential guide to Monte Carlo methods, to be used by both
advanced undergraduates and graduates/researchers to quickly look up ideas, pro-
cedures, formulas, pictures, etc., rather than purely a research monograph or a
textbook.

As Monte Carlo methods can be used in many ways and for many different
purposes, the Handbook is organized as a collection of independent chapters, each
focusing on a separate topic, rather than following a mathematical development.
The theory is cross-referenced with other parts of the book where a related topic is
discussed — the symbol »s· in the margin points to the corresponding page number.
The theory is illustrated with worked examples and MATLAB code, so that it is easy

xvii

XVÜi PREFACE

to implement in practice. The code in this book can also be downloaded from the
Handbook's website: www.montecarlohandbook.org.

Accessible references to proofs and literature are provided within the text and at
the end of each chapter. Extensive appendices on probability, statistics, and opti-
mization have been included to provide the reader with a review of the main ideas
and results in these areas relevant to Monte Carlo simulation. A comprehensive
index is given at the end of the book.

The Handbook starts with a discussion on uniform (pseudo)random number
generators, which are at the heart of any Monte Carlo method. We discuss what
constitutes a "good" uniform random number generator, give various approaches
for constructing such generators, and provide theoretical and empirical tests for
randomness. Chapter 2 discusses methods for generating quasirandom numbers,
which exhibit much more regularity than their pseudorandom counterparts, and
are well-suited to estimating multidimensional integrals. Chapter 3 discusses gen-
eral methods for random variable generation from arbitrary distributions, whereas
Chapter 4 gives a list of specific generation algorithms for the major univariate and
multivariate probability distributions. Chapter 5 lists the main random processes
used in Monte Carlo simulation, along with their properties and how to generate
them. Various Markov chain Monte Carlo techniques are discussed in Chapter 6, all
of which aim to (approximately) generate samples from complicated distributions.
Chapter 7 deals with simulation modeling and discrete event simulation, using the
fundamental random variables and processes in Chapters 4 and 5 as building blocks.
The simulation of such models then allows one to estimate quantities of interest
related to the system.

The statistical analysis of simulation data is discussed in Chapter 8, which sur-
veys a number of techniques available to obtain estimates and confidence intervals
for quantities of interest, as well as methods to test hypotheses related to the data.
Chapter 9 provides a comprehensive overview of variance reduction techniques for
use in Monte Carlo simulation. The efficient estimation of rare-event probabili-
ties is discussed in Chapter 10, including specific variance reduction techniques.
Chapter 11 details the main methods for estimating derivatives with respect to the
parameters of interest.

Monte Carlo is not only used for estimation but also for optimization. Chapter 12
discusses various randomized optimization techniques, including stochastic gradi-
ent methods, the simulated annealing technique, and the cross-entropy method.
The cross-entropy method, which relates rare-event simulation to randomized op-
timization, is further explored in Chapter 13, while Chapter 14 focuses on particle
splitting methods for rare-event simulation and combinatorial optimization.

Applications of Monte Carlo methods in finance and in network reliability are
given in Chapters 15 and 16, respectively. Chapter 17 highlights the use of Monte
Carlo to obtain approximate solutions to complex systems of differential equations.

Appendix A provides background material on probability theory and stochastic
processes. Fundamental material from mathematical statistics is summarized in
Appendix B. Appendix C reviews a number of key optimization concepts and tech-
niques, and presents some common optimization problems. Finally, Appendix D
summarizes miscellaneous results on exponential families, tail probabilities, differ-
entiation, and the EM algorithm.

DIRK KROESE, THOMAS TAIMRE, AND ZDRAVKO BOTEV

Brisbane and Montreal

September, 2010

ACKNOWLEDGMENTS

This book has benefited from the input of many people. We thank Tim Brere-
ton, Josh Chan, Nicolas Chopin, Georgina Davies, Adam Grace, Pierre L'Ecuyer,
Ben Petschel, Ad Ridder, and Virgil Stokes, for their valuable feedback on the
manuscript. Most of all, we would like to thank our families — without their
support, love, and patience this book could not have been written.

This work was financially supported by the Australian Research Council un-
der grant number DP0985177 and the Isaac Newton Institute for Mathematical
Sciences, Cambridge, U.K.

DPK, TT, ZIB

XIX

This page intentionally left blank

CHAPTER 1

UNIFORM RANDOM NUMBER
GENERATION

This chapter gives an overview of the main techniques and algorithms for generating
uniform random numbers, including those based on linear recurrences, modulo 2
arithmetic, and combinations of these. A range of theoretical and empirical tests
is provided to assess the quality of a uniform random number generator. We refer
to Chapter 3 for a discussion on methods for random variable generation from «®" 43
arbitrary distributions — such methods are invariably based on uniform random
number generators.

1.1 RANDOM NUMBERS

At the heart of any Monte Carlo method is a random number generator: a
procedure that produces an infinite stream

£/ 1 , [/ 2 , [/ 3 , . . .~Dist

of random variables that are independent and identically distributed (iid) according
to some probability distribution Dist. When this distribution is the uniform dis-
tribution on the interval (0,1) (that is, Dist = U(0,1)), the generator is said to be
a uniform random number generator. Most computer languages already con-
tain a built-in uniform random number generator. The user is typically requested
only to input an initial number, called the seed, and upon invocation the random

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 1
Copyright © 2011 John Wiley & Sons, Inc.

2 UNIFORM RANDOM NUMBER GENERATION

number generator produces a sequence of independent uniform random variables on
the interval (0,1). In MATLAB, for example, this is provided by the rand function.

The concept of an infinite iid sequence of random variables is a mathematical
abstraction that may be impossible to implement on a computer. The best one can
hope to achieve in practice is to produce a sequence of "random" numbers with
statistical properties that are indistinguishable from those of a true sequence of
iid random variables. Although physical generation methods based on universal
background radiation or quantum mechanics seem to offer a stable source of such
true randomness, the vast majority of current random number generators are based
on simple algorithms that can be easily implemented on a computer. Following
L'Ecuyer [10], such algorithms can be represented as a tuple (S,f^,U,g), where

• iS is a finite set of s tates ,

• / is a function from S to <S,

• μ is a probability distribution on S,

• U is the output space; for a uniform random number generator U is the
interval (0,1), and we will assume so from now on, unless otherwise specified,

• g is a function from S to U.

A random number generator then has the following structure:

Algor i thm 1.1 (Generic R a n d o m N u m b e r Generator)

1. Initialize: Draw the seed SQ from the distribution μ on S. Set t = 1.

2. Transition: Set St = f{St-i).

3. Output : SetUt = g(St).

4- Repea t : Set t = t + 1 and return to Step 2.

The algorithm produces a sequence U\, U2, U3,... of pseudorandom numbers
— we will refer to them simply as random numbers. Starting from a certain
seed, the sequence of states (and hence of random numbers) must repeat itself,
because the state space is finite. The smallest number of steps taken before enter-
ing a previously visited state is called the period length of the random number
generator.

1.1.1 Properties of a Good Random Number Generator

What constitutes a good random number generator depends on many factors. It
is always advisable to have a variety of random number generators available, as
different applications may require different properties of the random generator.
Below are some desirable, or indeed essential, properties of a good uniform random
number generator; see also [39].

1. Pass statistical tests: The ultimate goal is that the generator should produce
a stream of uniform random numbers that is indistinguishable from a genuine
uniform iid sequence. Although from a theoretical point of view this criterion
is too imprecise and even infeasible (see Remark 1.1.1), from a practical point

RANDOM NUMBERS 3

of view this means that the generator should pass a battery of simple statis-
tical tests designed to detect deviations from uniformity and independence.
We discuss such tests in Section 1.5.2.

2. Theoretical support: A good generator should be based on sound mathemat-
ical principles, allowing for a rigorous analysis of essential properties of the
generator. Examples are linear congruential generators and multiple-recursive
generators discussed in Sections 1.2.1 and 1.2.2.

3. Reproducible: An important property is that the stream of random numbers
is reproducible without having to store the complete stream in memory. This
is essential for testing and variance reduction techniques. Physical generation
methods cannot be repeated unless the entire stream is recorded.

4. Fast and efficient: The generator should produce random numbers in a fast
and efficient manner, and require little storage in computer memory. Many
Monte Carlo techniques for optimization and estimation require billions or
more random numbers. Current physical generation methods are no match
for simple algorithmic generators in terms of speed.

5. Large period: The period of a random number generator should be extremely
large — on the order of 1050 — in order to avoid problems with duplication
and dependence. Evidence exists [36] that in order to produce N random
numbers, the period length needs to be at least lOiV2. Most early algorithmic
random number generators „were fundamentally inadequate in this respect.

6. Multiple streams: In many applications it is necessary to run multiple in-
dependent random streams in parallel. A good random number generator
should have easy provisions for multiple independent streams.

7. Cheap and easy: A good random number generator should be cheap and not
require expensive external equipment. In addition, it should be easy to install,
implement, and run. In general such a random number generator is also more
easily portable over different computer platforms and architectures.

8. Not produce 0 or 1: A desirable property of a random number generator is
that both 0 and 1 are excluded from the sequence of random numbers. This
is to avoid division by 0 or other numerical complications.

Remark 1.1.1 (Computat ional Complexi ty) From a theoretical point of
view, a finite-state random number generator can always be distinguished from
a true iid sequence, after observing the sequence longer than its period. How-
ever, from a practical point of view this may not be feasible within a "reasonable"
amount of time. This idea can be formalized through the notion of computational
complexity; see, for example, [33].

1.1.2 Choosing a Good Random Number Generator

As Pierre L'Ecuyer puts it [12], choosing a good random generator is like choosing
a new car: for some people or applications speed is preferred, while for others
robustness and reliability are more important. For Monte Carlo simulation the
distributional properties of random generators are paramount, whereas in coding
and cryptography unpredictability is crucial.

4 UNIFORM RANDOM NUMBER GENERATION

Nevertheless, as with cars, there are many poorly designed and outdated mod-
els available that should be avoided. Indeed several of the standard generators
that come with popular programming languages and computing packages can be
appallingly poor [13].

Two classes of generators that have overall good performance are:

1. Combined multiple recursive generators, some of which have excellent statis-
tical properties, are simple, have large period, support multiple streams, and
are relatively fast. A popular choice is L'Ecuyer's MRG32k3a (see Section 1.3),
which has been implemented as one of the core generators in MATLAB (from
version 7), VSL, SAS, and the simulation packages SSJ, Arena, and Automod.

2. Twisted general feedback shift register generators, some of which have very
good equidistributional properties, are among the fastest generators available
(due to their essentially binary implementation), and can have extremely long
periods. A popular choice is Matsumoto and Nishimura's Mersenne twister
MT19937ar (see Section 1.2.4), which is currently the default generator in
MATLAB.

In general, a good uniform number generator has overall good performance, in
terms of the criteria mentioned above, but is not usually the top performer over
all these criteria. In choosing an appropriate generator it pays to remember the
following.

• Faster generators are not necessarily better (indeed, often the contrary is
true).

• A small period is in general bad, but a larger period is not necessarily better.

• Good equidistribution is a necessary requirement for a good generator but
not a sufficient requirement.

1.2 GENERATORS BASED ON LINEAR RECURRENCES

The most common methods for generating pseudorandom sequences use simple
linear recurrence relations.

1.2.1 Linear Congruential Generators

A linear congruential generator (LCG) is a random number generator of the
form of Algorithm 1.1, with state St = Xt G { 0 , . . . , m — 1} for some strictly positive
integer m called the modulus , and state transitions

Xt = (aXt-i +c) mod m , ί = 1,2, . . . , (1.1)

where the multiplier a and the increment c are integers. Applying the modulo-m
operator in (1.1) means that aXt~\ +c is divided by TO, and the remainder is taken
as the value for Xt. Note that the multiplier and increment may be chosen in the
set { 0 , . . . , TO — 1}. When c = 0, the generator is sometimes called a multipl icative
congruential generator. Most existing implementations of LCGs are of this form

GENERATORS BASED ON LINEAR RECURRENCES 5

— in general the increment does not have a large impact on the quality of an LCG.
The output function for an LCG is simply

■ EXAMPLE 1.1 (Minimal Standard LCG)

An often-cited LCG is that of Lewis, Goodman, and Miller [24], who proposed
the choice a = 75 = 16807, c = 0, and m = 23 1 - 1 = 2147483647. This LCG
passes many of the standard statistical tests and has been successfully used in
many applications. For this reason it is sometimes viewed as the minimal standard
LCG, against which other generators should be judged.

Although the generator has good properties, its period (231 — 2) and statistical
properties no longer meet the requirements of modern Monte Carlo applications;
see, for example, [20].

A comprehensive list of classical LCGs and their properties can be found on Karl
Entacher's website:

http : / / r a n d o m . m a t . s b g . a c . a t / r e s u l t s / k a r l / s e r v e r /

The following recommendations for LCGs are reported in [20]:

• All LCGs with modulus 2P for some integer p are badly behaved and should
not be used.

• All LCGs with modulus up to 26 1 « 2 x 1018 fail several tests and should be
avoided.

1.2.2 Multiple-Recursive Generators

A multiple-recursive generator (MRG) of order A; is a random number gen-
erator of the form of Algorithm 1.1, with state St = Xt = (Xt-k+i, ■ ■ ■ ,Xt)T £
{ 0 , . . . , TO — l} f c for some modulus TO and state transitions defined by

Xt = (a^Xt-i H h akXt-k) mod m , t = k,k + l,..., (1.2)

where the multipliers {OJ,Z
function is often taken as

The maximum period length for this generator is mk — 1, which is obtained if (a)
TO is a prime number and (b) the polynomial p(z) — zk — Σί=ι a,iZk~l is primitive
using modulo m arithmetic. Methods for testing primitivity can be found in [8,
Pages 30 and 439]. To yield fast algorithms, all but a few of the {a{\ should be 0.

MRGs with very large periods can be implemented efficiently by combining sev-
eral smaller-period MRGs (see Section 1.3).

1 , . . . , k} lie in the set { 0 , . . . , m — 1}. The output

Xt
TO

6 UNIFORM RANDOM NUMBER GENERATION

1.2.3 Matrix Congruential Generators

An MRG can be interpreted and implemented as a matr ix mult ipl icative con-
gruential generator, which is a random number generator of the form of Algo-
rithm 1.1, with state S t = X t € { 0 , . . . , m — l}k for some modulus m, and state
transitions

X t = (4 X t _ i) mod TO, ΐ = 1,2, . . . , (1.3)

where A is an invertible kxk matrix and Xt is a k x 1 vector. The output function
is often taken as

U t = * i , (1.4)
TO

yielding a vector of uniform numbers in (0,1). Hence, here the output space U for
the algorithm is (0, l)k. For fast random number generation, the matrix A should
be sparse.

To see that the multiple-recursive generator is a special case, take

A =

/ 0 1 ·

0 0
\flfc flfc-1 ·

·· o\

.. 1
·· aij

and X t —
(Xt \ Xt+l

\Xt+k-lJ

(1.5)

Obviously, the matrix multiplicative congruential generator is the fc-dimensional
generalization of the multiplicative congruential generator. A similar generaliza-
tion of the multiplicative recursive generator — replacing the multipliers {<ij} with
matrices, and the scalars {Xt} with vectors in (1.2) —, yields the class of matr ix
multiplicative recursive generators; see, for example, [34].

1.2.4 Modulo 2 Linear Generators

Good random generators must have very large state spaces. For an LCG this
means that the modulus TO must be a large integer. However, for multiple recursive
and matrix generators it is not necessary to take a large modulus, as the state
space can be as large as mk. Because binary operations are in general faster than
floating point operations (which are in turn faster than integer operations), it makes
sense to consider random number generators that are based on linear recurrences
modulo 2. A general framework for such random number generators is given in
[18], where the state is a fc-bit vector X t = {Xt,i, ■ ■ ■, Xt,k)T that is mapped via a
linear transformation to a w-bit output vector Y t = (it . i i · · · , Yt,w)T, from which
the random number Ut G (0,1) is obtained by bitwise decimation as follows. More
precisely, the procedure is as follows.

Algor i thm 1.2 (Generic Linear Recurrence M o d u l o 2 Generator)

1. Initialize: Draw the seed Xo from the distribution μ on the state space S ■
{0, l} f c . Sett = l.

2. Transition; Set X t = A X t _ i .

3. Output : Set Y t = ßX E and return

w

4- Repea t : Set t = t + 1 and return to Step 2.

file:///flfc

GENERATORS BASED ON LINEAR RECURRENCES 7

Here, A and B are kxk and wxk binary matrices, respectively, and all operations
are performed modulo 2. In algebraic language, the operations are performed over
the finite field F2, where addition corresponds to the bitwise XOR operation (in
particular, 1 + 1 = 0). The integer w can be thought of as the word length of the
computer (that is, w = 32 or 64). Usually (but there are exceptions, see [18]) k is
taken much larger than w.

■ EXAMPLE 1.2 (Linear Feedback Shift Register Generator)

The Tausworthe or linear feedback shift register (LFSR) generator is an MRG
of the form (1.2) with m = 2, but with output function

w

e=i

for some w ^ k and s ^ 1 (often one takes s = w). Thus, a binary sequence
Χο,Χι,... is generated according to the recurrence (1.2), and the ί-th "word"
{Xts, ■ ■ ■, Xts+w-i)T, t = 0 , 1 , . . . is interpreted as the binary representation of the
ί-th random number.

This generator can be put in the framework of Algorithm 1.2. Namely, the
state at iteration t is given by the vector X t = (Xts, ■ ■ ■, Xts+k-i)T, and the state
is updated by advancing the recursion (1.2) over s time steps. As a result, the
transition matrix A in Algorithm 1.2 is equal to the s-th power of the "1-step"
transition matrix given in (1.5). The output vector Y t is obtained by simply taking
the first w bits of X (; hence B = [Iw O œ x (£_„,)], where Iw is the identity matrix
of dimension w and Owx^-w) the w x (k — w) matrix of zeros.

For fast generation most of the multipliers {ai} are 0; in many cases there is
often only one other non-zero multiplier ar apart from α^, in which case

Xt = Xt-r Θ Xt-k , (1.6)

where ® signifies addition modulo 2. The same recurrence holds for the states
(vectors of bits); that is,

X* = X t - r ® Xt-fc >

where addition is defined componentwise.
The LFSR algorithm derives its name from the fact that it can be implemented

very efficiently on a computer via feedback shift registers — binary arrays that
allow fast shifting of bits; see, for example, [18, Algorithm L] and [7, Page 40].

Generalizations of the LFSR generator that all fit the framework of Algorithm 1.2
include the generalized feedback shift register generators [25] and the twis ted
versions thereof [30], the most popular of which are the Mersenne twisters [31].
A particular instance of the Mersenne twister, MT19937, has become widespread,
and has been implemented in software packages such as SPSS and MATLAB. It has a
huge period length of 2 1 9 9 3 7 — 1, is very fast, has good equidistributional properties,
and passes most statistical tests. The latest version of the code may be found at

h t t p : / / w w w . m a t h . s e i . h i r o s h i m a - u . a c . j p/~m-mat/MT/emt.html

Two drawbacks are that the initialization procedure and indeed the implementa-
tion itself is not straightforward. Another potential problem is that the algorithm

8 UNIFORM RANDOM NUMBER GENERATION

recovers too slowly from the states near zero. More precisely, after a state with
very few Is is hit, it may take a long time (several hundred thousand steps) before
getting back to some state with a more equal division between Os and Is. Some
other weakness are discussed in [20, Page 23].

The development of good and fast modulo 2 generators is important, both from
a practical and theoretical point of view, and is still an active area of research,
not in the least because of the close connection to coding and cryptography. Some
recent developments include the WELL (well-equidistributed long-period linear)
generators by Panneton et al. [35], which correct some weaknesses in MT19937, and
the SIMD-oriented fast Mersenne twister [38], which is significantly faster than
the standard Mersenne twister, has better equidistribution properties, and recovers
faster from states with many 0s.

1.3 COMBINED GENERATORS

A significant leap forward in the development of random number generators was
made with the introduction of combined generators. Here the output of several
generators, which individually may be of poor quality, is combined, for example by
shuffling, adding, and/or selecting, to make a superior quality generator.

■ EXAMPLE 1.3 (Wichman-Hi l l)

One of the earliest combined generators is the Wichman-Hill generator [41], which
combines three LCGs:

Xt = (171 Xt_x) mod mi (mi = 30269) ,

Yt = (172 Yt_i) mod m 2 (m2 = 30307) ,

Zt = (170 Z t _i) mod m 3 (m3 = 30323) .

These random integers are then combined into a single random number

TT Xt , Yt , Zt ,
Ut = 1 1 mod 1 .

mi m 2 ™3

The period of the sequence of triples (Xt,Yt, Zt) is shown [42] to be (mi — l) (m 2 —
l)("T-3 — l) / 4 ~ 6.95 x 1012, which is much larger than the individual periods. Zeisel
[43] shows that the generator is in fact equivalent (produces the same output) as
a multiplicative congruential generator with modulus m = 27817185604309 and
multiplier a = 16555425264690.

The Wichman-Hill algorithm performs quite well in simple statistical tests, but
since its period is not sufficiently large, it fails various of the more sophisticated
tests, and is no longer suitable for high-performance Monte Carlo applications.

One class of combined generators that has been extensively studied is that of
the combined multiple-recursive generators, where a small number of MRGs
are combined. This class of generators can be analyzed theoretically in the same
way as single MRG: under appropriate initialization the output stream of random
numbers of a combined MRG is exactly the same as that of some larger-period

