

Algorithms for Image
Processing and

Computer Vision

Second Edition

Algorithms for Image
Processing and

Computer Vision

Second Edition

J.R. Parker

Wiley Publishing, Inc.

Algorithms for Image Processing and Computer Vision, Second Edition

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright 2011 by J.R. Parker

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-64385-3
ISBN: 978-1-118-02188-0 (ebk)
ISBN: 978-1-118-02189-7 (ebk)
ISBN: 978-1-118-01962-7 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or website may provide or recommendations it may make. Further,
readers should be aware that Internet websites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010939957

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor mentioned
in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions

‘‘Sin lies only in hurting other people unnecessarily.
All other ‘sins’ are invented nonsense.

(Hurting yourself is not a sin — just stupid.)’’

— Robert A. Heinlein

Thanks, Bob.

Credits

Executive Editor
Carol Long

Project Editor
John Sleeva

Technical Editor
Kostas Terzidis

Production Editor
Daniel Scribner

Copy Editor
Christopher Jones

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial
Manager
Rosemarie Graham

Marketing Manager
Ashley Zurcher

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive
Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreaders
Nancy Hanger, Paul Sagan

Indexer
Ron Strauss

Cover Image
Ryan Sneed

Cover Designer
 GYRO PHOTOGRAPHY/
amanaimagesRB/Getty Images

vi

About the Author

J.R. Parker is a computer expert and teacher, with special interests in image
processing and vision, video game technologies, and computer simulations.
With a Ph.D. in Informatics from the State University of Gent, Dr. Parker
has taught computer science, art, and drama at the University of Calgary in
Canada, where he is a full professor. He has more than 150 technical papers
and four books to his credit, as well as video games such as the Booze Cruise,
a simulation of impaired driving designed to demonstrate its folly, and a
number of educational games. Jim lives on a small ranch near Cochrane,
Alberta, Canada with family and a host of legged and winged creatures.

vii

About the Technical Editor

Kostas Terzidis is an Associate Professor at the Harvard Graduate School of
Design. He holds a Ph.D. in Architecture from the University of Michigan
(1994), a Masters of Architecture from Ohio State University (1989), and a
Diploma of Engineering from the Aristotle University of Thessaloniki (1986).
His most recent work is in the development of theories and techniques for
the use of algorithms in architecture. His book Expressive Form: A Concep-
tual Approach to Computational Design, published by London-based Spon Press
(2003), offers a unique perspective on the use of computation as it relates to aes-
thetics, specifically in architecture and design. His book Algorithmic Architecture
(Architectural Press/Elsevier, 2006) provides an ontological investigation into
the terms, concepts, and processes of algorithmic architecture and provides
a theoretical framework for design implementations. His latest book, Algo-
rithms for Visual Design (Wiley, 2009), provides students, programmers, and
researchers the technical, theoretical, and design means to develop computer
code that will allow them to experiment with design problems.

viii

Acknowledgments

Thanks this time to Sonny Chan, for the inspiration for the parallel computing
chapter, to Jeff Boyd, for introducing me repeatedly to OpenCV, and to Ralph
Huntsinger and Ghislain C. Vansteenkiste, for getting me into and successfully
out of my Ph.D. program.

Almost all the images used in this book were created by me, using an IBM
PC with a frame grabber and a Sony CCD camera, an HP scanner, and a Sony
Eyetoy as a webcam. Credits for the few images that were not acquired in this
way are as follows:

Corel Corporation made available the color image of the grasshopper on
a leaf shown in Figure 3.33, and also was the origin of the example search
images in Figure 10.5.

The sample images in Figure 10.1 were a part of the ALOI data set, use of
which was allowed by J. M. Geusebroek.

Thanks to Big Hill Veterinary Clinic in Cochrane, Alberta, Canada, for the
X-ray image shown in Figure 3.10e.

Finally, thanks to Dr. N. Wardlaw, of the University of Calgary Department
of Geology, for the geological micropore image of Figure 3.16.

Most importantly, I need to thank my family: my wife, Katrin, and children,
Bailey and Max. They sacrificed time and energy so that this work could be
completed. I appreciate it and hope that the effort has been worthwhile.

ix

Contents at a Glance

Preface xxi

Chapter 1 Practical Aspects of a Vision System — Image Display,
Input/Output, and Library Calls 1

Chapter 2 Edge-Detection Techniques 21

Chapter 3 Digital Morphology 85

Chapter 4 Grey-Level Segmentation 137

Chapter 5 Texture and Color 177

Chapter 6 Thinning 209

Chapter 7 Image Restoration 251

Chapter 8 Classification 285

Chapter 9 Symbol Recognition 321

Chapter 10 Content-Based Search — Finding Images by Example 395

Chapter 11 High-Performance Computing for Vision and Image
Processing 425

Index 465

xi

Contents

Preface xxi

Chapter 1 Practical Aspects of a Vision System — Image Display,
Input/Output, and Library Calls 1
OpenCV 2
The Basic OpenCV Code 2

The IplImage Data Structure 3
Reading and Writing Images 6
Image Display 7
An Example 7

Image Capture 10
Interfacing with the AIPCV Library 14
Website Files 18
References 18

Chapter 2 Edge-Detection Techniques 21
The Purpose of Edge Detection 21
Traditional Approaches and Theory 23

Models of Edges 24
Noise 26
Derivative Operators 30
Template-Based Edge Detection 36

Edge Models: The Marr-Hildreth Edge Detector 39
The Canny Edge Detector 42
The Shen-Castan (ISEF) Edge Detector 48
A Comparison of Two Optimal Edge Detectors 51

xiii

xiv Contents

Color Edges 53
Source Code for the Marr-Hildreth Edge Detector 58
Source Code for the Canny Edge Detector 62
Source Code for the Shen-Castan Edge Detector 70
Website Files 80
References 82

Chapter 3 Digital Morphology 85
Morphology Defined 85
Connectedness 86
Elements of Digital Morphology — Binary Operations 87

Binary Dilation 88
Implementing Binary Dilation 92
Binary Erosion 94
Implementation of Binary Erosion 100
Opening and Closing 101
MAX — A High-Level Programming Language for

Morphology 107
The ‘‘Hit-and-Miss’’ Transform 113
Identifying Region Boundaries 116
Conditional Dilation 116
Counting Regions 119

Grey-Level Morphology 121
Opening and Closing 123
Smoothing 126
Gradient 128
Segmentation of Textures 129
Size Distribution of Objects 130

Color Morphology 131
Website Files 132
References 135

Chapter 4 Grey-Level Segmentation 137
Basics of Grey-Level Segmentation 137

Using Edge Pixels 139
Iterative Selection 140
The Method of Grey-Level Histograms 141
Using Entropy 142
Fuzzy Sets 146
Minimum Error Thresholding 148
Sample Results From Single Threshold Selection 149

Contents xv

The Use of Regional Thresholds 151
Chow and Kaneko 152
Modeling Illumination Using Edges 156
Implementation and Results 159
Comparisons 160

Relaxation Methods 161
Moving Averages 167
Cluster-Based Thresholds 170
Multiple Thresholds 171
Website Files 172
References 173

Chapter 5 Texture and Color 177
Texture and Segmentation 177
A Simple Analysis of Texture in Grey-Level Images 179
Grey-Level Co-Occurrence 182

Maximum Probability 185
Moments 185
Contrast 185
Homogeneity 185
Entropy 186
Results from the GLCM Descriptors 186
Speeding Up the Texture Operators 186

Edges and Texture 188
Energy and Texture 191
Surfaces and Texture 193

Vector Dispersion 193
Surface Curvature 195

Fractal Dimension 198
Color Segmentation 201
Color Textures 205
Website Files 205
References 206

Chapter 6 Thinning 209
What Is a Skeleton? 209
The Medial Axis Transform 210
Iterative Morphological Methods 212
The Use of Contours 221

Choi/Lam/Siu Algorithm 224
Treating the Object as a Polygon 226

Triangulation Methods 227

xvi Contents

Force-Based Thinning 228
Definitions 229
Use of a Force Field 230
Subpixel Skeletons 234

Source Code for Zhang-Suen/Stentiford/Holt Combined
Algorithm 235

Website Files 246
References 247

Chapter 7 Image Restoration 251
Image Degradations — The Real World 251
The Frequency Domain 253

The Fourier Transform 254
The Fast Fourier Transform 256
The Inverse Fourier Transform 260
Two-Dimensional Fourier Transforms 260
Fourier Transforms in OpenCV 262
Creating Artificial Blur 264

The Inverse Filter 270
The Wiener Filter 271
Structured Noise 273
Motion Blur — A Special Case 276
The Homomorphic Filter — Illumination 277

Frequency Filters in General 278
Isolating Illumination Effects 280

Website Files 281
References 283

Chapter 8 Classification 285
Objects, Patterns, and Statistics 285

Features and Regions 288
Training and Testing 292
Variation: In-Class and Out-Class 295

Minimum Distance Classifiers 299
Distance Metrics 300
Distances Between Features 302

Cross Validation 304
Support Vector Machines 306
Multiple Classifiers — Ensembles 309

Merging Multiple Methods 309
Merging Type 1 Responses 310
Evaluation 311
Converting Between Response Types 312

Contents xvii

Merging Type 2 Responses 313
Merging Type 3 Responses 315

Bagging and Boosting 315
Bagging 315
Boosting 316

Website Files 317
References 318

Chapter 9 Symbol Recognition 321
The Problem 321
OCR on Simple Perfect Images 322
OCR on Scanned Images — Segmentation 326

Noise 327
Isolating Individual Glyphs 329
Matching Templates 333
Statistical Recognition 337

OCR on Fax Images — Printed Characters 339
Orientation — Skew Detection 340
The Use of Edges 345

Handprinted Characters 348
Properties of the Character Outline 349
Convex Deficiencies 353
Vector Templates 357
Neural Nets 363

A Simple Neural Net 364
A Backpropagation Net for Digit Recognition 368

The Use of Multiple Classifiers 372
Merging Multiple Methods 372
Results From the Multiple Classifier 375

Printed Music Recognition — A Study 375
Staff Lines 376
Segmentation 378
Music Symbol Recognition 381

Source Code for Neural Net Recognition System 383
Website Files 390
References 392

Chapter 10 Content-Based Search — Finding Images by Example 395
Searching Images 395
Maintaining Collections of Images 396
Features for Query by Example 399

Color Image Features 399
Mean Color 400
Color Quad Tree 400

xviii Contents

Hue and Intensity Histograms 401
Comparing Histograms 402
Requantization 403
Results from Simple Color Features 404
Other Color-Based Methods 407

Grey-Level Image Features 408
Grey Histograms 409
Grey Sigma — Moments 409
Edge Density — Boundaries Between Objects 409
Edge Direction 410
Boolean Edge Density 410

Spatial Considerations 411
Overall Regions 411
Rectangular Regions 412
Angular Regions 412
Circular Regions 414
Hybrid Regions 414
Test of Spatial Sampling 414

Additional Considerations 417
Texture 418
Objects, Contours, Boundaries 418
Data Sets 418

Website Files 419
References 420

Systems 424

Chapter 11 High-Performance Computing for Vision and Image
Processing 425
Paradigms for Multiple-Processor Computation 426

Shared Memory 426
Message Passing 427

Execution Timing 427
Using clock() 428
Using QueryPerformanceCounter 430

The Message-Passing Interface System 432
Installing MPI 432
Using MPI 433
Inter-Process Communication 434
Running MPI Programs 436
Real Image Computations 437
Using a Computer Network — Cluster Computing 440

Contents xix

A Shared Memory System — Using the PC Graphics
Processor 444

GLSL 444
OpenGL Fundamentals 445
Practical Textures in OpenGL 448
Shader Programming Basics 451

Vertex and Fragment Shaders 452
Required GLSL Initializations 453

Reading and Converting the Image 454
Passing Parameters to Shader Programs 456
Putting It All Together 457
Speedup Using the GPU 459
Developing and Testing Shader Code 459

Finding the Needed Software 460
Website Files 461
References 461

Index 465

Preface

Humans still obtain the vast majority of their sensory input through their vi-
sual system, and an enormous effort has been made to artificially enhance this
sense. Eyeglasses, binoculars, telescopes, radar, infrared sensors, and photo-
multipliers all function to improve our view of the world and the universe.
We even have telescopes in orbit (eyes outside the atmosphere) and many of
those ‘‘see’’ in other spectra: infrared, ultraviolet, X-rays. These give us views
that we could not have imagined only a few years ago, and in colors that we’ll
never see with the naked eye. The computer has been essential for creating the
incredible images we’ve all seen from these devices.

When the first edition of this book was written, the Hubble Space Telescope
was in orbit and producing images at a great rate. It and the European
Hipparcos telescope were the only optical instruments above the atmosphere.
Now there is COROT, Kepler, MOST (Canada’s space telescope), and Swift
Gamma Ray Burst Explorer. In addition, there is the Spitzer (infrared),
Chandra (X-ray), GALEX (ultraviolet), and a score of others. The first edition
was written on a 450-Mhz Pentium III with 256 MB of memory. In 1999, the
first major digital SLR camera was placed on the market: the Nikon D1. It
had only 2.74 million pixels and cost just under $6,000. A typical PC disk
drive held 100–200 MB. Webcams existed in 1997, but they were expensive
and low-resolution. Persons using computer images needed to have a special
image acquisition card and a relatively expensive camera to conduct their
work, generally amounting to $1–2,000 worth of equipment. The technology
of personal computers and image acquisition has changed a lot since then.

The 1997 first edition was inspired by my numerous scans though the
Internet news groups related to image processing and computer vision. I
noted that some requests appeared over and over again, sometimes answered
and sometimes not, and wondered if it would be possible to answer the more

xxi

xxii Preface

frequently asked questions in book form, which would allow the development
of some of the background necessary for a complete explanation. However,
since I had just completed a book (Practical Computer Vision Using C), I was in
no mood to pursue the issue. I continued to collect information from the Net,
hoping to one day collate it into a sensible form. I did that, and the first edition
was very well received. (Thanks!)

Fifteen years later, given the changes in technology, I’m surprised at how
little has changed in the field of vision and image processing, at least at
the accessible level. Yes, the theory has become more sophisticated and
three-dimensional vision methods have certainly improved. Some robot vision
systems have accomplished rather interesting things, and face recognition has
been taken to a new level. However, cheap character recognition is still, well,
cheap, and is still not up to a level where it can be used reliably in most cases.
Unlike other kinds of software, vision systems are not ubiquitous features of
daily life. Why not? Possibly because the vision problem is really a hard one.
Perhaps there is room for a revision of the original book?

My goal has changed somewhat. I am now also interested in ‘‘democratiza-
tion’’ of this technology — that is, in allowing it to be used by anyone, at home,
in their business, or at schools. Of course, you need to be able to program a
computer, but that skill is more common than it was. All the software needed
to build the programs in this edition is freely available on the Internet. I
have used a free compiler (Microsoft Visual Studio Express), and OpenCV is
also a free download. The only impediment to the development of your own
image-analysis systems is your own programming ability.

Some of the original material has not changed very much. Edge detec-
tion, thinning, thresholding, and morphology have not been hot areas of
research, and the chapters in this edition are quite similar to those in the
original. The software has been updated to use Intel’s OpenCV system, which
makes image IO and display much easier for programmers. It is even a simple
matter to capture images from a webcam in real time and use them as input
to the programs. Chapter 1 contains a discussion of the basics of OpenCV use,
and all software in this book uses OpenCV as a basis.

Much of the mathematics in this book is still necessary for the detailed under-
standing of the algorithms described. Advanced methods in image processing
and vision require the motivation and justification that only mathematics can
provide. In some cases, I have only scratched the surface, and have left a
more detailed study for those willing to follow the references given at the
ends of chapters. I have tried to select references that provide a range of
approaches, from detailed and complex mathematical analyses to clear and
concise exposition. However, in some cases there are very few clear descrip-
tions in the literature, and none that do not require at least a university-level
math course. Here I have attempted to describe the situation in an intuitive
manner, sacrificing rigor (which can be found almost anywhere else) for as

Preface xxiii

clear a description as possible. The software that accompanies the descriptions
is certainly an alternative to the math, and gives a step-by-step description of
the algorithms.

I have deleted some material completely from the first edition. There is no
longer a chapter on wavelets, nor is there a chapter on genetic algorithms.
On the other hand, there is a new chapter on classifiers, which I think was
an obvious omission in the first edition. A key inclusion here is the chapter
on the use of parallel programming for solving image-processing problems,
including the use of graphics cards (GPUs) to accelerate calculations by factors
up to 200. There’s also a completely new chapter on content-based searches,
which is the use of image information to retrieve other images. It’s like saying,
‘‘Find me another image that looks like this.’’ Content-based search will be an
essential technology over the next two decades. It will enable the effective use
of modern large-capacity disk drives; and with the proliferation of inexpensive
high-resolution digital cameras, it makes sense that people will be searching
through large numbers of big images (huge numbers of pixels) more and more
often.

Most of the algorithms discussed in this edition can be found in source
code form on the accompanying web page. The chapter on thresholding alone
provides 17 programs, each implementing a different thresholding algorithm.
Thinning programs, edge detection, and morphology are all now available on
the Internet.

The chapter on image restoration is still one of the few sources of practical
information on that subject. The symbol recognition chapter has been updated;
however, as many methods are commercial, they cannot be described and
software can’t be provided due to patent and copyright concerns. Still, the
basics are there, and have been connected with the material on classifiers.

The chapter on parallel programming for vision is, I think, a unique feature
of this book. Again using downloadable tools, this chapter shows how to link
all the computers on your network into a large image-processing cluster. Of
couse, it also shows how to use all the CPUs on your multi-core and, most
importantly, gives an introductory and very practical look at how to program
the GPU to do image processing and vision tasks, rather than just graphics.

Finally, I have provided a chapter giving a selection of methods for use
in searching through images. These methods have code showing their imple-
mentation and, combined with other code in the book, will allow for many
hours of experimenting with your own ideas and algorithms for organizing
and searching image data sets.

Readers can download all the source code and sample images mentioned in
this book from the book’s web page — www.wiley.com/go/jrparker. You can
also link to my own page, through which I will add new code, new images,
and perhaps even new written material to supplement and update the printed
matter. Comments and mistakes (how likely is that?) can be communicated

xxiv Preface

through that web page, and errata will be posted, as will reader contributions
to the software collection and new ideas for ways to use the code methods for
compiling on other systems and with other compilers.

I invite you to make suggestions through the website for subjects for new
chapters that you would like to read. It is my intention to select a popular
request and to post a new chapter on that subject on the site at a future date.
A book, even one primarily released on paper, need not be a completely static
thing!

Jim Parker
Cochrane, Alberta, Canada

October 2010

C H A P T E R

1
Practical Aspects of a Vision

System—Image Display,
Input/Output, and Library Calls

When experimenting with vision- and image-analysis systems or implement-
ing one for a practical purpose, a basic software infrastructure is essential.
Images consist of pixels, and in a typical image from a digital camera there
will be 4–6 million pixels, each representing the color at a point in the
image. This large amount of data is stored as a file in a format (such as GIF
or JPEG) suitable for manipulation by commercial software packages, such
as Photoshop and Paint. Developing new image-analysis software means
first being able to read these files into an internal form that allows access to
the pixel values. There is nothing exciting about code that does this, and it
does not involve any actual image processing, but it is an essential first step.
Similarly, image-analysis software will need to display images on the screen
and save them in standard formats. It’s probably useful to have a facility for
image capture available, too. None of these operations modify an image but
simply move it about in useful ways.

These bookkeeping tasks can require most of the code involved in an
imaging program. The procedure for changing all red pixels to yellow, for
example, can contain as few as 10 lines of code; yet, the program needed to
read the image, display it, and output of the result may require an additional
2,000 lines of code, or even more.

Of course, this infrastructure code (which can be thought of as an application
programming interface, or API) can be used for all applications; so, once it is
developed, the API can be used without change until updates are required.
Changes in the operating system, in underlying libraries, or in additional
functionalities can require new versions of the API. If properly done, these

1

2 Chapter 1 ■ Practical Aspects of a Vision System

new versions will require little or no modification to the vision programs that
depend on it. Such an API is the OpenCV system.

1.1 OpenCV

OpenCV was originally developed by Intel. At the time of this writing,
version 2.0 is current and can be downloaded from http://sourceforge

.net/projects/opencvlibrary/.
However, Version 2.0 is relatively new, yet it does not install and compile

with all of the major systems and compilers. All the examples in this book use
Version 1.1 from http://sourceforge.net/projects/opencvlibrary/files

/opencv-win/1.1pre1/OpenCV_1.1pre1a.exe/download, and compile with the
Microsoft Visual C++ 2008 Express Edition, which can be downloaded from
www.microsoft.com/express/Downloads/#2008-Visual-CPP.

The Algorithms for Image Processing and Computer Vision website
(www.wiley.com/go/jrparker) will maintain current links to new versions of
these tools. The website shows how to install both the compiler and OpenCV.
The advantage of using this combination of tools is that they are still pretty
current, they work, and they are free.

1.2 The Basic OpenCV Code

OpenCV is a library of C functions that implement both infrastructure oper-
ations and image-processing and vision functions. Developers can, of course,
add their own functions into the mix. Thus, any of the code described here
can be invoked from a program that uses the OpenCV paradigm, meaning
that the methods of this book are available in addition to those of OpenCV.
One simply needs to know how to call the library, and what the basic data
structures of open CV are.

OpenCV is a large and complex library. To assist everyone in starting to use
it, the following is a basic program that can be modified to do almost anything
that anyone would want:

// basic.c : A `wrapper´ for basic vision programs.

#include s̋tdafx.h˝

#include c̋v.h˝

#include h̋ighgui.h˝

int main (int argc, char* argv[])

{

IplImage *image = 0;

Chapter 1 ■ Practical Aspects of a Vision System 3

image = cvLoadImage(C̋:\AIPCV\image1.jpg˝, 1);

if(image)

{

cvNamedWindow(I̋nput Image˝, 1);

cvShowImage(I̋nput Image˝, image);

printf(P̋ress a key to exit\n˝);

cvWaitKey(0);

cvDestroyWindow(S̋tring˝);

}

else

fprintf(stderr, E̋rror reading image\n˝);

return 0;

}

This is similar to many example programs on the Internet. It reads in an
image (C:\AIPCV\image1.jpg is a string giving the path name of the image)
and displays it in a window on the screen. When the user presses a key, the
program terminates after destroying the display window.

Before anyone can modify this code in a knowledgeable way, the data
structures and functions need to be explained.

1.2.1 The IplImage Data Structure
The IplImage structure is the in-memory data organization for an image.
Images in IplImage form can be converted into arrays of pixels, but IplImage
also contains a lot of structural information about the image data, which can
have many forms. For example, an image read from a GIF file could be 256
grey levels with an 8-bit pixel size, or a JPEG file could be read into a 24-bit
per pixel color image. Both files can be represented as an IplImage.

An IplImage is much like other internal image representations in its basic
organization. The essential fields are as follows:

width An integer holding the width of the image in pixels

height An integer holding the height of the image in pixels

imageData A pointer to an array of characters, each one an actual pixel or color value

If each pixel is one byte, this is really all we need. However, there are many
data types for an image within OpenCV; they can be bytes, ints, floats, or
doubles in type, for instance. They can be greys (1 byte) or 3-byte color (RGB),
4 bytes, and so on. Finally, some image formats may have the origin at the
upper left (most do, in fact) and some use the lower left (only Microsoft).

4 Chapter 1 ■ Practical Aspects of a Vision System

Other useful fields to know about include the following:

nChannels An integer specifying the number of colors per pixel (1–4).

depth An integer specifying the number of bits per pixel.

origin The origin of the coordinate system. An integer: 0=upper
left, 1=lower left.

widthStep An integer specifying, in bytes, the size of one row of the
image.

imageSize An integer specifying, in bytes, the size of the image
(= widthStep * height).

imageDataOrigin A pointer to the origin (root, base) of the image.

roi A pointer to a structure that defines a region of interest
within this image that is being processed.

When an image is created or read in from a file, an instance of an IplImage

is created for it, and the appropriate fields are given values. Consider the
following definition:

IplImage* img = 0;

As will be described later in more detail, an image can be read from a file by
the following code:

img = cvLoadImage(filename);

where the variable filename is a string holding the name of the image file. If
this succeeds, then

img->imageData

points to the block of memory where the pixels can be found. Figure 1.1 shows
a JPEG image named marchA062.jpg that can be used as an example.

Reading this image creates a specific type of internal representation common
to basic RGB images and will be the most likely variant of the IplImage

structure to be encountered in real situations. This representation has each
pixel represented as three bytes: one for red, one for green, and one for
blue. They appear in the order b, g, r, starting at the first row of the image
and stepping through columns, and then rows. Thus, the data pointed to by
img->imageData is stored in the following order:

b0,0 g0,0 r0,0 b0,1 g0,1 r0,1 b0,2 g0,2 r0,2 . . .

This means that the RGB values of the pixels in the first row (row 0) appear
in reverse order (b, g, r) for all pixels in that row. Then comes the next row,
starting over at column 0, and so on, until the final row.

