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‘‘Sin lies only in hurting other people unnecessarily.
All other ‘sins’ are invented nonsense.

(Hurting yourself is not a sin — just stupid.)’’

— Robert A. Heinlein

Thanks, Bob.
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Preface

Humans still obtain the vast majority of their sensory input through their vi-
sual system, and an enormous effort has been made to artificially enhance this
sense. Eyeglasses, binoculars, telescopes, radar, infrared sensors, and photo-
multipliers all function to improve our view of the world and the universe.
We even have telescopes in orbit (eyes outside the atmosphere) and many of
those ‘‘see’’ in other spectra: infrared, ultraviolet, X-rays. These give us views
that we could not have imagined only a few years ago, and in colors that we’ll
never see with the naked eye. The computer has been essential for creating the
incredible images we’ve all seen from these devices.

When the first edition of this book was written, the Hubble Space Telescope
was in orbit and producing images at a great rate. It and the European
Hipparcos telescope were the only optical instruments above the atmosphere.
Now there is COROT, Kepler, MOST (Canada’s space telescope), and Swift
Gamma Ray Burst Explorer. In addition, there is the Spitzer (infrared),
Chandra (X-ray), GALEX (ultraviolet), and a score of others. The first edition
was written on a 450-Mhz Pentium III with 256 MB of memory. In 1999, the
first major digital SLR camera was placed on the market: the Nikon D1. It
had only 2.74 million pixels and cost just under $6,000. A typical PC disk
drive held 100–200 MB. Webcams existed in 1997, but they were expensive
and low-resolution. Persons using computer images needed to have a special
image acquisition card and a relatively expensive camera to conduct their
work, generally amounting to $1–2,000 worth of equipment. The technology
of personal computers and image acquisition has changed a lot since then.

The 1997 first edition was inspired by my numerous scans though the
Internet news groups related to image processing and computer vision. I
noted that some requests appeared over and over again, sometimes answered
and sometimes not, and wondered if it would be possible to answer the more

xxi



xxii Preface

frequently asked questions in book form, which would allow the development
of some of the background necessary for a complete explanation. However,
since I had just completed a book (Practical Computer Vision Using C), I was in
no mood to pursue the issue. I continued to collect information from the Net,
hoping to one day collate it into a sensible form. I did that, and the first edition
was very well received. (Thanks!)

Fifteen years later, given the changes in technology, I’m surprised at how
little has changed in the field of vision and image processing, at least at
the accessible level. Yes, the theory has become more sophisticated and
three-dimensional vision methods have certainly improved. Some robot vision
systems have accomplished rather interesting things, and face recognition has
been taken to a new level. However, cheap character recognition is still, well,
cheap, and is still not up to a level where it can be used reliably in most cases.
Unlike other kinds of software, vision systems are not ubiquitous features of
daily life. Why not? Possibly because the vision problem is really a hard one.
Perhaps there is room for a revision of the original book?

My goal has changed somewhat. I am now also interested in ‘‘democratiza-
tion’’ of this technology — that is, in allowing it to be used by anyone, at home,
in their business, or at schools. Of course, you need to be able to program a
computer, but that skill is more common than it was. All the software needed
to build the programs in this edition is freely available on the Internet. I
have used a free compiler (Microsoft Visual Studio Express), and OpenCV is
also a free download. The only impediment to the development of your own
image-analysis systems is your own programming ability.

Some of the original material has not changed very much. Edge detec-
tion, thinning, thresholding, and morphology have not been hot areas of
research, and the chapters in this edition are quite similar to those in the
original. The software has been updated to use Intel’s OpenCV system, which
makes image IO and display much easier for programmers. It is even a simple
matter to capture images from a webcam in real time and use them as input
to the programs. Chapter 1 contains a discussion of the basics of OpenCV use,
and all software in this book uses OpenCV as a basis.

Much of the mathematics in this book is still necessary for the detailed under-
standing of the algorithms described. Advanced methods in image processing
and vision require the motivation and justification that only mathematics can
provide. In some cases, I have only scratched the surface, and have left a
more detailed study for those willing to follow the references given at the
ends of chapters. I have tried to select references that provide a range of
approaches, from detailed and complex mathematical analyses to clear and
concise exposition. However, in some cases there are very few clear descrip-
tions in the literature, and none that do not require at least a university-level
math course. Here I have attempted to describe the situation in an intuitive
manner, sacrificing rigor (which can be found almost anywhere else) for as
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clear a description as possible. The software that accompanies the descriptions
is certainly an alternative to the math, and gives a step-by-step description of
the algorithms.

I have deleted some material completely from the first edition. There is no
longer a chapter on wavelets, nor is there a chapter on genetic algorithms.
On the other hand, there is a new chapter on classifiers, which I think was
an obvious omission in the first edition. A key inclusion here is the chapter
on the use of parallel programming for solving image-processing problems,
including the use of graphics cards (GPUs) to accelerate calculations by factors
up to 200. There’s also a completely new chapter on content-based searches,
which is the use of image information to retrieve other images. It’s like saying,
‘‘Find me another image that looks like this.’’ Content-based search will be an
essential technology over the next two decades. It will enable the effective use
of modern large-capacity disk drives; and with the proliferation of inexpensive
high-resolution digital cameras, it makes sense that people will be searching
through large numbers of big images (huge numbers of pixels) more and more
often.

Most of the algorithms discussed in this edition can be found in source
code form on the accompanying web page. The chapter on thresholding alone
provides 17 programs, each implementing a different thresholding algorithm.
Thinning programs, edge detection, and morphology are all now available on
the Internet.

The chapter on image restoration is still one of the few sources of practical
information on that subject. The symbol recognition chapter has been updated;
however, as many methods are commercial, they cannot be described and
software can’t be provided due to patent and copyright concerns. Still, the
basics are there, and have been connected with the material on classifiers.

The chapter on parallel programming for vision is, I think, a unique feature
of this book. Again using downloadable tools, this chapter shows how to link
all the computers on your network into a large image-processing cluster. Of
couse, it also shows how to use all the CPUs on your multi-core and, most
importantly, gives an introductory and very practical look at how to program
the GPU to do image processing and vision tasks, rather than just graphics.

Finally, I have provided a chapter giving a selection of methods for use
in searching through images. These methods have code showing their imple-
mentation and, combined with other code in the book, will allow for many
hours of experimenting with your own ideas and algorithms for organizing
and searching image data sets.

Readers can download all the source code and sample images mentioned in
this book from the book’s web page — www.wiley.com/go/jrparker. You can
also link to my own page, through which I will add new code, new images,
and perhaps even new written material to supplement and update the printed
matter. Comments and mistakes (how likely is that?) can be communicated
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through that web page, and errata will be posted, as will reader contributions
to the software collection and new ideas for ways to use the code methods for
compiling on other systems and with other compilers.

I invite you to make suggestions through the website for subjects for new
chapters that you would like to read. It is my intention to select a popular
request and to post a new chapter on that subject on the site at a future date.
A book, even one primarily released on paper, need not be a completely static
thing!

Jim Parker
Cochrane, Alberta, Canada

October 2010



C H A P T E R

1
Practical Aspects of a Vision

System—Image Display,
Input/Output, and Library Calls

When experimenting with vision- and image-analysis systems or implement-
ing one for a practical purpose, a basic software infrastructure is essential.
Images consist of pixels, and in a typical image from a digital camera there
will be 4–6 million pixels, each representing the color at a point in the
image. This large amount of data is stored as a file in a format (such as GIF
or JPEG) suitable for manipulation by commercial software packages, such
as Photoshop and Paint. Developing new image-analysis software means
first being able to read these files into an internal form that allows access to
the pixel values. There is nothing exciting about code that does this, and it
does not involve any actual image processing, but it is an essential first step.
Similarly, image-analysis software will need to display images on the screen
and save them in standard formats. It’s probably useful to have a facility for
image capture available, too. None of these operations modify an image but
simply move it about in useful ways.

These bookkeeping tasks can require most of the code involved in an
imaging program. The procedure for changing all red pixels to yellow, for
example, can contain as few as 10 lines of code; yet, the program needed to
read the image, display it, and output of the result may require an additional
2,000 lines of code, or even more.

Of course, this infrastructure code (which can be thought of as an application
programming interface, or API) can be used for all applications; so, once it is
developed, the API can be used without change until updates are required.
Changes in the operating system, in underlying libraries, or in additional
functionalities can require new versions of the API. If properly done, these

1



2 Chapter 1 ■ Practical Aspects of a Vision System

new versions will require little or no modification to the vision programs that
depend on it. Such an API is the OpenCV system.

1.1 OpenCV

OpenCV was originally developed by Intel. At the time of this writing,
version 2.0 is current and can be downloaded from http://sourceforge

.net/projects/opencvlibrary/.
However, Version 2.0 is relatively new, yet it does not install and compile

with all of the major systems and compilers. All the examples in this book use
Version 1.1 from http://sourceforge.net/projects/opencvlibrary/files

/opencv-win/1.1pre1/OpenCV_1.1pre1a.exe/download, and compile with the
Microsoft Visual C++ 2008 Express Edition, which can be downloaded from
www.microsoft.com/express/Downloads/#2008-Visual-CPP.

The Algorithms for Image Processing and Computer Vision website
(www.wiley.com/go/jrparker) will maintain current links to new versions of
these tools. The website shows how to install both the compiler and OpenCV.
The advantage of using this combination of tools is that they are still pretty
current, they work, and they are free.

1.2 The Basic OpenCV Code

OpenCV is a library of C functions that implement both infrastructure oper-
ations and image-processing and vision functions. Developers can, of course,
add their own functions into the mix. Thus, any of the code described here
can be invoked from a program that uses the OpenCV paradigm, meaning
that the methods of this book are available in addition to those of OpenCV.
One simply needs to know how to call the library, and what the basic data
structures of open CV are.

OpenCV is a large and complex library. To assist everyone in starting to use
it, the following is a basic program that can be modified to do almost anything
that anyone would want:

// basic.c : A `wrapper´ for basic vision programs.

#include s̋tdafx.h˝

#include c̋v.h˝

#include h̋ighgui.h˝

int main (int argc, char* argv[])

{

IplImage *image = 0;
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image = cvLoadImage( C̋:\AIPCV\image1.jpg˝, 1 );

if( image )

{

cvNamedWindow( I̋nput Image˝, 1 );

cvShowImage( I̋nput Image˝, image );

printf( P̋ress a key to exit\n˝);

cvWaitKey(0);

cvDestroyWindow( S̋tring˝);

}

else

fprintf( stderr, E̋rror reading image\n˝ );

return 0;

}

This is similar to many example programs on the Internet. It reads in an
image (C:\AIPCV\image1.jpg is a string giving the path name of the image)
and displays it in a window on the screen. When the user presses a key, the
program terminates after destroying the display window.

Before anyone can modify this code in a knowledgeable way, the data
structures and functions need to be explained.

1.2.1 The IplImage Data Structure
The IplImage structure is the in-memory data organization for an image.
Images in IplImage form can be converted into arrays of pixels, but IplImage
also contains a lot of structural information about the image data, which can
have many forms. For example, an image read from a GIF file could be 256
grey levels with an 8-bit pixel size, or a JPEG file could be read into a 24-bit
per pixel color image. Both files can be represented as an IplImage.

An IplImage is much like other internal image representations in its basic
organization. The essential fields are as follows:

width An integer holding the width of the image in pixels

height An integer holding the height of the image in pixels

imageData A pointer to an array of characters, each one an actual pixel or color value

If each pixel is one byte, this is really all we need. However, there are many
data types for an image within OpenCV; they can be bytes, ints, floats, or
doubles in type, for instance. They can be greys (1 byte) or 3-byte color (RGB),
4 bytes, and so on. Finally, some image formats may have the origin at the
upper left (most do, in fact) and some use the lower left (only Microsoft).
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Other useful fields to know about include the following:

nChannels An integer specifying the number of colors per pixel (1–4).

depth An integer specifying the number of bits per pixel.

origin The origin of the coordinate system. An integer: 0=upper
left, 1=lower left.

widthStep An integer specifying, in bytes, the size of one row of the
image.

imageSize An integer specifying, in bytes, the size of the image
( = widthStep * height).

imageDataOrigin A pointer to the origin (root, base) of the image.

roi A pointer to a structure that defines a region of interest
within this image that is being processed.

When an image is created or read in from a file, an instance of an IplImage

is created for it, and the appropriate fields are given values. Consider the
following definition:

IplImage* img = 0;

As will be described later in more detail, an image can be read from a file by
the following code:

img = cvLoadImage(filename);

where the variable filename is a string holding the name of the image file. If
this succeeds, then

img->imageData

points to the block of memory where the pixels can be found. Figure 1.1 shows
a JPEG image named marchA062.jpg that can be used as an example.

Reading this image creates a specific type of internal representation common
to basic RGB images and will be the most likely variant of the IplImage

structure to be encountered in real situations. This representation has each
pixel represented as three bytes: one for red, one for green, and one for
blue. They appear in the order b, g, r, starting at the first row of the image
and stepping through columns, and then rows. Thus, the data pointed to by
img->imageData is stored in the following order:

b0,0 g0,0 r0,0 b0,1 g0,1 r0,1 b0,2 g0,2 r0,2 . . .

This means that the RGB values of the pixels in the first row (row 0) appear
in reverse order (b, g, r) for all pixels in that row. Then comes the next row,
starting over at column 0, and so on, until the final row.


