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PREFACE 

In the past two decades graph theory has come to stay as a powerful 
analytical tool in the understanding and solution of large complex problems 
that arise in the study of engineering, computer, and communication 
systems. While its origin is traced to Euler's solution in 1735 of the 
Konigsberg bridge problem, its first application to a problem in physical 
science did not occur until 1847, when Kirchhoff developed the theory of 
trees for its application in the study of electrical networks. The elegance 
with which the graph of an electrical network captures the structural 
relationships between the voltage and current variables of the network has 
led to equally elegant contributions to electrical network theory. One such 
condition is Tellegen's theorem, the application of which in the computation 
of network sensitivities is now well recognized. The theory of network flows 
developed by Ford and Fulkerson in 1956 was the first major application of 
graph theory to operations research. This theory provides the main link 
between graph theory and operations research and continues to be a 
fascinating topic of further research. Computer and communication systems 
are among the recent additions to the growing list of application areas of 
graph theory. Motivated by applications in the design of interconnection 
networks for these systems, in recent years there has been a great deal of 
interest in the design of graphs having specified topological properties such 
as distance, connectivity, and regularity. Fascinated by the challenges 
encountered in the design of efficient algorithms for graph problems, 
theoretical computer scientists have developed in the past two decades a 
large number of interesting and deep graph algorithms adding to the 
richness of graph theory. Theoretical computer scientists have also identified 
the class of graph problems for which "efficient" algorithms are not likely to 
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exist, giving birth to the theory of NP-Completeness. This is indeed a 
significant contribution of computer science to graph theory. 

Every time a new area of application of graph theory emerged, the need 
arose for the introduction and study of new concepts or a further study of 
several known concepts. This continuous interaction has immensely con-
tributed to the recent explosion of graph theory, which was fairly dormant 
for more than a century after its origin. Thus graph theory is now a vast 
subject with several fascinating branches of its own: enumerative graph 
theory, extremal graph theory, random graph theory, algorithmic graph 
theory, and so on. 

As its name implies, this book is on graph theory and graph algorithms. It 
is addressed to students in engineering, computer science, and mathematics. 
Our choice of topics has been motivated by their relevance to applications. 
Thus we attempt to provide a unified and an in-depth treatment of those 
topics in graph theory and graph algorithms that we believe to be fundamen-
tal in nature and that occur in most applications. Broadly speaking, the 
book may be considered as consisting of two parts dealing with graph theory 
and graph algorithms in that order. 

In the first ten chapters we discuss the theory of graphs. The topics 
discussed include trees, circuits, cutsets, Hamiltonian and Eulerian graphs, 
directed graphs, matrices of a graph, planarity, connectivity, matching, and 
coloring. We have also included an introduction to matroid theory. Among 
the matroid topics presented are Minty's self-dual axiom system, which 
makes obvious the duality between circuits and cutsets of a graph, the arc 
coloring lemma, the greedy algorithm, and its intimate relationship with 
matroids. 

The last two chapters of the book deal with graph algorithms. In Chapter 
11 we discuss several algorithms which are basic in the sense that they serve 
as building blocks in designing more complex algorithms. In most cases the 
algorithms of Chapter 11 are based on results and concepts presented in 
earlier chapters. In certain cases we also introduce and discuss new concepts 
such as branching and graph reducibility. In Chapter 12 we develop the 
theory of network flows. We start with the maximum flow minimum cut 
theorem of Ford and Fulkerson and then proceed to develop several 
algorithms for the maximum flow problem, culminating with the recent work 
of Goldberg and Tarjan. In this chapter we also show how the network flow 
technique can be used to develop connectivity and matching algorithms as 
well as prove Menger's theorems on connectivities. We conclude Chapter 12 
with a brief introduction to the theory of NP-Completeness. While develop-
ing the algorithms of Chapters 11 and 12 we pay particular attention to the 
proof of correctness and complexity analysis of the algorithms. 

The book can be used to organize different courses to suit the needs of 
different groups of students. The first ten chapters contain adequate materi-
al for a one-semester course on graph theory at the senior or beginning 
graduate level. The authors have taught for several years a course on graph 
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theory with system applications based on the first seven chapters and a 
selection of topics from the remaining chapters. The last two chapters and 
appropriate background material selected from the other chapters can serve 
as the core of a course on algorithmic graph theory. These two chapters can 
also serve as supplemental material for a general course on design and 
analysis of algorithms. 

Several colleagues and students have assisted us in the writing of this 
book. Raghu Prasad Chalasani, Concordia University; Joseph Cheriyan, 
Cornell University; Anindya Das, University of Montreal; Andrew 
Goldberg, Stanford University; R. Jayakumar, Concordia University; V. 
Krishnamoorthy, Anna University, Madras (India); and N. Srinivasan, 
University of Madras deserve special thanks. We are greatful to Anindya 
Das, Joseph Cheriyan, and Andrew Goldberg for their careful reading of 
the last chapter of the book and drawing our attention to recent develop-
ments on the maximum flow problem. 

It is a pleasure to thank the following organizations for their support to 
our research leading to the preparation of the book: Natural Sciences and 
Engineering Research Council of Canada; Fonds pour la Formation de 
Chercheurs et Γ Aide a la Recherche (FCAR), Quebec; Bell Northern 
Research Laboratory, Ottawa; Centre de Recherche Informatique de Mon-
treal, Montreal; German National Science Foundation; and the Japan 
Society for Promotion of Science. 

Finally we thank our wives—Santha Thulasiraman and Leela Swamy— 
and our children for their patience and understanding during the entire 
period of our efforts. 

K. THULASIRAMAN 

Μ. N. S. SWAMY 



It is probably fair to say, and has been said before by many others, that 
graph theory began with Euler's solution in 1735 of the class of problems 
suggested to him by the Konigsberg bridge puzzle. But had it not started 
with Euler, it would have started with Kirchhoff in 1847, who was motivated 
by the study of electrical networks; had it not started with Kirchhoff, it 
would have started with Cayley in 1857, who was motivated by certain 
applications to organic chemistry, or perhaps it would have started earlier 
with the four-color map problem, which was posed to De Morgan by 
Guthrie around 1850. And had it not started with any of the individuals 
named above, it would almost surely have started with someone else, at 
some other time. For one has only to look around to see "real-world 
graphs" in abundance, either in nature (trees, for example) or in the works 
of man (transportation networks, for example). Surely someone at some 
time would have passed from some real-world object, situation, or problem 
to the abstraction we call graphs, and graph theory would have been born. 

D. R. Fulkerson 
(From Preface to Studies in Graph Theory, Part II, 
The Mathematical Association of America, 1975) 



CHAPTER 1 

BASIC CONCEPTS 

We begin our study with an introduction in this chapter to several basic 
concepts in the theory of graphs. A few results involving these concepts will 
be established. These results, while illustrating the concepts, will also serve 
to introduce the reader to certain techniques commonly used in proving 
theorems in graph theory. 

1.1 SOME BASIC DEFINITIONS 

A graph G = (V, E) consists of two sets: a finite set V of elements called 
vertices and a finite set Ε of elements called edges. Each edge is identified 
with a pair of vertices. If the edges of a graph G are identified with ordered 
pairs of vertices, then G is called a directed or an oriented graph. Otherwise 
G is called an undirected or a nonoriented graph. Our discussions in the first 
four chapters of this book are concerned with undirected graphs. 

We use the symbols vl,v2,v3,... to represent the vertices and the 
symbols e,, e2, e 3 , . . . to represent the edges of a graph. The vertices v, and 
vt associated with an edge e, are called the end vertices of et. The edge e, is 
then denoted as e, = (υ,, υ,). Note that while the elements of Ε are distinct, 
more than one edge in Ε may have the same pair of end vertices. All edges 
having the same pair of end vertices are called parallel edges. Further, the 
end vertices of an edge need not be distinct. If e, = (ν,,ν,), then the edge e, 
is called a self-loop at vertex v,. A graph is called a simple graph if it has no 
parallel edges or self-loops. A graph G is of order η if its vertex set has η 
elements. 

1 



2 BASIC CONCEPTS 

A graph with no edges is called an empty graph. A graph with no vertices 
(and hence no edges) is called a null graph. 

Pictorially a graph can be represented by a diagram in which a vertex is 
represented by a dot or a circle and an edge is represented by a line segment 
connecting the dots or the circles, which represent the end vertices of the 
edge. For example, if 

V={v1,v2,v3,v4,v5,v6} 

and 

Ε — {e^, e*2, e3, e^, c 5} , 

such that 

*\ = (νχ,ν2), 

e3 = (v5, υ6), 

e 4

 = (^i , v2), 

then the graph G = (Κ, E) is represented as in Fig. 1.1. In this graph ex and 
e 4 are parallel edges and e5 is a self-loop. 

An edge is said to be incident on its end vertices. Two vertices are 
adjacent if they are the end vertices of some edge. If two edges have a 
common end vertex, then these edges are said to be adjacent. 

For example, in the graph of Fig. 1.1, edge e, is incident on vertices u, 
and v2; w, and i>4 are two adjacent vertices, while e, and e2 are two adjacent 
edges. 

The number of edges incident on a vertex y, is called the degree of the 
vertex, and it is denoted by d(u,). Sometimes the degree of a vertex is also 

Figure 1.1. Graph G = (V,E). V= {vu v2, v„ v4, vs, υ6}; Ε = {*„ e2, e3, e„ e5}. 
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referred to as its valency. A vertex of degree 1 is called a pendant vertex. 
The only edge incident on a pendant vertex is called a pendant edge. A 
vertex of degree 0 is called an isolated vertex. By definition, a self-loop at a 
vertex v, contributes 2 to the degree of υ,. 5(G) and A(G) denote, 
respectively, the minimum and maximum degrees in G. 

In the graph G of Fig. 1.1 

d(v,) = 3 , 

d(v2) = 2 , 

d(v3) = 0 , 

d(v4) = 1 , 

d(v5) = 3 , 

d(v6) = 1 . 

Note that u 3 is an isolated vertex, u 4 and v6 are pendant vertices, and e2 is a 
pendant edge. For G it can be verified that the sum of the degrees of the 
vertices is equal to 10, whereas the number of edges is equal to 5. Thus the 
sum of the degrees of the vertices of G is equal to twice the number of edges 
of G and hence an even number. It may be further verified that in G the 
number of vertices of odd degree is also even. These interesting results are 
not peculiar to the graph of Fig. 1.1. In fact, they are true for all graphs as 
the following theorems show. 

Theorem 1.1. The sum of the degrees of the vertices of a graph G is equal 
to 2m, where m is the number of edges of G. 

Proof. Since each edge is incident on two vertices, it contributes 2 to the 
sum of the degrees of the graph G. Hence all the edges together contribute 
2m to the sum of the degrees of G. • 

Theorem 1.2. The number of vertices of odd degree in any graph is even. 

Proof. Let the number of vertices in a graph G be equal to n. Let, without 
any loss of generality, the degrees of the first r vertices υ, , v2,..., vr be 
even and those of the remaining η - r vertices be odd. Then 

Σ <*(!>,) = Σ <*(«,)+ Σ d(Vl). (i.i) 
1 = 1 ι - l i = r + l 

By Theorem 1.1, the sum on the left-hand side of (1.1) is even. The first 
sum on the right-hand side is also even because each term in this sum is 
even. Hence the second sum on the right-hand side should be even. Since 
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each term in this sum is odd, it is necessary that there be an even number of 
terms in this sum. In other words, η - r, the number of vertices of odd 
degree, should be even. • 

1.2 SUBGRAPHS AND COMPLEMENTS 

Consider a graph G = (V, E). G' = (V, E') is a subgraph of G if V and E' 
are, respectively, subsets of V and Ε such that an edge (υ,, υ) is an E' only 
if v, and vl are in V. G' will be called a proper subgraph of G if either E' is 
a proper subset of Ε or V is a proper subset of V. If all the vertices of a 
graph G are present in a subgraph G' of G, then G' is called a spanning 
subgraph of G. 

For example, consider the graph G shown in Fig. 1.2a. The graph G' 
shown in Fig. 1.2ft is a subgraph of G. Its vertex set is {u,, v2, v4, v5). In 
fact, it is a proper subgraph of G. The graph G" of Fig. 1.2c is a spanning 
subgraph of G. 

Some of the vertices in a subgraph may be isolated vertices. For example, 
the graph G'" shown in Fig. 1.2d is a subgraph of G with an isolated vertex. 

Figure 1.2. A graph and some of its subgraphs, (a) Graph G. (Z>) Subgraph G'. (c) 
Subgraph G". (d) Subgraph G'". 
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If a subgraph G' = (V, Ε ' ) of a graph G has no isolated vertices, then it 
can be seen from the definition of a subgraph that every vertex in V is the 
end vertex of some edge in Ε'. Thus in such a case, E' uniquely specifies V 
and hence the subgraph G'. The subgraph G' is then called the induced 
subgraph of G on the edge set E' (or simply edge-induced subgraph of G) 
and is denoted as (Ε'). 

Note that the vertex set V of (Ε') is the smallest subset of V containing 
all the end vertices of the edges in Ε'. The subgraphs G' and G" of Fig. 1.2ft 
and c are edge-induced subgraphs of the graph G of Fig. 1.2a, whereas G'" 
shown in Fig. \.2d is not an edge-induced subgraph. 

Next we define a vertex-induced subgraph. 
Let V be a subset of the vertex set V of a graph G = (V, E). Then the 

subgraph G' = (V, Ε') is the induced subgraph of G on the vertex set V (or 
simply vertex-induced subgraph of G) if E' is a subset of Ε such that edge 
(υ,, Vj) is in E' if and only if v, and u ; are in V. In other words, if v, and v, 
are in V, then every edge in Ε having υ, and υ as its end vertices should be 
in Ε'. Note that, in this case, V completely specifies E' and thus the 
subgraph G'. Hence the vertex-induced subgraph G' = ( V , Ε') is denoted 
simply as (V). As an example, the graph shown in Fig. 1.3 is a vertex-
induced subgraph of the graph G of Fig. 1.2a. 

Note that the edge set E' of the vertex-induced subgraph on the vertex 
set V is the largest subset of Ε such that the end vertices of all of its edges 
are in V. 

Unless otherwise stated, an induced subgraph will refer to a vertex-
induced subgraph. 

A subgraph G' of a graph G is said to be a maximal subgraph of G with 
respect to some property Ρ if G' has the property Ρ and G' is not a proper 
subgraph of any other subgraph of G having the property P. 

A subgraph G' of a graph G is said to be a minimal subgraph of G with 
respect to some property PUG' has the property Ρ and no subgraph of G 
having the property Ρ is a proper subgraph of G'. 

Maximal and minimal subsets of a set with respect to a property are 
defined in a similar manner. 

For example, the vertex set V of an edge-induced subgraph (Ε') of a 
graph G = (V, E) is a minimal subset of V containing the end vertices of all 

»5 of the graph G of Fig. 1.2a. 
Figure 1.3. A vertex-induced subgraph 
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the edges of E'. On the other hand, the edge set E' of a vertex-induced 
subgraph ( V ) is the maximal subset of Ε such that the end vertices of all of 
its edges are in V. 

Later we shall see that a "component" (Section 1.4) of a graph G is a 
maximal "connected" subgraph of G, and a "spanning tree" (Chapter 2) of 
a connected graph G is a minimal "connected" spanning subgraph of G. 

Next we_ define the complement of a graph. 
Graph G = (V, E') is called the complement of a simple graph G = (V, E) 

if the edge (vt, vt) is in E' if and_only if it is not in E. In other words two 
vertices u, and vf are adjacent in G if and only if they are not adjacent in G. 
A graph and its complement are shown in Fig. 1.4. As another example, 
consider the graph G shown in Fig. 1.5e. In this graphjthere is an edge 
between every pair of vertices. Hence in the complement G of G there will 

Figure 1.4. A graph and its comple-
ment, (a) Graph G. (b) Graph G, com-
plement of G. 

» * 0 0 » 5 

(61 

Figure 1.5. A graph and its comple-
ment, (a) Graph G. (b) Graph G, com-
plement of G. 
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be no edge between any pair of vertices; that is, G will contain only isolated 
vertices. This is shown in Fig. 1.5ft. 

Let G' = (V, Ε') be a subgraph of a graph G = (V, E). The subgraph 
G" = (V, Ε - Ε') of G is called the complement of G' in G. For example, in 
Fig. 1.2, subgraph G" is the complement of G' in the graph G. 

The following example illustrates some of the ideas presented thus far. 
Suppose we want to prove the following: 
At any party with six people there are three mutual acquaintances or 

three mutual nonacquaintances. 
Representing people by the vertices of a graph and acquaintance relation-

ship among the people by edges connecting the corresponding vertices, we 
can see that the above assertion can also be stated as follows: 

In any simple graph G with six vertices there are three mutually adjacent 
vertices or three mutually nonadjacent vertices. 

In view of the definition of the complement of a graph, we see that the 
above statement is equivalent to the following: _ 

For any simple graph G with six vertices, G or G contains three mutually 
adjacent vertices. 

To prove this, we may proceed as follows: 
Consider any vertex ν of a simple graph G with six vertices. Note that if υ 

is not adjacent to three vertices in G, then it will be adjacent to three 
vertices in G. So, without any loss of generality, we may assume that, in G, 
υ is adjacent to some three vertices vt, v2, and u 3 . If any two of these 
vertices, say vi and v2, are adjacent in G, then the vertices ν, υι, and υ2 are 
mutually adjacent in G, and the assertion is proved. 

If no two of the three vertices vlt v2, and v3 are adjacent in G, then it 
means that u,, v2, and v3 are mutually nonadjacent in G. Hence, by the 
definition of a complement, the vertices vt, v2, and v3 are mutually adjacent 
in G, and the assertion is again proved. 

1.3 WALKS, TRAILS, PATHS, AND CIRCUITS 

A walk in a graph G = (V, E) is a finite alternating sequence of vertices and 
edges v0, eu vu e2,..., vk_l, ek, vk beginning and ending with vertices such 
that v,_x and vt are the end vertices of the edge en l ^ i ^ k. Alternately, a 
walk can be considered as a finite sequence of vertices v0, v,, v2,...,vk, 
such that (y,_i, ι>,), 1 ̂  ι k, is an edge in the graph G. This walk is usually 
called a v0-vk walk with υ0 and vk referred to as the end or terminal vertices 
of this walk. All other vertices are internal vertices of this walk. Note that in 
a walk, edges and vertices can appear more than once. 

A walk is open if its end vertices are distinct; otherwise it is closed. 
In the graph G of Fig. 1.6, the sequence i>,, e1, v2, e2, u 3 , es, v6, e9, vs, 

e7,v3,eu,v6 is an open walk, whereas the sequence v1,el,v2,e3,v5,e7,v3, 
e2, v2, e,, u, is a closed walk. 
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Ίο 

» 7 

Figure 1.6. Graph G. 

A walk is a trail if all its edges are distinct. A trail is open if its end 
vertices are distinct; otherwise, it is closed. In Fig. 1.6, u,, ex, v2, e2, v3, es, 
v6, e u , v3 is an open trail, whereas υ, , e,, v2, e2, v3, e7, v5, e3, v2, e4, u 4 , e5, 
y, is a closed trail. 

An open trail is a path if all its vertices are distinct. 
A closed trail is a circuit if all its vertices except the end vertices are 

distinct. 
For example, in Fig. 1.6 the sequence u,, e,, v2, e2, v3 is a path, whereas 

the sequence v,, e,, v2, e3, v5, e6, v4, e5, υ, is a circuit. 
An edge of a graph G is said to be a circuit edge of G if there exists a 

circuit in G containing the edge. Otherwise the edge is called a noncircuit 
edge. In Fig. 1.6, all edges except en are circuit edges. 

The number of edges in a path is called the length of the path. Similarly 
the length of a circuit is defined. 

A path is even if it is of even length; otherwise it is odd. Similarly even 
and odd circuits are defined. 

The distance between two vertices u and ν in G, denoted by d(u, υ), is 
the length of the shortest u-υ path in G. If no such path exists, then we 
define d(u, v) to be infinite. The diameter of G, denoted by diam(G), is the 
maximum distance between any two vertices of G. 

The following properties of paths and circuits should be noted: 

1. In a path the degree of each vertex that is not an end vertex is equal to 
2; the end vertices have degrees equal to 1. 

2. In a circuit every vertex is of degree 2, and so of even degree. The 
converse of this statement, namely, the edges of a subgraph in which 
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every vertex is of even degree form a circuit, is not true. A more 
general question is discussed in Chapter 3. 

3. In a path the number of vertices is one more than the number of 
edges, whereas in a circuit the number of edges is equal to the number 
of vertices. 

1.4 CONNECTEDNESS AND COMPONENTS OF A GRAPH 

An important concept in graph theory is that of connectedness. 
Two vertices v, and vt are said to be connected in a graph G if there exists 

a v-vJ path in G. A vertex is connected to itself. 
A graph G is connected if there exists a path between every pair of 

vertices in G. 
For example, the graph of Fig. 1.6 is connected. 
Consider a graph G = (V, E) which is not connected. Then the vertex set 

V of G can be partitioned t into subsets V , , V 2 , . . . , V such that the 
vertex-induced subgraphs (V,), i = 1 , 2 , . . . , p, are connected and no vertex 
in subset V, is connected to any vertex in subset Vf, / # i. The subgraphs 
(Vt), i = 1, 2 , . . . , p, are called the components of G. It may be seen that a 
component of a graph G is a maximal connected subgraph of G; that is, a 
component of G is not a proper subgraph of any other connected subgraph 
of G. 

For example, the graph G of Fig. 1.7 is not connected. Its four compo-
nents Gl, G2, G3, and G 4 have vertex sets {vt, υ2, ν3}, (ι>4, υ5}, {v6, υΊ, 
u g } , and {υ9}, respectively. 

Note that an isolated vertex by itself should be treated as a component 
since, by definition, a vertex is connected to itself. Further, note that if a 
graph G is connected, it has only one component that is the same as G itself. 

We next consider some properties of connected graphs. 

Figure 1.7. Graph G with components G,, G 2, G 3, and G 4. 

Ά set V is said to be partitioned into subsets V,, V2,..., Vp if V, U V2 U · · · U Vp = V and 
V, Π V, = 0 for all i and /, iV /'. {V,, V 2 , . . . , V,,} is then called a partition of V. 
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Theorem 1.3. In a connected graph, any two longest paths have a common 
vertex. 

Proof. Consider any two longest paths P, and P2 in a connected graph G. 
Let P, be denoted by the vertex sequence υ0,υί,υ2,... ,vk and P2 by the 
sequence v'Q, v\, v'2,...,v'k. 

Assume that P, and P2 have no common vertex. Since the graph G is 
connected, then for some i,0<i<k and some j,0<j<k there exists a 
υ,-v'j path Pa such that all the vertices of Pa other than vt and υ'} are different 
from those of Pl and P2. The paths P , , P2, and Pa may be as shown in Fig. 
1.8. Let 

/, = length of v0-v, path P u , 

t2 = length of v-vk path Pl2, 

/[ = length of ι>ό-ι>'; path P 2 1 , 

t'2 = length of v'-v'k path P22, 

ta = length of path P f l . 

The paths P n , P 1 2 , P 2 1 , and P 2 2 are also shown in Fig. 1.8. Note that 

f, + t2 = t[ + t'2 = length of a longest path in G 

and 

ta>0. 

Path P, 

• ' i t 

i " 2 1 * ^ ' i J 

Path P2 

Figure 1.8. Paths P,, P 2 and P„. 
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Without any loss of generality, let 

and 

t' > t' 

so that 

Ί + ' ! 2 = i, + t 2 = t\ +t2. 

Now it may be verified that the paths Pn, Pa, and P2i together constitute 
a v0-v'0 path with its length equal to /, + t[ + ta > i, + t2 because /„ > 0. This 
contradicts that r, + t2 is the length of a longest path in G. • 

The following theorem is a very useful one; it is used often in the 
discussions of the next chapter. In this theorem as well as in the rest of the 
book, we abbreviate {x} to χ whenever it is clear that we are referring to a 
set rather than an element. 

Theorem 1.4. If a graph G = (V, E) is connected, then the graph G' = 
(V, Ε — e) that results after removing a circuit edge e is also connected. • 

We leave the proof of this theorem as an exercise. 

1.5 OPERATIONS ON GRAPHS 

In this section we introduce a few operations involving graphs. The first 
three operations are binary operations involving two graphs, and the last 
four are unary operations, that is, operations defined with respect to a single 
graph. 

Consider two graphs, G, = (V,, Ej) and G 2 = (V 2, E2). The union of G, 
and G 2 , denoted as G, U G 2 , is the graph G 3 = (V, U V2, El U E2)\ that is, 
the vertex set of G 3 is the union of Vl and V2, and the edge set of G 3 is the 
union of £ , and E2. 

For example, two graphs G, and G 2 and their union are shown in Fig. 
1.9a, b and c. 

The intersection of G, and G2, denoted as G, Π G2, is the graph 
G 3 = (V, Π V2, Ε, Π E2). That is, the vertex set of G 3 consists of only those 
vertices present in both Gl and G 2 , and the edge set of G 3 consists of only 
those edges present in both G, and G 2 . 

The intersection of the graphs G, and G 2 of Fig. 1.9a and 1.96 is shown 
in Fig. l.9d. 
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Figure 1.9. Union, intersection, and ring sum operations on graphs, (a) Graph G,. 
(b) Graph G2. (c) G, U G2. (<*) G, Π G2. (e) G, Θ G2. 


