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Preface 

This volume is about the foundation of mathematics, the way it was conceptualized 
by Russell and Whitehead [56], Hilbert (and Bernays) [22], and Bourbaki1 [2]: 
Mathematical Logic. This is the discipline that, much later, Gries and Schneider [17] 
called the "glue" that holds mathematics together. 

Mathematical logic, on one hand, builds the tools for mathematical reasoning 
with a view of providing a formal methodology—i.e., one that relies on the form or 
syntax of mathematical statements rather than on their meaning—that is meant to be 
applied for constructing mathematical arguments that are correct, well documented, 
and therefore understandable. 

On the other hand, it studies the interplay between the written structure (syntax) 
of mathematical statements and their meaning: Are the theorems that we prove by 
pure syntactic manipulation true under some reasonable definition of true? Are there 
any true mathematical statements that our tools cannot prove? The former question 
will be answered in the affirmative later in this book, while the latter question, 
interestingly, has both "no" (Godel's completeness theorem [15]) and "yes" (Godel's 

'"Nicolas Bourbaki" is the pen-name of a team of top mathematicians who are responsible for the 
monumental work, "Elemens de Mathematique", which starts with logic as the foundation, or "connecting 
glue" in the words of [ 17], and then proceeds to extensively cover fields such as set theory, algebra, 
topology, analysis, measure, and integration. 

xl 
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(first)mcompleteness theorem [16]) answers!2 Both of these answers are carefully 
reconstructed in the Appendix to Part II. 

Much has been written on logic, which is nowadays a mature mathematical body 
of knowledge and research. The majority of books written with upper-level under-
graduate audiences (and beyond) in mind deal mostly with the metamathematics or 
metatheory of mathematical logic; that is, they view logic as a mathematical object 
and study its abilities and limitations (such as incompleteness), and the theory of 
models, giving short shrift to the issue of using logic as a tool. 

There are currently only two books that the author is aware of that chronologically 
precede this volume and address almost exclusively the interests and needs of the 
user of logic. Both present the subject as a set of tools with which one can do 
mathematics (or computer science, or philosophy, or anything else that requires 
reasoning) rigorously, correctly, formally, and with adequate documentation: [2] and 
[17]. 

The former tersely introduces logic in its first chapter with a view of applying 
it as a rigorous tool for theorem generation in the numerous (and very advanced) 
chapter-volumes that follow (from set theory and algebra to topology, and measure 
and integration). 

The latter, a much more recent entry in the literature, is an elementary text (aimed 
at undergraduate university curricula in computer science) in the same spirit as 
Bourbaki's, which proposes to use logic, once again, as a tool to prove theorems 
of interest to computer scientists. Indeed, the second part of [17] is on discrete 
mathematics in the sense that this term, more or less, is understood by most computer 
science departments today. 

Similarly, the volume in your hands aims to thoroughly teach the use of logic 
as a tool for reasoning appropriate for upper-level undergraduate university students 
in fields of study such as computer science, mathematics, and philosophy. For 
the first group, this is an introduction to formal methods—a subject that is often 
included in computer science curricula—providing the student with the tools, the 
methodology, and a solid grounding on technique. As the student advances along 
the computer science curriculum, this volume's toolbox on formal methods will find 
serious applications in courses such as design and analysis of algorithms, theory of 
computation, computational complexity, software specification and design, artificial 
intelligence, and program verification. 

The second group's curriculum, at the targeted level, in addition to a solid course 
on the use of logic, will normally also require a more ambitious inquiry into the 

2It is nol that Godel was of two minds on the issue. Rather, the question can be made precise in two 
different ways, and, correspondingly, one gets two different answers. One way is to think of "universal" 
truth, such as the truth of "i = x". Universal truth is completely certifiable by the syntactic tools. The 
other is to think of truth in the "standard models" of some "rich" theories—rich in what one can formulate 
and prove in them, that is. Formal (Peano) arithmetic—that is, the axiomatic system that attempts to 
explain the set of natural numbers and the arithmetic operations and relations on it, the standard model— 
is such a rich theory. Godel showed the existence of true arithmetical statements in the model that cannot 
be syntactically proved in the axiom system of Peano arithmetic. One such true statement says, "I am not 
a theorem." 
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capabilities and limitations of logic viewed as a mathematical tool. This further trip 
into the metatheory of logic will traditionally want to delve into two foundational 
gems beyond those of soundness and propositional completeness. Both are due to 
Godel, namely, his completeness and incompleteness theorems. The Appendix to 
Part II settles the former in full detail, and also offers a proof of the latter (actually, 
only of the first incompleteness theorem3), basing it on an inherent limitation of 
"general" models of computation, in the process illuminating the connection between 
the phenomena of uncomputability and unprovability. 

As a side-effect of constructing a self-contained proof of the first incompleteness 
theorem, we had to develop a fair amount of computability theory that will be of 
direct interest to all the readers, in particular, those in computer science. 

The third group of readers, philosophy majors, traditionally require less coverage 
in a course in logic than what I have presented here; however, philosophy curricula 
often include a course in symbolic logic at an advanced undergraduate level, and this 
volume will be an apt companion for such studies. 

The book's aim to teach the practice of logic dictates that it must look and feel 
much like a serious text on programming. In fact, I argue at the very beginning of 
the first chapter, that learning and practicing logic is a process like that of learning 
and practicing programming. As a result, the emphasis is on presenting a multitude 
of tools, and on using these tools in many fully written and annotated proofs, an 
approach that is intended to enhance the reader's effectiveness as a "prover", giving 
him 4 many examples for emulation. 

There are some important differences—despite the superficial similarities that the 
common end-aims impose—between the approach and content in this volume and 
that in its similarly aimed predecessors [2] and [17]. 

Bourbaki provides tools for use by the "practicing mathematician" and does not 
bother with any semantic issues, presumably on the assumption that the mathemati-
cian knows full well how the syntactic and semantic notions interact and relate, and 
has an already well developed experience and ability to use semantic methods toward 
finding counterexamples when needed. He merely introduces and uses the so-called 
Hubert style of proofs (cf. 1.4.12) that is most commonly used by mathematicians. 

The text of [ 17] is equally silent about the interplay between syntax and semantics, 
and about any aspect of the metatheory, and refers to Hilbert-style proofs only tangen-
tially. The authors prefer to exclusively propound the equational (or calculational) 
proof style (cf. Section 2.2), originally proposed in [11]. Moreover, unlike [2], they 
take liberties with their formalism.5 For example, even though they argue in their 
introduction in favor of using formal methods in practical reasoning, they distance 
themselves from a true syntactic approach, especially in their Chapter 8, where facts 

3The second incompleteness theorem, that the freedom of contradiction of "rich" axiomatic systems such 
as Peano arithmetic cannot be proved "from within", is beyond the scope of this volume. Indeed, the only 
complete proofs in print for this result are found in [22], Vol. II, and in [53]. 
4His. him, he and related terms that grammatically indicate gender are, by definition, gender neutral in 
this volume. 
5 A formalism in the context of mathematical logic is any particular way logicians structure their formal 
methods. 
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outside logic taken from algebra and number and set theory are presented as axioms 
of predicate logic. 

While the approach in this volume is truly formal, just like Bourbaki's, it is 
not as terse; we are guilty of the opposite tendency! We also believe that, unlike 
the seasoned practitioner, the undergraduate mathematics, computer science, and 
philosophy students need some reassurance that the form-manipulation proof-writing 
tools presented here indeed prove (mathematical) "truths", "all truths", and "nothing 
but truths". This means that we cannot run away from the most basic and fundamental 
metatheoretical results. After all, every practitioner needs to know a few things about 
the properties of his tools; this will make him more effective in their use. 

Thus 1 include proofs of the soundness (meta)theorems for both prepositional and 
predicate logics (this addresses the "truths", and "nothing but truths" part) and also 
the two "completeness" results, of prepositional and predicate logics (this is the "all 
truths" part). However, to maintain both the emphasis on the use of logic and an 
elementary but rigorous flow of exposition I have delegated the much-harder-to-prove 
completeness metatheorem of predicate logic ([15]) to a sizable appendix at the end 
of the book. 

Why are soundness and completeness relevant to the needs of the user? Complete-
ness of prepositional logic, along with its soundness, give us the much-needed—in 
the interest of user-friendliness—license to mix semantic and syntactic tools in formal 
proofs without sacrificing mathematical rigor. Indeed, this license (to use prepo-
sitional semantic tools) is extended even in predicate logic, and is made possible 
by the trick of adding and removing quantifiers ("for all" and "for some"). On the 
other hand, soundness of the two logics allows the user to disprove statements by 
constructing so-called countermodels. 

There are also quite a few simpler metatheoretical results, beyond soundness and 
completeness, that we routinely introduce and prove as needed about formulae (e.g., 
about their syntax) and about proofs (e.g., the validity of principles of proof such 
as hypothesis strengthening, deduction theorem, and generalization), using the basic 
tool of induction (essentially on formula and proof lengths). 

The Hubert style of proving theorems is prevalent in the mathematical literature 
and is prominently displayed and practiced in this volume. On the other hand, the 
equational-style of displaying proofs has been gaining in popularity especially in 
computer science curricula. It is a style of proof that seems well adapted to areas in 
computer science such as software engineering (in particular, in the field of software 
engineering requirements) and program verification. 

For the above reason, equational-style proofs receive a thorough exposition in this 
volume. It is my intention to endow the reader with enough machinery that will 
make him proficient in both styles of proof, but more importantly, will enable him to 
choose the style that is best suited to writing a proof for any particular theorem. 

In terms of prior knowledge (tools) needed to cope with this volume the reader 
should at least have high school mathematics (but I expect that this includes math-
ematical induction and some basic algebra). A degree of mathematical maturity, 
but no specific additional knowledge, of the kind an upper-level undergraduate will 
normally have will also be handy. 
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A word on pedagogical approach. I repeatedly taught the material included here 
to undergraduate computer science students at York University in Toronto, Canada. 
I think of this book as the record of my lectures. I have endeavored to make these 
lectures user-friendly, and therefore accessible to readers who do not have the benefit 
of an instructor's guidance. Devices to that end include anticipation of questions, 
promptings for the reader to rethink an issue that might be misunderstood if glossed 
over ("pauses"), numerous remarks and examples that reflect on a preceding definition 
or theorem. & 

Using the symbols JL , and Χ X , I am marking those passages that are very 
important, and those that can be skipped at first reading, respectively. 

My fondness for footnotes is surely evident (a taste acquired long ago, when I was 
studying Wilder's excellent Introduction to the Foundations of Mathematics ([57]). 

I give (mostly) very detailed proofs, as I know from experience that omitting 
details normally annoys students. Moreover, I have expectations that students will 
achieve a certain style, and effectiveness, in proofs. The best way to teach them to do 
so is by repeatedly giving examples how. In turn, students will have the opportunity 
to test and further their understanding by doing several exercises, some of which are 
embedded in the text while others appear at chapters' end (a total of more than 190 
exercises). 

Book structure. The book is in two approximately equal-length parts, one on 
Boolean (or propositional) logic and one on predicate logic. A thorough exposition of 
Boolean logic pedagogically prepares the reader for the much more difficult predicate 
logic, at the same time endowing him with several tools that are transferable such as 
the ubiquitous Post's theorem (propositional completeness) and deduction theorem. 

Part I is in three chapters. Chapter 1 starts with the basic formation rules of propo-
sitional (Boolean) formulae—the syntax—and introduces "induction on formulae" as 
a tool via which we can prove facts about syntax. It proceeds with Boolean semantics 
(truth tables) and then continues with the concept of formal proofs—those effected 
via purely syntactic manipulation—from axioms and rules of inference. Chapter 2 
is a veritable database of proofs and theorems, presenting several proofs and proof 
techniques, including the deduction theorem. Both the equational and Hilbert style 
of proof layouts are used extensively. Chapter 3 revisits semantics, and proves 
both the soundness and completeness (Post) theorems, thus demonstrating the full 
equivalence and interchangeability of the semantic and syntactic proof techniques 
in Boolean logic. It concludes with an exposition of the technique of resolution in 
Boolean logic. 

Part II on predicate logic (or calculus) contains five chapters and a lengthy Ap-
pendix. Predicate calculus is introduced as an extension of the logic of Part I, so that 
every tool that we obtained in Part I is still usable in Part II. This part's first chapter, 
Chapter 4, is about the syntax of formulae, and introduces the axioms, the rules of 
inference, and the concept of proof, extending without discarding anything of the 
corresponding concepts of Part I, Chapter 5 simplifies the metatheoretical arguments 
by introducing a simpler-to-talk-about logic, equivalent to ours; that is, a logic with 
a simpler metatheory. Chapter 6 proves and extensively uses powerful rules of in-
ference that were not postulated up front: techniques for adding and removing the 
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universal quantifier, powerful Leibniz rules, and techniques for adding and removing 
the existential quantifier. Our version of predicate calculus, as is common in the 
literature nowadays, includes equality (=). Chapter 7 advances some basic properties 
of equality as these flow from the axioms and the rules of inference. 

Chapter 8 is a "working" first approximation to Tarski-like semantics and proves 
(in detailed outline) the soundness theorem for predicate calculus. This is an impor-
tant tool toward constructing counterexamples, or countermodels as we prefer to call 
them, aiming to show that certain predicate logic formulae are not provable. 

The Appendix at the very end does several things: It revisits Tarski semantics 
that were naively presented in Chapter 8, proves soundness again, this time to-
tally rigorously, and also proves Godel's completeness theorem. It then introduces 
computability, that is, the part of logic that makes the concepts of algorithm, compu-
tation, and computable function mathematically precise. In this particular approach 
to computability, I am using the programming language known in the literature as 
the Shepherdson-Sturgis ([44]) unbounded register machines (URMs). The topics 
included constitute the very foundation of the theory of computation and they will 
be of interest not only to mathematics readers but also to those in philosophy and, 
especially, in computer science, who will find ample supplemental material for their 
theory of computation courses. These include partial computable functions, prim-
itive recursive functions, a complete characterization in number-theoretic terms of 
the partial functions computable by URMs, the normal form theorems, the "Kleene 
predicate" and a "universal" URM, computable and semi-computable relations and 
their behavior in connection with Boolean operations and quantification, computably 
enumerable relations, unsolvability, verifiers and deciders, first-order definability, 
and the arithmetical relations. This machinery will next allow us to tackle Godel's 
first incompleteness theorem. This we prove by basing the proof on the nonexistence 
of a URM program that solves the following problem (halting problem) for any choice 
of χ and y: "Will program χ ever terminate if its input is y?" 

Suggested coverage. A computer science curriculum in formal logic will probably 
cover everything but the Appendix. The course MATH 1090 at York University, 
especially designed for computer science majors, does exactly that. However, a hybrid 
course in logic and computability, often included in computer science curricula, will 
adjust its pace (e.g., going faster through Part I) to include the computability and 
Godel incompleteness topics of the Appendix. A mathematics major will typically 
see his first course in logic in an upper-undergraduate year. His syllabus will likely 
require that the book be studied from cover to cover (again, going fast through Part I). 
A philosophy major's needs in a course in logic are harder to fit to a prescribed 
template. Advanced students will likely find all of Part I relevant along with chapters 
4-6 of Part II. They will also find a high degree of relevance in the computability and 
Godel incompleteness topics of the Appendix. 

GEORGE TOURLAKIS 

Toronto 

June 2008 
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CHAPTER 1 

THE BEGINNING 

Mathematical logic, or as we will simply say, "logic", is the science of mathematical 
reasoning. Its core consists of the study of the form, meaning, use, and limitations of 
logical deductions, the so-called proofs. 

This volume, which is aimed at upper-level undergraduate university students 
who follow a course of study in computer science, mathematics, or philosophy, will 
emphasize mainly the use of proofs—it is written with the interests of the user in 
mind. 

1.0.1 Remark. (Before we Begin) The symbol goes at least as far back as 
the writings of Bourbaki. It has been made widely accessible to authors—who like to 
typeset their writings themselves—through the typesetting system of Donald Knuth 
(known as "Tj3i"). 

I use these "road signs" as follows: A passage enclosed between two single " 
symbols is purported to be very noteworthy, so please heed! * 

means two things. 

6This symbol is a stylized typographical version of the "(dangerous) winding-road" road sign. 

On the other hand, a passage enclosed between two double signs (" ') 

Mathematical Logic. By George Tourlakis 
Copyright © 2008 John Wiley & Sons, Inc. 
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The bad news is that it is rather difficult, or esoteric, or both. The good news is 
that you do not need to understand (or even read) its contents in order to understand 
all that follows. It is only there in the interest of the "demanding" reader. Such 
"doubly dangerous" passages allow me to digress without injuring continuity—you 
can ignore these digressions! • 

Learning to use logic, which is what this book is about, is like learning to use a 
programming language. 

In the latter case, probably familiar to you from introductory programming courses, 
one learns the correct syntax of programs, and also learns what the various syntactic 
constructs do—that is, their semantics. After that, one embarks—for the balance of 
the programming course—on a set of increasingly challenging programming exer-
cises, so that the student becomes proficient in programming in said language. 

We will do an exactly analogous thing in this volume: We will learn to write 
proofs, which are nothing else but annotated sequences of formulae and are similar 
to computer programs in terms of syntactic structure—the annotations playing a role 
closely similar to that of comments in computer programs. 

But to do that, we need to know, to begin with, what are the rules of correctly 
writing down a formula and a proof! We have to start with the syntax of these 
objects—formulae and proofs—precisely as it is done in the case of programming 
and its related objects, the programs. 

Thus, we will begin with learning the syntax of the logical language, that is, what 
syntactically correct formulae and proofs look like. We will also learn what various 
syntactic constructs "say" (semantics). For example, we will learn that a formula 
makes a "statement". A proof also makes a statement, that every formula in it is true 
in some very intuitively acceptable sense. 

We will learn that correctly written proofs are finite and "checkable" means toward 
discovering mathematical "truths". We will also learn via a lot of practice how to 
write a large variety of proofs that certify all sorts of useful truths of mathematics. 

The above task, writing proofs—or "programming in logic" if you will—is our 
main aim. This will equip you with a toolbox that you can use to discover or certify 
truths. It will be handy in your studies in computer science, and in whatever area of 
study or research you embark upon and where reasoning is required. 

However, we will also look at this toolbox, the logic, as an object of study and 
study some of its properties. After all, if you want to take up, say, carpentry, then you 
need to know about tools such as hammers—their properties (e.g., hard and heavy) 
and limitations (e.g., unfriendly to fingers). 

When using the toolbox to prove theorems, you work within logic. On the other 
hand, when studying the toolbox, you work in logic's metatheory (in metalogic) to 
talk and reason about logic. 

People often do this kind of study with programming languages, looking at them 
as objects of study rather than as instruments to write programs with. For example, 
in an advanced course on the comparative study of programming languages one 
looks at several programming languages and compares them for features, suitability 
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for certain programming tasks—for any specific task some are more suitable than 
others—limitations, etc. 

Here is another analogy: In the "real world" that we live in, one builds flight 
simulators, which we use to simulate flying an airplane, and in the process we 
learn how to do so. The real world where the simulator is built is the simulator's 
metatheory, where we can, among other things, study the properties and limitations of 
simulators and compare several simulators for features such as relative "power" (i.e., 
how effective or realistic they are), etc. Similarly, formal logic is built within "real 
mathematics", as we will see in the next section. It, too, is a "simulator" employed 
to write formal proofs that certify the truth of mathematical statements. These proofs 
imitate the kind of informal proofs one typically employs in informal mathematics 
but do so within a precisely specified system of notation (called language), rules, and 
assumptions. Thus, using formal logic is a means to learn how to write proofs—and 
not only formal proofs!—just as using a flight simulator is a means of learning how 
to fly a real plane. The metatheory of logic—the "real mathematics"—addresses 
questions among the deepest of which is the question of how far formal logic can go 
in discovering mathematical truths. 

Let us next look more closely at the similarity between programming languages 
and programming on one hand and logical languages and proving on the other, and 
argue that, similar as the two activities may be, the second one is a bit easier! 

(1) In programming, you use the syntactic rules to write a program that solves a 
problem. 

(2) In logic, you use the syntactic rules to write a proof that establishes a theorem. 

In the latter task you are done as soon as the proof ends. At the end of the proof 
you have your theorem, exactly as stated. 

In the former task, programming, it is not enough to just write a program! You 
next have to convince your boss, or your instructor, that the program indeed solves the 
problem; that it is "semantically correct" with respect to the problem's specification. 

Note that in proving a theorem you have a purely syntactic task. Once your 
correctly written proof ends with the theorem you were trying to prove, you are done. 
There is no messing about with semantics. 

There is another reason why programming is harder than proving theorems: Pro-
gramming has to be painstakingly precise because it involves your writing instruc-
tions for a dumb machine to "understand" and follow. You must be absolutely and 
pedantically clear in your instructions. 

On the other hand, you address a proof to a human who knows as much as you do, 
or more, about the subject. This human will in general accommodate a few shortcuts 
that you may want to take in your presentation. 

In short, proofs are read by "intelligent" humans, while programs are read by 
"dumb" computers. We need to work really hard to speak at the level of the latter. 

Will you ever need to deal with semantics in logic? Yes! Semantics is useful 
when you want to disprove (or refute) something, that is, to prove that it is a false 
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statement, a fallacy. We will talk about semantics later—three times: once under 
Boolean logic, once under predicate logic, and one last time in the Appendix. 

There are many methodologies or paradigms (and corresponding programming 
languages suitable for the task) for writing programs. For example (add the word 
programming after each italicized keyword), procedural (Algol, Pascal, Turing), 
functional (LISP), logic (Prolog), and object-oriented (C++, Java). Most computer 
science departments will expose their students to many of the above. 

Similarly there are several methodologies for writing proofs. For example (add 
the word style after each italicized keyword), equational (the one favored by [17]), 
Hilbert (favored by the majority of the mathematics, computer science, and logic 
literature), Gentzen's natural deduction, etc. 

My aim is to assist the reader to become an able user of the first two styles: the 
equational and the Hilbert style of proof. 

In both methodologies, an important required component is the systematic anno-
tation of the proof steps. Such annotation explains why we do what we do, and has 
a function similar to that of comments in a program. 

Okay; one can grant that a computer science student needs to learn programming. 
But logic? You see, the proper understanding of prepositional logic is fundamental 
to the most basic levels of computer programming, while the ability to correctly use 
variables, scope, and quantifiers is crucial in the use of loops, and subroutines, and 
in software design. Logic is used in many diverse areas of computer science, includ-
ing digital design, program verification, databases, artificial intelligence, algorithm 
analysis, computability, complexity, and software specification. Besides, any science 
that requires you to reason correctly to reach conclusions uses logic. 

When one is learning a programming language, one often starts by learning a 
small subset of the language, just to smooth the learning curve. Analogously, we 
will first learn—and practice—a subset of the logical language. This we will do not 
due to some theoretical necessity, but due to pedagogical prudence. This particular, 
"easy" subset of (the "full") logic that we will embark upon learning goes by many 
names: Boolean logic, prepositional logic, sentential logic, sentential calculus, and 
prepositional calculus. 

The "full logic" we will call by any of the names predicate calculus, predicate 
logic, or first-order logic. 

I like the calculus qualifier. It connotes that there is a precise way to "calculate" 
within logic. It emphasizes that building proofs is an algorithmic and precise process, 
just like programming. 

Indeed, it turns out that you can write a program, say, in Pascal, that will accept no 
input, but if it is allowed to run forever it will print all the theorems of logic7 (and not 
just those of the Boolean variety)—and never print a non-theorem!—in some order, 
possibly with some repetitions (cf. A.4.7 on p. 270). 

7We will soon appreciate that there are infinitely many theorems in logic. 
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Equivalently, we can write a program that is a theorem verifier. That is, given as 
input a theorem, the program will verify that it is so, in a finite number of steps. If 
the input is a non-theorem, our verifier will decline an answer—it will run forever. 

Thus, proving theorems is a mechanical process] 

Digression: The above assertion is an example of a true assertion about the logic, not 
one that we can prove using exclusively the tools o/logic as a tool. It is a metatheorem 
of logic as we say, not a theorem. 

The proof of this metatheorem requires techniques much more powerful than— 
indeed external to—those that the logic provides. We will prove this metatheorem in 
the Appendix to Part II (A.4.6). 

So metatheorems are truths about the logic that we prove with tools external to 
the logic, while theorems are truths that the logic itself is capable of proving. 

There is some danger that the above statement, "proving theorems is a mechanical 
process", may be misinterpreted by some as one advocating that we build proofs by 
mindlessly shuffling symbols. Nothing is further from reality. 

The statement must be understood precisely as written. It says that there is a 
"mindless" way, a programmable way, to generate and print all possible theorems 
of logic, and, equivalently, also a programmable way to verify all theorems, which, 
however, refuses to verify any non-theorem by "looping" forever when presented 
with any such as input. 

But it is not a recipe for how we ought to behave when we write proofs. This is 
not the way a mathematician, or you or I, go about proving things—mindlessly. In 
fact, if we do not understand what is going on, we cannot go too far. 

Moreover, interesting, even important, as this result (about the existence of theorem 
verifiers) may be theoretically, it is useless practically, as we further discuss below. 

Our task is different. In general, we are more inquisitive. Given an arbitrary 
(mathematical) statement, we do not know ahead of time if it is a theorem or not. 
This italicized statement, the so-called decision problem of logic, is what we normally 
are interested in. Thus, our "verifier" is not very helpful, for if the statement that we 
present it as input is not a theorem, then the verifier will run forever, not giving an 
answer. 

Hmm. Can we not write a decider for logic? The answer to this is interesting, but 
also reassuring to mathematicians (and all theorists): Their jobs are secure! 

(1) For Boolean logic, we can, since the question "Is this statement a theorem?" 
translates to "Is this statement a tautology?" (cf. 3.2.1). The latter can be settled 
algorifhmically via truth tables. But there is a catch: Checking a formula 
(the formal counterpart of a "statement") for tautology status is an unfeasible 
problem.9 So we can do it in principle, but this fact is devoid of any practical 
value. 

"That this formulation of the claim is equivalent to the preceding one is a standard result of computability. 
Cf. Appendix to Part II, Remark A.3.91 on p. 262. 
'The term unfeasible—also intractable—has a technical connotation in complexity theory: It means a 
problem for which we know of no algorithm that runs in polynomial time as a function of the input 
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(2) For predicate logic, the answer is more pleasing to mathematicians. 

First, there exists no decider for this logic if we expand it minimally so that it can 
reason about the theory of natural numbers (this is Alonzo Church's theorem, 
[3,4]). 

Second, even if one were to be satisfied simply with a verifier for theorems, then 
we still would have no general solution of any practical value in hand. Indeed, 
again considering the logic augmented so that it can "do number theory", any 
chosen verifier V for this logic would be extremely slow in providing answers 
in the following precise sense: For any choice of a step-counting function / ( n ) , 
there is an infinite subset, S, of the set of theorems of number theory, such that 
each theorem-member, T, of S that is composed of η symbols requires for its 
verification more than f(n) steps to be performed by V.10 This is a result of 
Hartmanis ([19]). 

Let us stop digressing for now. In the next section we begin the study of the 
sublogic known as prepositional calculus. 

1.1 BOOLEAN FORMULAE 

We will continue stressing the algorithmic nature of the discipline of proving, just as 
it is the case in the discipline of programming. 

In particular, just as in serious programming courses the programming language 
is introduced via preciseformat ion rules that allow us to write syntactically correct 
programs, we will be every bit as serious by introducing very precisely the rules for 
writing syntactically correct (1) formulae and (2) proofs. 

Once again, the syntax of the logical language is much simpler to describe than 
that of any commercially available programming language. 

So, how does one build—i.e., what are the rules for writing down correctly— 
formulae? 

Continuing with the programming analogy, you will recall that to define a pro-
gramming language, i.e., the syntax of its programs, one starts with the list of 
admissible symbols, the so-called alphabet. In some languages, the alphabet in-
cludes symbols such as "3,4,0, [, A, B,c,d,E,+,x, —" and "keywords"—that is, 
multiple-character symbols—such as if, then, else, do, begin. 

Similarly, in Boolean logic, we start with the basic building blocks, which collec-
tively form what is called the alphabet (for formulae). Namely, 

length—or worse, we know that such an algorithm does not exist. In this case it is the former. However, 
there is a connection with the so-called "P vs. NP" open question (see [5]). If a polynomial algorithm 
that recognizes tautologies does exist, then the open problem is settled as "P = NP", something that the 
experts in the field consider highly unlikely. The truth table method runs in exponential time. 
'"For example, consider / ( n ) = 2 2 ". If we think of f(n), for each n, as representing picoseconds of 
run time of the verifier V (1 picosecond is 1 0 ~ 1 2 seconds), then every member of S of length more than 
4 symbols will require the verifier V to run for more than 5.70045 χ 1 0 2 8 8 years! 
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Al. Symbols for variables, called the Boolean or propositional or sentential vari-
ables. These are p, q, r, with or without primes or subscripts (i.e., p', 913, r-j" 
are also symbols for variables). 

X We often need to write down expressions such as "A\p := B]", to be defined 
later (1.3.15), but do not wish to restrict them to the specific variable p. Nor can 
we say things such as "for any Boolean variable ρ we consider A\p := B)..." 
as there is only one specific pi 

We get around this difficulty by employing so-called metavariables or syntactic 
variables—i.e., symbols outside the alphabet that we can use to refer to or point, 
generally, to any variable. We adopt the names for those to be the boldface 
p, q, r with or without primes or subscripts. Thus pgj names any variable 
p, q,r'",q'gS7, etc. Rarely if ever in this volume will we need to use more 
Boolean metavariables than these two: p , q. 

We can now use the expression "for every Boolean variable ρ we consider 
A[p := B\..." referring to what ρ names rather than to ρ itself. Two 
analogous examples are, from algebra, "for every natural number n" (n is not 
a natural number!) and, from programming, where we might say about Algol, 
"for each variable x, the instruction χ := χ + 1 means to increase the value of 
χ by one." Again, χ is not a variable of Algol; X13, YXZ99, though, are. But 
it would be meaningless to offer the general statement "for each variable X13, 
the instruction X13 := X13 + 1, etc." since X13 is a specific variable of the 
Algol syntax. The programming language metavariable χ allows us to speak of 
all of Algol's variables collectively! 

On the other hand, the expression "for every Boolean metavariable" refers to 
the set of metavariables themselves, {p, q, r^g, . . .} and will be rarely, if ever, 
used. The expression "for every Boolean metavariable p " is as nonsensical as 
"for every Boolean variable p". 

A2. Two symbols for Boolean constants, namely Τ and 1. These are pronounced 
variously in the literature: verum (also top, or symbol "true") and falsum (also 
bottom, or symbol "false "11). 

A3. Brackets, namely, ( and ). 

A4. "Boolean connectives", namely, the symbols listed below, separated by commas 

Let us denote by V the alphabet consisting of the symbols described in A1-A4. 

1 1 Usually, the qualifier symbol is dropped and then the context is called upon to distinguish between 
"true/false" the symbols vs. "true/false" the Boolean values of the metatheory (introduced in Section 1.3). 
In particular, cf. Definition 1.3.2 and Remark 1.3.3. 

- . , A , V , - > , = 
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1.1.1 Remark. (1) Even though I say very emphatically that p,q, r, etc., and also 
Τ and ± , are just symbols,12—the former standing for variables, the latter for 
constants—yet, I will stop using the qualification symbols, and just say variables 
and constants. This entails an agreement: I always mean to say symbols, I just don't 
say it. 

(2) Most variable symbols are formed through the use of "subsymbols"—such as 
0,1,2,'—that are not members of the alphabet V themselves; e.g., p"{0034. This 
does not detract from the fact that each variable (name) is a single symbol of V, 
entirely analogously with, say, the keywords of Algol if, then, begin, for, etc. 

(3) Readers who have done some elementary course in logic, or in the context of a 
programming course, may have learned that ->, V are the only connectives one really 
needs since the rest can be expressed in terms of these two. Thus we have deliberately 
introduced redundancy in the adopted set of connectives (i) above. This choice in 
the end will prove to be user-friendly and will serve our aim to give a prominent role 
to the connective =, in the axioms and in rules of inference (Section 1.4). • 

1.1.2 Definition. (Strings or Expressions; Substrings) We call a string (also word 
or expression), over a given alphabet, any ordered sequence of the alphabet's symbols, 
written adjacent to each other without any visible separators (such as spaces, commas, 
or the like). 

For example, 00660 is a string of symbols over the alphabet {a, b, c,0,1,2,3} 
(note that you don't have to use all the alphabet symbols in any given string, and, 
moreover, repetitions are allowed). Ordered means that the position of symbols in 
the string matters; e.g., αα6 φ aba. 

We denote arbitrary strings over the alphabet A1-A4 by string variables, i.e., 
names that stand for arbitrary13 or specific14 strings. Specific strings, or string 
constants, are sometimes enclosed in double quotes to avoid ambiguity. For example, 
if we say 

Let A be the string aab. 

we need to know whether the period is part of the string or not. If it is not we 
symbolically indicate so by writing 

Let A be the string "aab ". 

If it were part of the string, then we would have written instead 

Let A be the string "aab.". 

String variables—by agreement—will be denoted by uppercase letters A, B, C, 
D, Ε, P, Q, R, S, W etc., with or without primes or subscripts. In particular, since 
Boolean expressions (and theorems) are strings, this naming is valid for this special 
case, too. 

1 2Some logicians put it more emphatically: "meaningless symbols". 
"E.g., "let A be any string". 
1 4E.g„ "let A stand for (-.(ρ Λ q))". 


