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Preface 

WHY GRAPH COLORING? 

Graph coloring problems? The four-color problem has been changed into the four-
color theorem, so is there really much more to say or do about coloring? Yes there is, 
and for several reasons! 

First, the last word on the four-color problem has not been said. The ingenious 
solution by K. Appel, W. Haken, and J. Koch [1, 2], based on the approach of 
H. Heesch, is a major achievement, but to some mathematicians the solution is 
unsatisfactory and raises new questions, both mathematical and philosophical. 

Second, graph coloring theory has a central position in discrete mathematics. 
It appears in many places with seemingly no or little connection to coloring. A 
good example is the Erdös-Stone-Simonovits theorem [3] in extremal graph theory, 
showing that for a fixed graph G the behavior of the maximum number f(n, G) 
of edges in a graph on n vertices not containing G as a subgraph depends on the 
chromatic number x(G) of G: 

/(n,G) = X(G) - 2 
«-<* „2 2 * ( G ) - 2 ' 

Third, graph coloring theory is of interest for its applications. Graph coloring 
deals with the fundamental problem of partitioning a set of objects into classes, 
according to certain rules. Time tabling, sequencing, and scheduling problems, in 
their many forms, are basically of this nature. 

Fourth, graph coloring theory continually surprises by producing unexpected 
new answers. For example, the century old five-color theorem for planar graphs due 
to P.J. Heawood [4] has recently been furnished with a new proof by C. Thomassen 
[5], avoiding both the use of Euler's formula and the powerful recoloring technique 
invented by A.B. Kempe [6], thus making it conceptually simpler than any previous 
proof. 

And finally, even if many deep and interesting results have been obtained during 
the 100 years of graph coloring, there are very many easily formulated, interesting 
problems left. This is the most important reason for us, and our book is an attempt 

xv 
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to exemplify it. As far as we know it is the first book devoted to unsolved graph 
coloring problems, but a number of papers sharing the same topic have preceded 
it—for example, many of the "problems and results" papers by P. Erdös (referred to 
throughout the book), surveys by W. Klotz [7], Z. Tuza [8], and J. Kahn [9], problem 
sections in proceedings and newsletters (such as the column by D.B. West [10]), 
and lists of "problems from the world surrounding perfect graphs" by A. Gyärfäs 
[11] and V. Chvätal [12]. A list of 50 carefully selected problems in graph theory is 
contained in the book by J.A. Bondy and U.S.R. Murty [13]. Finally, two interesting 
collections of geometry problems, by H.T. Croft, K.J. Falconer, and R.K. Guy [14], 
and by W. Moser (McGill University, Canada) and J. Pach [15], share some of our 
general ideas and contain some coloring problems. 

In a delightful paper W.T. Tutte [16] described several difficult coloring con-
jectures, many of them generalizing the four-color theorem. The paper showed, in 
Tutte's words, that "The Four Colour Theorem is the tip of the iceberg, the thin end 
of the wedge and the first cuckoo of spring." 

THE PROBLEMS 

In selecting and presenting the more than 200 problems for this book we had four 
main objectives in mind: 

1. Each problem should be simple to state and understand, and thus problems 
requiring several or complicated definitions are not included. Only a few of 
the problems have the character of a broad research program; most of them 
are specific questions. We have aimed to select for each problem its most 
attractive formulation, which may not always be the most general or the most 
specific. But very often we mention more general versions and/or special 
cases in the comments. 

2. The list of problems should tell not only what is not known in graph coloring 
theory. The comments should also provide an exposition of the major known 
graph coloring results. 

3. The history of the problems, and the credit for them and for the results 
presented, should be as accurate and complete as possible. 

4. The list should not consist just of "impossible" problems, but also of questions 
where progress is definitely possible. 

We did not intend to write a textbook to be read from beginning to end, but 
rather a catalog suitable for browsing. Chapter 1 contains a common basis of graph 
coloring terminology and a collection of important theorems. The remaining 16 
chapters comprise the main body of the book, each containing a list of open problems 
within a separate area. The necessary background for understanding each problem 
and the information directly related to it appear together with the statement of the 
problem. Each chapter is intended to be self-contained and is closed by its own 
separate list of references. We have paid a price in terms of having to allow some 
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redundancies, but we think that the level is tolerable even for the thorough reader. 
To make the presentation short and succinct, we have included very few proofs and 
pictures. Proofs, outlines of arguments, or figures have been added in a few cases 
when we did not have an appropriate source of reference. 

There is one remark we should make concerning the organization of the refer-
ences. When consulting any given one of the bibliographies it may seem strange that 
different papers by the same author(s) and published within the same year are not 
always listed in a consecutively numbered fashion. For example, there is a reference 
to a paper of Edmonds [1965b] in Chapter 2, but there is no reference to a paper of 
Edmonds [1965a] preceding it in the bibliography. The explanation is that we have 
chosen to maintain a consistent numbering of the references throughout the entire 
book. In other words, the numbering is exactly as it would have been, had the refer-
ences all been put together into one big list. Thus the same paper is being referred to 
in the same manner throughout. 

UPDATES 

The present activity in discrete mathematics is so extensive that a work of this nature 
is outdated before it is written! Solutions, partial results, and new ideas appear all 
the time. And there will be interesting questions that we have overlooked, and also, 
solutions or partial solutions. In some cases we have probably not met objective 3. 
We apologize for all such cases, and we shall be grateful for corrections, comments, 
and information. 

For easy access to any new and updated information, we have installed an f t p -
archive at Odense University, Denmark. You can reach this facility via f t p using the 
address 

f t p . i m a d a . o u . d k 

logging in as "anonymous" and giving your e-mai 1 address as the password. The 
archive is located in a directory which can be reached by typing the command cd 
p u b / g r a p h c o l , where a short README file is available for further information on 
how to proceed. 

World Wide Web access to the archive is also available. You either need 
to locate the menu of Dan i sh I n f o r m a t i o n S e r v e r s , and then click suc-
cessively on the menus for IMADA, listed under Odense University, R e s e a r c h 
A c t i v i t i e s , and Graph Theory. Or you may use the address 

http://www.imada.ou.dk 

to directly reach the IMADA Home Page. 
The contents of the ftp-archive will depend largely on new information (papers, 

abstracts, questions, solutions, etc.) sent by our readers. Contributions should be 
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e-mai led to the address 

graphcol@imada.ou.dk 

to be considered for inclusion. 
In addition to the ftp-archive, we shall consider writing updates from time to 

time in the form of articles. Such papers will be submitted to the Journal of Graph 
Theory. 
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1 
Introduction to Graph Coloring 

1.1. BASIC DEFINITIONS 

Partitioning a set of objects into classes according to certain rules is a fundamental 
process in mathematics. A conceptually simple set of rules tells us for each pair of 
objects whether or not they are allowed in the same class. The theory of graph coloring 
deals with exactly this situation. The objects form the set of vertices V(G) of a graph 
G, two vertices being joined by an edge in G whenever they are not allowed in the 
same class. To distinguish the classes we use a set of colors C, and the division into 
classes is given by a coloring φ : V(G) —► C, where φ{χ) Φ φ(ν) for all xy belonging 
to the set of edges E(G) of G. If C has cardinality k, then φ is a k-coloring, and 
when k is finite, we usually assume that C = {1,2,3, . . . , k). For i E C the set φ~'(/) 
is the ith color class. Thus each color class forms an independent set of vertices; 
that is, no two of them are joined by an edge. The minimum cardinal k for which 
G has a ^-coloring is the chromatic number x(G) of G, and G is \(G)-chromatic. 
The existence of the chromatic number follows from the Well-Ordering Theorem of 
set theory, and conversely, considering cardinals as special ordinals, the existence 
of the chromatic number easily implies the Well-Ordering Theorem. However, even 
if it is not assumed that every set has a well-ordering, but maintaining the property 
that every set has a cardinality, then the statement "Any finite or infinite graph has a 
chromatic number" is equivalent to the Axiom of Choice, as proved by Galvin and 
Komjäth [1991]. 

If the condition ψ(χ) Φ φ(ν) for all xy (= E(G) is dropped from the definition of 
coloring, then ψ is called an improper coloring of G. Accordingly, the term proper 
coloring is sometimes used when we want to emphasize that this condition holds. 

For a hypergraph H with vertex set V{H) and edge set £(//), a coloring ψ : 
V(H) —► C must assign at least two different colors to the vertices of every edge in 
H. That is, no edge is monochromatic. If the edges of// all have the same size r, we 
say that H is r-uniform. Thus the 2-uniform hypergraphs are exactly the graphs. We 
do not normally allow loops in graphs, nor edges of size at most 1 in hypergraphs; 
when we do, it will be stated explicitly. We do allow multiple edges. A graph or 
hypergraph without multiple edges is simple. The term multigraph is used when we 
explicitly want to say that multiple edges are allowed in a graph, and the multiplicity 

1 
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μ(ΰ) will denote the maximum number of edges joining the same pair of vertices in 
a multigraph G. 

The theory of hypergraph coloring is extremely rich, and graph coloring is just 
one special case. Ramsey theory can be viewed naturally as another special case (see 
Graham, Rothschild, and Spencer [1990]). 

A homomorphism of a graph G into a graph H is a mapping / : V(G) —* V{H) 
such that f(x)f(y) is an edge of H if xy is an edge of G. A /t-coloring of G can then 
be thought of as a homomorphism of G into the complete Ar-graph Kk. In general, a 
homomorphism of G into a graph H is called an H-coloring of G. 

An edge coloring of a hypergraph (or graph) H is a mapping φ': £(//) —» C, 
where nondisjoint edges are mapped into distinct elements of the color set C. If C 
has k elements, then φ' is a k-edge coloring. The minimum cardinal £ for which 
H has a k-edge coloring is the edge-chromatic number χ'(Η), and H is said to be 
x'(Hy edge-chromatic. 

A. face coloring of a map M o n a surface S (i.e., a bridge-less graph embedded 
on S) with a set F(Af) of faces (or countries) consists of a mapping φ : F(M) —♦ C, 
where neighboring faces (those with a common borderline) are mapped into different 
elements of the color set C. This corresponds to a vertex coloring of the dual graph 
G, defined by having vertex set V(G) = F(M) and an edge xy £ E(G) for every edge 
of M on the common borderline of the faces x and y. When the map M is embedded 
on S, its dual graph can also be embedded on S without crossing edges. 

As with face coloring, both hypergraph coloring (with at least three colors) and 
edge coloring can be translated into vertex-coloring of graphs, as we shall see. 

In the following we deal almost exclusively with graphs rather than with maps, 
even in cases where the results were initially obtained for face coloring. In the time 
before the papers of Whitney [1932b] and Brooks [1941], coloring theory dealt 
almost exclusively with maps, even though Kempe [1879] had drawn attention to 
vertex colorings of graphs: "If we lay a sheet of tracing paper over a map and mark a 
point on it over each district and connect the points corresponding to districts which 
have a common boundary, we have on the tracing paper a diagram of a 'linkage! 
and we have as the exact analogue of the question we have been considering, that of 
lettering the points of the linkage with as few letters as possible, so that no two directly 
connected points shall be lettered with the same letter. Following this up, we may 
ask what are the linkages which can be similarly lettered with no less than n letters? 
The classification of linkages according to the value of n is one of considerable 
importance!' 

Vertex coloring of infinite graphs with a finite number of colors, or more generally 
//-coloring with a finite graph //, can always be reduced to finite instances. For vertex 
coloring, this is the content of the following theorem, which may be derived from 
a theorem of Rado [1949]. Gottschalk [1951] gave a short proof of Rado's theorem 
using compactness. A similar proof gives an extension of the theorem that includes 
//-coloring in general. 

Theorem 1 (de Bruijn and Erdös [1951]). If all finite subgraphs of an infinite 
graph G are k-colorable, where k is finite, then G is k-colorable. 
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A short direct graph-theoretic proof of Theorem 1 was obtained by L. Posa, 
and may be found for example in the book by Wagner [1970]. It was actually 
already contained in the Ph.D. thesis of G.A. Dirac at the University of London in 
1951. However, as pointed out by G. Sabidussi [personal communication in 1993], 
this particular proof does not generalize to //-colorings as readily as the proof of 
Gottschalk. Because of Theorem 1 we shall only deal with finite graphs in the 
following, except when explicitly stating otherwise. 

The reader looking for proofs of the theorems in this chapter may in many cases 
have to consult the references. However, a well-written general exposition of graph 
coloring theory, including proofs of several of the theorems we mention, can be found 
in the classical book on extremal graph theory by Bollobäs [1978a]. Another good 
general source is the forthcoming Handbook of Combinatorics, edited by L. Loväsz, 
R.L. Graham, and M. Grötschel, and published by North-Holland. 

1.2. GRAPHS ON SURFACES 

Many other areas of graph theory besides coloring theory originated from The four-
color problem of Francis Guthrie: Is every planar graph 4-colorable? Well-written 
accounts of the problem are contained in the monographs by Ringel [1959], Ore 
[1967], Biggs, Lloyd, and Wilson [1976], Saaty and Kainen [1977], Barnette [1983], 
and Aigner [1984]. 

The four-color problem seems first to have been mentioned in writing in an 
1852 letter from A. De Morgan to W.R. Hamilton, written on the same day as 
De Morgan first heard about the problem from his student Frederick Guthrie, Fran-
cis Guthrie's brother. It first appeared in print in an anonymous book review by 
De Morgan in 1860 (see Wilson [1976]), and later as an open problem raised by Cay-
ley [ 1878] at a meeting in the London Mathematical Society and in a paper by Cayley 
[1879]. A proposed solution by Kempe [1879] stood for more than a decade until 
it was refuted by Heawood [1890] in his first paper. Heawood proved the five-color 
theorem for planar maps and the best possible twelve-color theorem for the case 
where each country consists of at most two connected parts. Moreover, he extended 
the problem to higher surfaces. Dirac [1963] gave an excellent survey of Heawood's 
achievements. 

The higher surfaces (i.e., compact 2-dimensional manifolds) can be classified 
into three types as follows (see, e.g., Massey [1991]). The sphere with g handles 
attached is denoted by Sg (of Euler characteristic ε = 2 — 2g), the projective plane 
with g handles attached by Ps (of Euler characteristic ε = 1 - 2g), and the Klein 
bottle with g handles attached by Kg (of Euler characteristic ε = — 2g). In each case 
g may assume the value zero. Note that the surfaces Sg are orientable, whereas Pg 
and Kg are nonorientable. 

Theorem 2 (Heawood [1890]). Let Sbea surface of Euler characteristic ε. When 
ε < 2, every graph GonS can be colored using the Heawood number Η(ε) of colors, 
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given by 

A graph of seven mutually adjacent vertices, the complete 7-graph Κη, embeds on 
the torus Si, hence 7 (— H(0)) colors are both sufficient and necessary for toroidal 
graphs. 

The topological prerequisite for Heawood's formula is Euler's formula, implying 
that every graph G embedded on a surface S of Euler characteristic ε has at most 
3|K(G)| - 3ε edges. Since a minimal ^-chromatic graph G has minimum degree 
8(G) > k - \, such a graph G satisfies 

(k - \)\V(G)\ < 2|£(G)| < 6|V(G)| - 6ε. 

Since \V(G)\ ^ k, it follows for k > 7 that (k — l)k + 6ε ^ 0, which in turn implies 
that k < Η(ε). 

For the Klein bottle K0 the Heawood formula gives a seven-color theorem. 
However, Franklin [1934] proved that six colors suffice to color any graph on the 
Klein bottle. This is the only case where the Heawood number is not the right answer 
to the coloring problem for higher surfaces. 

Theorem 3 (Heffter [1891], Tietze [1910], Ringel [1954,1959,1974], Ringel and 
Youngs [1968]). For a surface S of Euler characteristic ε < 2, where S is not the 
Klein bottle, the Heawood number Η(ε) is the maximum chromatic number of graphs 
embeddable on S. 

The proof of this major result, completed in 1968, was obtained by embedding 
the complete //(e)-graph KH(e) on the surface with Euler characteristic ε. This is of 
course sufficient for a proof of Theorem 3. It is in fact also necessary. 

Theorem 4 (P. Ungar and Dirac [1952b], Albertson and Hutchinson [1979]). 
For a surface S of Euler characteristic ε < 2, and S different from the Klein bottle, 
any H^)-chromatic graph on S contains KH(B) α$ a subgraph. 

Dirac's arithmetic did not cover the cases e = — 1 and 1, but these cases were 
later settled by Albertson and Hutchinson [1979]. The idea of the result of Theorem 4 
and a proof in the case of the torus were first obtained by P. Ungar, as mentioned by 
Dirac [1952b]. 

After various attempts and the achieving of partial results on the four-color 
problem by many mathematicians, Appel and Haken [1976a] announced a complete 
proof. The four-color theorem for plane triangulations (i.e., plane graphs in which all 
faces are triangles), and hence for all planar graphs, follows immediately by induction 
from 
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Theorem 5 (Appel and Haken [1977a], Appel, Haken and Koch [1977]). There 
exists a set U of 1482 configurations such that 

(a) Unavoidability: any plane triangulation contains an element ofU, and 
(b) Reducibility: a 4-coloring of a plane triangulation containing an element of 

U can be obtained from 4-colorings of smaller plane triangulations . 

This is the same basic idea as in Kempe's proof, where U consisted of vertices 
of degree at most 5. Kempe's only mistake was in his argument for the reducibility of 
vertices of degree equal to 5. The detailed techniques of Appel, Haken, and Koch are 
further developments of methods of Heesch [1969], who was the first to emphasize 
strongly the possibility of a proof of the four-color theorem along these lines (see 
Bigalke [1988]). The proof of part (a) is based on Euler's formula and an elaborate 
"discharging procedure." Whereas this part of the proof can in principle be carried 
out by hand, Appel, Haken, and Koch had to use computer programs to verify that 
each member of their unavoidable set U of configurations submits to one of two 
types of reducibility that Heesch had named "C-reducibility" and "D-reducibility." 
Combining this fact with results of Bernhart [1947], they proved that U satisfies (b) 
of Theorem 5. 

Several surveys of the proof of Theorem 5 exist: for example, Appel and Haken 
[1977b, 1978] and Woodall and Wilson [1978]. Due to its length, extensive use of 
verification by computer, some inaccuracies, and omissions of details, the proof of 
Theorem 5 has been surrounded by some controversy. Appel and Haken [1986,1989] 
have themselves addressed the questions raised. Recent accounts of the situation have 
been given by F. Bernhart [Math. Reviews 91m:05005] in an informative review of 
the book by Appel and Haken [1989], and by Kainen [1993]. 

Very recently, N. Robertson, D.P. Sanders, RD. Seymour, and R. Thomas [per-
sonal communication from N. Robertson and RD. Seymour in 1994] have obtained 
a new, improved proof of the four-color theorem by using the same general approach 
as that of Appel, Haken, and Koch. This proof has less than 700 configurations and 
is based on a simpler discharging procedure. In addition, the proof avoids some of 
the more problematic details of the proof by Appel, Haken, and Koch (we describe 
these in Problem 2.1). However, it still relies on extensive computer checking. 

An early approach to coloring problems for plane maps and graphs concerned 
studying the number P(G,k) of all possible different ^-colorings of a graph G 
with colors 1,2,... ,k. Birkhoff [1912] noted that P{G,k) as a function of k can 
be expressed as a polynomial, the so-called chromatic polynomial of G, P{G, k) = 
a\kn + atkn~x + ■ ■ ■ + a„k of degree n = |V(G)|. In particular, χ{β) is the smallest 
nonnegative integer that is not a zero of P(G, k). Whitney [1932a, 1932b], Birkhoff 
and Lewis [1946], Tutte [1954,1970b], and Read [1968] are some of the researchers 
who have developed the theory of chromatic polynomials. A well-written survey was 
given by Read and Tutte [1988]. 

One of Tutte's surprising and beautiful results is the following golden identity. 
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Theorem 6 (Tutte [1970b]). Let M be a plane triangulation on n vertices. Then 

P(M, T + 2) = (T + 2) · T3"-m · (P(M, T + l))2, 

where τ is the golden ratio | (1 + V5), with τ + 1 = τ2 and τ + 2 = ,/5τ. 

Tutte [1970b] noted that P(M,r + 1) Φ 0. Hence we have the curious con-
sequence that P(M, T + 2) is positive, where τ + 2 = 3.618 Of course, the 
four-color theorem is equivalent to the statement that P(M, 4) is positive. 

As explained by Saaty [1972] and Saaty and Kainen [1977] the four-color theo-
rem has many equivalent formulations. A particularly noteworthy result is 

Theorem 7 (Wagner [1937]). If all planar graphs are 4-colorable, then 4-color-
ability extends to the class Q of all graphs from which a complete 5-graph K$ cannot be 
obtained by deletions (of vertices and/or edges) and contractions of edges (removing 
possible loops that might arise). 

Thus the four-color theorem is equivalent to the case k = 5 of the famous 

Hadwiger's Conjecture (Hadwiger [1943]). Let Qbea class of graphs closed un-
der deletions (of edges and/or vertices) and contractions of edges (removing possible 
loops that might arise). Then the maximum chromatic number of the graphs in Q 
equals the number of vertices (k — I) in a largest complete graph in Q. 

For k = 4 this was proved by Dirac [1952a]. Recently, Robertson, Seymour, 
and Thomas [1993a] gave a complete characterization of all 6-colorable graphs from 
which the complete graph K6 cannot be obtained by deletions and contractions. As 
a corollary of the characterization, all such graphs are in fact 5-colorable, assuming 
the four-color theorem. This proves that Hadwiger's conjecture for k = 6 is also 
equivalent to the four-color theorem. Hadwiger's conjecture is true for Q the class of 
all graphs embeddable on the same surface S. This follows from Theorems 3,4, and 5 
above, and from a paper by Albertson and Hutchinson [1980a] for the Klein bottle. 

A deep extension of the five-color theorem for planar graphs was conjectured by 
Grünbaum [1973] and proved by Borodin [1979a]. The proof is reminiscent of the 
four-color proof by Appel, Haken, and Koch; it involves an unavoidable set of some 
450 reducible configurations (but no computers). 

Theorem 8 (Borodin [1979a]). Every planar graph has an acyclic 5-coloring, that 
is, a 5-coloring in which each pair of color classes induces a subgraph without cycles. 

As for 3-colorings of planar graphs, the most important results are 

Theorem 9 (Heawood [1898]). A plane triangulation can be 3-colored if and only 
if all vertices have even degrees. 


