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Preface

WHY GRAPH COLORING?

Graph coloring problems? The four-color problem has been changed into the four-
color theorem, so is there really much more to say or do about coloring? Yes there is,
and for several reasons!

First, the last word on the four-color problem has not been said. The ingenious
solution by K. Appel, W. Haken, and J. Koch [1, 2], based on the approach of
H. Heesch, is a major achievement, but to some mathematicians the solution is
unsatisfactory and raises new questions, both mathematical and philosophical.

Second, graph coloring theory has a central position in discrete mathematics.
It appears in many places with seemingly no or little connection to coloring. A
good example is the Erd8s—Stone-Simonovits theorem [3] in extremal graph theory,
showing that for a fixed graph G the behavior of the maximum number f(n,G)
of edges in a graph on n vertices not containing G as a subgraph depends on the
chromatic number y(G) of G:

. f(n,G)y _ x(G)—2
T T e -2

Third, graph coloring theory is of interest for its applications. Graph coloring
deals with the fundamental problem of partitioning a set of objects into classes,
according to certain rules. Time tabling, sequencing, and scheduling problems, in
their many forms, are basically of this nature.

Fourth, graph coloring theory continually surprises by producing unexpected
new answers. For example, the century old five-color theorem for planar graphs due
to P.J. Heawood [4] has recently been furnished with a new proof by C. Thomassen
{51, avoiding both the use of Euler’s formula and the powerful recoloring technique
invented by A.B. Kempe [6], thus making it conceptually simpler than any previous
proof,

And finally, even if many deep and interesting results have been obtained during
the 100 years of graph coloring, there are very many easily formulated, interesting
problems left. This is the most important reason for us, and our book is an attempt

XV



xvi Preface

to exemplify it. As far as we know it is the first book devoted to unsolved graph
coloring problems, but a number of papers sharing the same topic have preceded
it—for example, many of the “problems and results” papers by P. Erdds (referred to
throughout the book), surveys by W. Klotz [7], Z. Tuza [8], and J. Kahn [9], problem
sections in proceedings and newsletters (such as the column by D.B. West [10]),
and lists of “problems from the world surrounding perfect graphs” by A. Gyérfas
f11] and V. Chvital {12]. A list of 50 carefully selected problems in graph theory is
contained in the book by J.A. Bondy and U.S.R. Murty [13]. Finally, two interesting
collections of geometry problems, by H.T. Croft, K.J. Falconer, and R.K. Guy [14],
and by W. Moser (McGill University, Canada) and J. Pach [15], share some of our
general ideas and contain some coloring problems.

In a delightful paper W.T. Tutte [16] described several difficult coloring con-
jectures, many of them generalizing the four-color theorem. The paper showed, in
Tutte’s words, that “The Four Colour Theorem is the tip of the iceberg, the thin end
of the wedge and the first cuckoo of spring.”

THE PROBLEMS

In selecting and presenting the more than 200 problems for this book we had four
main objectives in mind:

1. Each problem should be simple to state and understand, and thus problems
requiring several or complicated definitions are not included. Only a few of
the problems have the character of a broad research program; most of them
are specific questions. We have aimed to select for each problem its most
attractive formulation, which may not always be the most general or the most
specific. But very often we mention more general versions and/or special
cases in the comments.

2. The list of problems should tell not only what is not known in graph coloring
theory. The comments should also provide an exposition of the major known
graph coloring results.

3. The history of the problems, and the credit for them and for the results
presented, should be as accurate and complete as possible.

4. The list should not consist just of “impossible” problems, but also of questions
where progress is definitely possible.

We did not intend to write a textbook to be read from beginning to end, but
rather a catalog suitable for browsing. Chapter 1 contains a common basis of graph
coloring terminology and a collection of important theorems. The remaining 16
chapters comprise the main body of the book, each containing a list of open problems
within a separate area. The necessary background for understanding each problem
and the information directly related to it appear together with the statement of the
problem. Each chapter is intended to be self-contained and is closed by its own
separate list of references. We have paid a price in terms of having to allow some
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redundancies, but we think that the level is tolerable even for the thorough reader.
To make the presentation short and succinct, we have included very few proofs and
pictures. Proofs, outlines of arguments, or figures have been added in a few cases
when we did not have an appropriate source of reference.

There is one remark we should make concerning the organization of the refer-
ences. When consulting any given one of the bibliographies it may seem strange that
different papers by the same author(s) and published within the same year are not
always listed in a consecutively numbered fashion. For example, there is a reference
to a paper of Edmonds [1965b] in Chapter 2, but there is no reference to a paper of
Edmonds [1965a] preceding it in the bibliography. The explanation is that we have
chosen to maintain a consistent numbering of the references throughout the entire
book. In other words, the numbering is exactly as it would have been, had the refer-
ences all been put together into one big list. Thus the same paper is being referred to
in the same manner throughout.

UPDATES

The present activity in discrete mathematics is so extensive that a work of this nature
is outdated before it is written! Solutions, partial results, and new ideas appear all
the time. And there will be interesting questions that we have overlooked, and also,
solutions or partial solutions. In some cases we have probably not met objective 3.
We apologize for all such cases, and we shall be grateful for corrections, comments,
and information.

For easy access to any new and updated information, we have installed an ftp-
archive at Odense University, Denmark. You can reach this facility via f tp using the
address

ftp.imada.ou.dk

logging in as “anonymous” and giving your e-mail address as the password. The
archive is located in a directory which can be reached by typing the command cd
pub/graphcol, where a short README file is available for further information on
how to proceed.

World wWide Web access to the archive is also available. You either need
to locate the menu of Danish Information Servers, and then click suc-
cessively on the menus for IMADA, listed under Odense University, Research
Activities, and Graph Theory. Or you may use the address

http://www.imada.ou.dk

to directly reach the IMADA Home Page.
The contents of the £t p-archive will depend largely on new information (papers,
abstracts, questions, solutions, etc.) sent by our readers. Contributions should be
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e-mailed to the address
graphcol@imada.ou.dk

to be considered for inclusion.

In addition to the ftp-archive, we shall consider writing updates from time to
time in the form of articles. Such papers will be submitted to the Journal of Graph
Theory.
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1

Introduction to Graph Coloring

1.1. BASIC DEFINITIONS

Partitioning a set of objects into classes according to certain rules is a fundamental
process in mathematics. A conceptually simple set of rules tells us for each pair of
objects whether or not they are allowed in the same class. The theory of graph coloring
deals with exactly this situation. The objects form the set of vertices V(G) of a graph
G, two vertices being joined by an edge in G whenever they are not allowed in the
same class. To distinguish the classes we use a set of colors C, and the division into
classes is given by a coloring ¢ : V(G) — C, where ¢(x) # ¢(y) for all xy belonging
to the set of edges E(G) of G. If C has cardinality k, then ¢ is a k-coloring, and
when £ is finite, we usually assume that C = {1,2,3,...,k}. Fori € C the set ()
is the ith color class. Thus each color class forms an independent set of vertices;
that is, no two of them are joined by an edge. The minimum cardinal k for which
G has a k-coloring is the chromatic number x(G) of G, and G is x(G)-chromatic.
The existence of the chromatic number follows from the Well-Ordering Theorem of
set theory, and conversely, considering cardinals as special ordinals, the existence
of the chromatic number easily implies the Well-Ordering Theorem. However, even
if it is not assumed that every set has a well-ordering, but maintaining the property
that every set has a cardinality, then the statement “Any finite or infinite graph has a
chromatic number” is equivalent to the Axiom of Choice, as proved by Galvin and
Komjith [1991].

If the condition ¢(x) # ¢(y) for all xy € E(G) is dropped from the definition of
coloring, then ¢ is called an improper coloring of G. Accordingly, the term proper
coloring is sometimes used when we want to emphasize that this condition holds.

For a hypergraph H with vertex set V(H) and edge set E(H), a coloring ¢ :
V(H) — C must assign at least two different colors to the vertices of every edge in
H. That is, no edge is monochromatic. If the edges of H all have the same size r, we
say that H is r-uniform. Thus the 2-uniform hypergraphs are exactly the graphs. We
do not normally allow loops in graphs, nor edges of size at most 1 in hypergraphs;
when we do, it will be stated explicitly. We do allow multiple edges. A graph or
hypergraph without multiple edges is simple. The term multigraph is used when we
explicitly want to say that multiple edges are allowed in a graph, and the mulriplicity
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1(G) will denote the maximum number of edges joining the same pair of vertices in
a multigraph G.

The theory of hypergraph coloring is extremely rich, and graph coloring is just
one special case. Ramsey theory can be viewed naturally as another special case (see
Graham, Rothschild, and Spencer [1990)).

A homomorphism of a graph G into a graph H is a mapping f : V(G) — V(H)
such that f(x)f(y) is an edge of H if xy is an edge of G. A k-coloring of G can then
be thought of as a homomorphism of G into the complete k-graph K. In general, a
homomorphism of G into a graph H is called an H-coloring of G.

An edge coloring of a hypergraph (or graph) H is a mapping ¢’ : E(H) — C,
where nondisjoint edges are mapped into distinct elements of the color set C. If C
has k elements, then ¢’ is a k-edge coloring. The minimum cardinal k¥ for which
H has a k-edge coloring is the edge-chromatic number x'(H), and H is said to be
x'(H)-edge-chromatic.

A face coloring of a map M on a surface S (i.e., a bridge-less graph embedded
on S) with a set F(M) of faces (or countries) consists of a mapping ¢ : F(M) — C,
where neighboring faces (those with a common borderline) are mapped into different
elements of the color set C. This corresponds to a vertex coloring of the dual graph
G, defined by having vertex set V(G) = F(M) and an edge xy € E(G) for every edge
of M on the common borderline of the faces x and y. When the map M is embedded
on §, its dual graph can also be embedded on S without crossing edges.

As with face coloring, both hypergraph coloring (with at least three colors) and
edge coloring can be translated into vertex-coloring of graphs, as we shall see.

In the following we deal almost exclusively with graphs rather than with maps,
even in cases where the results were initially obtained for face coloring. In the time
before the papers of Whitney [1932b] and Brooks [1941], coloring theory dealt
almost exclusively with maps, even though Kempe [1879] had drawn attention to
vertex colorings of graphs: “If we lay a sheet of tracing paper over a map and mark a
point on it over each district and connect the points corresponding to districts which
have a common boundary, we have on the tracing paper a diagram of a ‘linkage,
and we have as the exact analogue of the question we have been considering, that of
lettering the points of the linkage with as few letters as possible, so that no two directly
connected points shall be lettered with the same letter. Following this up, we may
ask what are the linkages which can be similarly lettered with no less than n letters?
The classification of linkages according to the value of n is one of considerable
importance.”

Vertex coloring of infinite graphs with a finite number of colors, or more generally
H-coloring with a finite graph A, can always be reduced to finite instances. For vertex
coloring, this is the content of the following theorem, which may be derived from
a theorem of Rado [1949]. Gottschalk [1951] gave a short proof of Rado’s theorem
using compactness. A similar proof gives an extension of the theorem that includes
H-coloring in general.

Theorem 1 (de Bruijn and Erd8s [1951]). If all finite subgraphs of an infinite
graph G are k-colorable, where k is finite, then G is k-colorable.
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A short direct graph-theoretic proof of Theorem 1 was obtained by L. Pésa,
and may be found for example in the book by Wagner [1970]. It was actuaily
already contained in the Ph.D. thesis of G.A. Dirac at the University of London in
1951. Howeyver, as pointed out by G. Sabidussi [personal communication in 1993],
this particular proof does not generalize to H-colorings as readily as the proof of
Gottschalk. Because of Theorem 1 we shall only deal with finite graphs in the
following, except when explicitly stating otherwise.

The reader looking for proofs of the theorems in this chapter may in many cases
have to consult the references. However, a well-written general exposition of graph
coloring theory, including proofs of several of the theorems we mention, can be found
in the classical book on extremal graph theory by Bollobas [1978a]. Another good
general source is the forthcoming Handbook of Combinatorics, edited by L. Lovész,
R.L. Graham, and M. Grétschel, and published by North-Holland.

1.2. GRAPHS ON SURFACES

Many other areas of graph theory besides coloring theory originated from the four-
color problem of Francis Guthrie: Is every planar graph 4-colorable? Well-written
accounts of the problem are contained in the monographs by Ringel [1959], Ore
[1967], Biggs, Lloyd, and Wilson [1976], Saaty and Kainen [1977], Bamette [1983],
and Aigner [1984].

The four-color problem seems first to have been mentioned in writing in an
1852 letter from A. De Morgan to W.R. Hamilton, written on the same day as
De Morgan first heard about the problem from his student Frederick Guthrie, Fran-
cis Guthrie’s brother. It first appeared in print in an anonymous book review by
De Morgan in 1860 (see Wilson [1976]), and later as an open problem raised by Cay-
ley [1878] at a meeting in the London Mathematical Society and in a paper by Cayley
[1879]. A proposed solution by Kempe [1879] stood for more than a decade until
it was refuted by Heawood [1890] in his first paper. Heawood proved the five-color
theorem for planar maps and the best possible twelve-color theorem for the case
where each country consists of at most two connected parts. Moreover, he extended
the problem to higher surfaces. Dirac [1963] gave an excellent survey of Heawood’s
achievements.

The higher surfaces (i.e., compact 2-dimensional manifolds) can be classified
into three types as follows (see, e.g., Massey [1991]). The sphere with g handles
attached is denoted by S, (of Euler characteristic & = 2 — 2g), the projective plane
with g handles attached by P, (of Euler characteristic £ = 1 — 2g), and the Klein
bottle with g handles attached by K, (of Euler characteristic £ = —2g). In each case
g may assume the value zero. Note that the surfaces S, are orientable, whereas P,
and K, are nonorientable.

Theorem 2 (Heawood [1890]). Let S be a surface of Euler characteristic €. When
€ < 2, every graph G on S can be colored using the Heawood number H (&) of colors,
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given by

7+ V49 ~ 24¢
H(e) = — |

A graph of seven mutually adjacent vertices, the complete 7-graph K7, embeds on
the torus Sy, hence 7 (= H(0)) colors are both sufficient and necessary for toroidal
graphs.

The topological prerequisite for Heawood’s formula is Euler’s formula, implying
that every graph G embedded on a surface S of Euler characteristic £ has at most
3IV(G)| — 3¢ edges. Since a minimal k-chromatic graph G has minimum degree
8(G) = k — 1, such a graph G satisfies

(k — DIV(G)] = 2|E(G)] = 6]V(G)| — 6e.

Since |V(G)| = &, it follows for k = 7 that (k — 7)k + 6& < 0, which in turn implies
that k < H(e&).

For the Klein bottle K the Heawood formula gives a seven-color theorem.
However, Franklin [1934] proved that six colors suffice to color any graph on the
Klein bottle. This is the only case where the Heawood number is not the right answer
to the coloring problem for higher surfaces.

Theorem 3 (Heffter [1891], Tietze [1910], Ringel [1954, 1959, 1974], Ringel and
Youngs [1968]). For a surface S of Euler characteristic & < 2, where S is not the
Klein bottle, the Heawood number H (&) is the maximum chromatic number of graphs
embeddable on S.

The proof of this major result, completed in 1968, was obtained by embedding
the complete H(&)-graph Ky ., on the surface with Euler characteristic &. This is of
course sufficient for a proof of Theorem 3. It is in fact also necessary.

Theorem 4 (P. Ungar and Dirac [1952b], Albertson and Hutchinson [1979]).
For a surface S of Euler characteristic € < 2, and S different from the Klein bottle,
any H(e)-chromatic graph on S contains Kn( as a subgraph.

Dirac’s arithmetic did not cover the cases € = —1 and 1, but these cases were
later settled by Albertson and Hutchinson [1979]. The idea of the result of Theorem 4
and a proof in the case of the torus were first obtained by P. Ungar, as mentioned by
Dirac [1952b].

After various attempts and the achieving of partial results on the four-color
problem by many mathematicians, Appel and Haken [1976a] announced a complete
proof. The four-color theorem for plane triangulations (i.e., plane graphs in which all
faces are triangles), and hence for all planar graphs, follows immediately by induction
from
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Theorem 5 (Appel and Haken [1977a], Appel, Haken and Koch [1977]). There
exists a set U of 1482 configurations such that

(a) Unavoidability: any plane triangulation contains an element of U, and
(b) Reducibility: a 4-coloring of a plane triangulation containing an element of
U can be obtained from 4-colorings of smaller plane triangulations .

This is the same basic idea as in Kempe’s proof, where U consisted of vertices
of degree at most 5. Kempe's only mistake was in his argument for the reducibility of
vertices of degree equal to 5. The detailed techniques of Appel, Haken, and Koch are
further developments of methods of Heesch [1969], who was the first to emphasize
strongly the possibility of a proof of the four-color theorem along these lines (see
Bigalke [1988]). The proof of part (a) is based on Euler’s formula and an elaborate
“discharging procedure.” Whereas this part of the proof can in principle be carried
out by hand, Appel, Haken, and Koch had to use computer programs to verify that
each member of their unavoidable set U of configurations submits to one of two
types of reducibility that Heesch had named “C-reducibility” and “D-reducibility.”
Combining this fact with results of Bernhart [1947], they proved that U satisfies (b)
of Theorem 5.

Several surveys of the proof of Theorem 5 exist: for example, Appel and Haken
[1977b, 1978]) and Woodall and Wilson [1978]. Due to its length, extensive use of
verification by computer, some inaccuracies, and omissions of details, the proof of
Theorem 5 has been surrounded by some controversy. Appel and Haken [1986, 1989]
have themselves addressed the questions raised. Recent accounts of the situation have
been given by F. Bernhart [Math. Reviews 91m:05005] in an informative review of
the book by Appel and Haken [1989], and by Kainen [1993].

Very recently, N. Robertson, D.P. Sanders, P.D. Seymour, and R. Thomas [per-
sonal communication from N. Robertson and P.D. Seymour in 1994] have obtained
anew, improved proof of the four-color theorem by using the same general approach
as that of Appel, Haken, and Koch. This proof has less than 700 configurations and
is based on a simpler discharging procedure. In addition, the proof avoids some of
the more problematic details of the proof by Appel, Haken, and Koch (we describe
these in Problem 2.1). However, it still relies on extensive computer checking,.

An early approach to coloring problems for plane maps and graphs concerned
studying the number P(G,k) of all possible different k-colorings of a graph G
with colors 1,2,...,k. Birkhoff [1912] noted that P(G, k) as a function of k can
be expressed as a polynomial, the so-called chromatic polynomial of G, P(G, k) =
ark” + ak" ' + - - - + a,k of degree n = |V(G)|. In particular, x(G) is the smallest
nonnegative integer that is not a zero of P(G, k). Whitney [1932a, 1932b}, Birkhoff
and Lewis [1946], Tutte [1954, 1970b], and Read [1968] are some of the researchers
who have developed the theory of chromatic polynomials. A well-written survey was
given by Read and Tutte [1988].

One of Tutte’s surprising and beautiful results is the following golden identity.
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Theorem 6 (Tutte [1970b]). Let M be a plane triangulation on n vertices. Then
PM,7+2) = (t+2)- 7" 10 (PM, T+ 1)),

where T is the golden ratio 3(1 + \/5), with =+ 1 = 2 and 7 + 2 = \/57.

Tutte [1970b] noted that P(M,r + 1) # 0. Hence we have the curious con-
sequence that P(M, T + 2) is positive, where 7 + 2 = 3.618.... Of course, the
four-color theorem is equivalent to the statement that P(M, 4) is positive.

As explained by Saaty [1972] and Saaty and Kainen [1977] the four-color theo-
rem has many equivalent formulations. A particularly noteworthy result is

Theorem 7 (Wagner [1937]). If all planar graphs are 4-colorable, then 4-color-
ability extends to the class G of all graphs from which a complete 5-graph Ks cannot be
obtained by deletions (of vertices and/or edges) and contractions of edges (removing
possible loops that might arise).

Thus the four-color theorem is equivalent to the case k = 5 of the famous

Hadwiger’s Conjecture (Hadwiger [1943]). Let G be a class of graphs closed un-
der deletions (of edges and/or vertices) and contractions of edges (removing possible
loops that might arise). Then the maximum chromatic number of the graphs in G
equals the number of vertices (k — 1) in a largest complete graph in G.

For k = 4 this was proved by Dirac [1952a]. Recently, Robertson, Seymour,
and Thomas [1993a] gave a complete characterization of all 6-colorable graphs from
which the complete graph K¢ cannot be obtained by deletions and contractions. As
a corollary of the characterization, all such graphs are in fact 5-colorable, assuming
the four-color theorem. This proves that Hadwiger’s conjecture for k¥ = 6 is also
equivalent to the four-color theorem. Hadwiger’s conjecture is true for G the class of
all graphs embeddable on the same surface S. This follows from Theorems 3, 4, and 5
above, and from a paper by Albertson and Hutchinson [1980a] for the Klein bottle.

A deep extension of the five-color theorem for planar graphs was conjectured by
Griinbaum [1973] and proved by Borodin [1979a]. The proof is reminiscent of the
four-color proof by Appel, Haken, and Koch; it involves an unavoidable set of some
450 reducible configurations (but no computers).

Theorem 8 (Borodin [1979a]). Every planar graph has an acyclic 5-coloring, that
is, a 5-coloring in which each pair of color classes induces a subgraph without cycles.

As for 3-colorings of planar graphs, the most important results are

Theorem 9 (Heawood [1898]). A plane triangulation can be 3-colored if and only
if all vertices have even degrees.



