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Preface 

This book arose out of a two-quarter sequence in error-correcting codes that 
I taught at the University of Illinois Circle Campus. It is intended for 
undergraduates and graduate students in mathematics, computer science, or 
electrical engineering. The only requirement is an elementary course in 
linear algebra. An appendix, which covers some of the linear algebra needed, 
is provided to supplement such a course. A modern algebra course is not 
necessary but would probably be helpful. If the algebra course is taken 
concurrently with the coding course, the latter could provide motivation and 
many concrete examples. Instructors can determine the pace at which to 
proceed by the mathematical backgrounds of their students. 

The theory of error-correcting codes started as a subject in electrical 
engineering with Shannon's classic papers in 1948. It has since become a 
fascinating mathematical topic, and part of the fascination has been the use 
of many varied mathematical tools to solve the practical problems in coding. 
This book attempts to demonstrate this process. Understanding how one 
might go about finding mathematical techniques to solve applied problems is 
useful to students who might sometime encounter such problems. Because 
the subject is relatively new, there are many open problems in coding. Some 
of these are mentioned in this book. Whenever possible, the most elementary 
proofs or approaches are used. 

Since the first edition was written, practical uses of error-correcting codes 
have proliferated. In addition to many uses in communication systems, 
error-correcting codes are widely used in modern memory devices, have many 
uses in computer systems, and also provide the high fidelity on many compact 
disc players. Although the technology is changing rapidly, the fundamental 
principles of coding remain the same. 

This book is about linear block codes, and general background material is 
given in the first two chapters, including an introduction to such specific 
linear codes as Hamming codes, Reed-Muller codes, and Golay codes. 
Chapter 3 raises the problem of how to correct double errors, which leads to 
the necessity of using finite fields, the topic of Chapter 4. Chapter 5 covers 
the important class of cyclic codes. Chapter 6 talks about an interesting 
family of cyclic codes, quadratic residue codes, and also about the group of a 

xi 
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code. Chapter 7 discusses the practical BCH codes. Chapter 8 is on weight 
distributions, particularly of self-dual codes, which leads to designs in codes 
in the next chapter. Chapter 9 concludes with a recent connection between 
codes and combinatorial games. Chapter 10 includes a proof of the unique-
ness of the Golay code, how to glue codes together, and the new way to 
handle nonlinear codes using Z4 codes. This is more than can be covered in a 
two-quarter or one-semester course on coding. Instructors should choose 
what they like after covering the first five chapters and much of chapters six 
and seven if that is all the time available, or else spend a whole year on 
coding. 

The books about and related to coding which my students have consulted 
are E. R. Berlekamp, Algebraic Coding Theory [30]; P. J. Cameron and J. H. 
van Lint, Designs, Graphs, Codes and Their Links [46]; J. H. Conway and 
N. J. A. Sloane, Sphere Packings, Lattices and Groups [33]; R. Hill, A First 
Course in Coding Theory [34]; J. H. van Lint, Introduction to Coding Theory 
[40]; and of course, F. J. MacWilliams and N. J. A. Sloane, The Theory of 
Error-Correcting Codes [15]. 

I want to thank all the faculty and students who used the text and offered 
their comments. I have kept track of these and tried to incorporate them. 
Since I have taught this course myself, there were items I wanted to change, 
and I also found better ways of presenting topics. In this revision many 
mistakes are corrected, several new topics introduced, and many new prob-
lems added throughout. I want to thank Noburn Ito and Dan Pritkin, in 
particular, for their detailed and valuable suggestions. 
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1 
Introductory Concepts 

1.1 INTRODUCTION 

The subject of error-correcting codes arose originally in response to practical 
problems in the reliable communication of digitally encoded information. 
Claude Shannon's paper "A Mathematical Theory of Communication" [28], 
written in 1948, started the discipline in electrical engineering called informa-
tion theory, and also the branch of it called error-correcting codes. Since 
then algebraic coding has developed many connections with portions of 
algebra and combinatorics. Sophisticated mathematical techniques have 
proved useful for coding and coding problems, and the results have inter-
ested mathematicians. Now algebraic coding is also a mathematical topic with 
the added feature that its recent practical origins have provided motivation 
for many of its main concerns. 

We here think of a message as a block of symbols from a finite alphabet. A 
commonly used alphabet is the set of two symbols 0 and 1, and so we start 
with that. A possible message is 1001. This can represent a number such as 
759, a letter such as A, or a complete message such as "The yellow cat is 
sick." This message is transmitted over a communications channel that is 
subject to some amount of noise. The object of an error-correcting code is to 
add redundancy to the message in an analytic fashion so that the original 
message can be recovered if it has been garbled. This is commonly done in 
ordinary speech when people repeat things in many different ways in order to 
be properly understood. Consider now the diagram of the communications 
channel (Figure 1.1). 

The first box contains the message, in our case 1001, which we say 
represents "The spacecraft is approaching from the north." This message 
then enters the encoder where the redundancy digits 101 are added so that 
the message can be corrected if it becomes distorted when communicated. 
The message is transmitted over the channel, where it is subject to noise. 
When noise hits the message, a 0 is changed to a 1 or a 1 to a 0. In our 
message the first digit was changed by noise. Then the receiver is either 
completely confused—possibly 0001101 does not stand for any message—or 
else she is misinformed—0001101 could represent the message "The space-
craft is approaching from the east." Now the received message enters the 

1 
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Message Encoder Channel 

I Noise 

Received 
message Decoder Message 

1001 1001101 T Noise 0001101 1001101 

Figure 1.1. Communications channel. 

1001 

decoder where, due to the redundancy added, the original message can be 
recovered. Error-correcting coding is the art of adding redundancy efficiently 
so that most messages, if distorted, can be correctly decoded. 

We can think of the communications channel as a real communications 
channel or as data stored in a computer that deteriorate with time. Further-
more, although we may think the channel's reliability is quite good, our need 
for reliable communications is great. For example, in communicating with a 
satellite any mistake could be disastrous. 

Communications channels where error-correcting codes are used are too 
numerous to mention. Codes are used on telephone lines and computer links. 
Black and white pictures were transmitted from several Mariner space probes 
using error-correcting codes, as were color pictures from recent Voyager 
journeys. Error-correcting codes give the high fidelity on compact discs. 
Errors arise from a variety of causes, some of which are human, equipment 
failure, lightning, interference, or scratches on discs. Error-correcting codes 
are also used for data compression. Indeed, their uses are ever expanding. 

We make a distinction between detecting and correcting errors. It is much 
easier to detect errors than to correct them, and at times even detection is 
useful. For example, if there is a feedback channel and enough time, we can 
ask for the message to be sent again. This is not always possible, such as with 
data stored on magnetic tape. In many real-time communications, it is often 
necessary to correct errors, and that is our emphasis here. 

One of the simplest channels is the binary symmetric channel BSC. It has 
no memory, and it receives and transmits two symbols, 0 and 1. The BSC has 
the property that with probability q a transmitted digit will be received 
correctly, and with the probability p =■ 1 - q it will not be. This can be 
illustrated as shown in Figure 1.2. We call p the symbol error probability. 

In order to see the problems we face, we now attempt to construct some 
simple codes. Suppose that our message is 1001. If we add no redundancy 
and transmit this message and an error occurs, there is no way to detect it. If 

-*so 

Figure 1.2. Binary symmetric channel. - * - 1 
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we start with the modest aim of detecting single errors, we can begin by 
repeating our message once; 10011001. If an error occurs and we receive, say, 
10010001, then by comparing the two parts we can detect it. Still we do not 
know whether the error is in the first or second rendition. Also we are 
transmitting twice as many digits as we need, and if we merely wish to detect 
single errors, we can do better than this by using the overall parity check. A 
parity check is accomplished by adding an extra digit to the message. It is a 0 
if there are an even number of Ts, and a 1 if there are an odd number of l's. 
Then we transmit the message 10010, and if we receive, say 10000, we can 
detect that an error has occurred since we see an odd number of l's. The 
overall parity check is widely used in computers and elsewhere. 

In error correcting our first aim is to correct single errors since these are 
the most probable. We will then correct double errors, and then triple errors, 
and so on, correcting as many as we can. If we now make a naive attempt to 
correct single errors, we could transmit our message three times; 
100110011001. Then if an error occurs and we receive 100100011001, we can 
take a majority count of the disagreeing digits 1, 0, 1, and decide that most 
likely a 1 was sent. However, we have now transmitted three times as much 
as we need, although we can correct some double and triple errors (which 
ones?). A significant improvement occurs with the Hamming [7,4] code. We 
describe this code by the following four codewords. 

1 
0 
0 
0 

0 
1 
0 
0 

0 
0 
1 
0 

0 
0 
0 
1 

0 
1 
1 
1 

1 
0 
1 
1 

1 
1 
0 
1 

We think of the first four positions as the information positions and the last 
three as the redundancy positions. The first codeword represents the mes-
sage 1000, the second represents the message 0100, and so on. We write each 
codeword either as a block of seven 0's and l's, say 1000011, or in the more 
usual vector form as (1,0,0,0,0,1,1). We can obtain more codewords by 
adding these four vectors where in each addition we add corresponding 
components mod 2. So, for example, (1,0,0,0,0,1,1) + (0,1,0,0,1,0,1) = 
(1,1,0,0,1,1,0). This codeword represents the message 1100. In this fashion 
we can encode all 24 = 16 messages consisting of four symbols, each either 0 
or 1. In order to decode this code, we consider the following three decoding 
sequences: 

a - 0001111, 
b = 0110011, 
c = 1010101, 

and we use the inner product of two vectors x = (χν...,χΊ) and y = 
(vi> · · · > ^7) defined by Σ]„ΧΧΜ (mod2). If our message is 1011, we encode it 
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as x = 1011010. Suppose that an error occurs, and we receive y = 1010010. 
We form the three inner products y · a = 1, y · b « 0, and y · c = 0. In this 
order the symbols represent the binary number 100 = 4. From this we 
conclude that the fourth digit is in error. This procedure is known as 
Hamming decoding, and it corrects any single error. Note that we do not 
even transmit twice the number of information digits. 

Suppose that we are transmitting on a binary channel and that q, the 
probability of correct transmission, is .90 so that p> the probability of an 
error, is .10. Then the probability that a four-digit message will be transmit-
ted correctly without any coding is qA = .6561. If the Hamming code is used, 
then the probability of correctly decoding a received vector is q1 (no 
errors) + 7pq6 (one error) = .4783 + .3720 = .8503, a considerable improve-
ment. 

The word error rate Pm for a particular decoding scheme is the probabil-
ity of incorrectly decoding a received message. For the Hamming code we see 
that Perr is 1 - (q7 + 7pq6) = .1497. 

Hamming decoding is so easy that it can be done quickly without a 
computer. Yet many intelligent people have worked for years to devise 
decoding schemes for other codes or classes of codes that will operate 
efficiently on computers. One of the codes that has received such attention is 
the famous Golay [23,12] code. Here each codeword has 23 digits of which 12 
are the information digits and 11 are the redundancy digits. It is known that 
this code can correct one, two, or three errors, but its decoding is often done 
by a computer and people have worked on numerous decoding schemes. To 
see why such effort is needed, consider the Hamming code repeated three 
times. Break any string of 12 information digits into portions of 4 digits each, 
then encode each of these portions using the Hamming code. We can 
consider this as a code with 12 information digits and 9 redundancy digits, 2 
fewer than the Golay code, and we can decode it using Hamming decoding 
for each set of 7 digits. Decoding is easily done by hand. This code can only 
correct single errors and some double or triple errors if they occur in 
separate Hamming blocks, whereas the Golay code can correct double or 
triple errors wherever they are distributed. Larger codes that can correct 
more errors are more useftil because the errors can be distributed in more 
ways, but they are harder to decode. 

We can see some of the reasons for this from Table 1.1. In the first code, 
the Hamming code, we have a possible 128 received vectors, and we must 
decide which of the 16 codewords was sent. This is much more difficult for 
the second code, the Golay code, which has 8,388,608 possible received 
messages, which are to be decoded into one of 4096 codewords. The last 
code, which we see later; is a quadratic residue code; it presents even more 
difficulty. Often, for practical purposes, codes are needed whose lengths are 
in the hundreds. 

The rate of a code is defined as the ratio of the number of information 
digits to the length. Thus the codes above have rates 4/7 for the first, 12/23 
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Table 1.1 Some Binary Codes 

1 

7 
23 
47 

2 

4 
12 
24 

3 

1 
3 
5 

4 

16 
4,096 

16,777,216 

5 

128 
8,388,608 

140,737,488,355,238 

Column 1—length of code, n. 
Column 2—number of information symbols, k. 
Column 3—number of errors code can correct. 
Column 4—number of messages in code - 2*. 
Column 5—total number of messages « 2". 

for the second, and 24/47 for the third; all these numbers are close to 1/2. A 
very important result in coding is the surprising theorem of Claude Shannon. 
We cannot state it precisely without defining more concepts, but roughly it 
says that if the code rate is less than a number called "channel capacity," 
which measures the amount of information that a channel can transmit, then 
it is possible to transmit information with an arbitrarily small probability of 
error by using long enough codes. However, Shannon proved this theorem by 
probabilistic methods, not constructive ones, and one of the outstanding 
problems in coding is constructing families of codes with known properties 
that are as good as the theorem predicts. A "good" code is a code that can 
intrinsically correct many errors. For practical purposes, however, it is also 
important to be able to decode efficiently. 

Since Shannon's theorem, coding theorists have constructed many good 
codes, devised ingenious decoding algorithms, and developed the theory of 
codes. A number of these good codes will be described in later chapters but 
we will not be able to cover all the known ones. The construction (in the 
1980s) of new, good codes using methods of algebraic geometry has created 
much excitement in the coding community. Unfortunately, their study re-
quires an extensive knowledge of algebraic geometry. But we will describe 
recent constructions using the integers modulo 4. 

In this book we are concerned primarily with linear or algebraic codes 
where the errors are randomly distributed. Shannon's theorem is about 
nonlinear codes, but an analogous theorem has been demonstrated for linear 
codes so there are good reasons for studying them. Much more is known 
about them, and this knowledge can be used for decoding and storage. There 
are special codes for correcting bursts of errors, but even there the more 
general case provides useful information. There are codes where the mes-
sages are not broken into blocks but form a continuous stream. These are 
called convolutional codes, and they often find practical applications. We do 
not study them here because their structure is apparently quite different 
from block codes and possibly not as well understood. 

Another interesting topic is how the original information is assigned its 
block of digits. There might be reasons based, for example, on frequency of 
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occurrence for such assignments. This topic is called source encoding and is 
not pursued here. We do, however, study linear codes with elements from 
any finite field, also "linear" codes over Z4. 

1.2 BASIC DEFINITIONS 

In the last section we saw a specific binary code, the Hamming code, 
described by its generator matrix. We now define a linear code and describe 
two common ways to give such a code, one by a generator matrix and the 
other by a parity check matrix. Since we are often concerned with binary 
codes, we sometimes state our definitions separately for that case. 

In order to define a binary linear code, we consider the space V of all 
n-tuples of O's and Ts with addition of vectors component wise mod 2. So, for 
example, (1,0,0,0,1,1) + (0,1,0,1,0,1) - (1,1,0,1,1,0). An [n, k] linear, 
binary code is the set of all linear combinations of k independent vectors in 
V. The word linear means that if two (or more) vectors are in the code, so is 
their sum. A nonlinear code is just a set of vectors. Since we are mainly 
concerned with linear codes, the word code means a linear code. We could 
also define an [n, k] binary code C by saying C is a fc-dimensional subspace 
of V. 

In the general case we let F be GF(q\ the finite field with q elements. 
This is described thoroughly in Chapter 4. We include it here for complete-
ness. Then it is known that q must be a power of a prime. If q is itself a 
prime p, say q — 2 or 3, then F can be thought of as the set of p elements 
0 , 1 , . . . , / ? - 1 with the arithmetic operations performed mod p. A binary 
code is a code over GF(2). The reader who has not encountered finite fields 
should think of these cases when GF(q) is mentioned. An [n, k] code over 
GF(q) is a fc-dimensional subspace of F'\ the space of all n-tuples with 
components from F = GF(q). 

Clearly an [n, k] binary code has 2k vectors or codewords in it. Since a 
code is a vector subspace, it can be given by a basis. The matrix whose rows 
are the basis vectors is called a generator matrix. Just as a subspace has more 
than one basis, a code has more than one generator matrix. 

Consider, for example, the [5,3] binary code C1 whose generator matrix 
is Gj: 

/ l 0 0 1 l \ 
Gx= 0 1 0 0 1 . 

\0 0 1 1 1/ 

All the codewords in Cx can be gotten from the linear combinations of these 
three vectors. A codeword in C{ has three information positions. Any three 
positions where the columns of G1 are independent can be taken as informa-
tion positions. The first three positions certainly can be, but there are others. 
Cj has 8 = 23 codewords. 
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If G is a generator matrix of an [n, k] code C, then any set of k columns 
of G that are independent is called an information set of C. If a certain set of 
k columns of one generator matrix is independent, then that set of columns 
of any generator matrix is independent. Any [nfk] code with k Φ n and 
fewer than n - k zero columns has more than one information set. It is a 
fact that the information sets constructed from any generator matrix G' of C 
will be the same as those constructed from G. 

Another way to describe a code is by parity check equations. Since in Cx 
the first three positions are information positions, we can express the 
redundancy positions in terms of them. We let (av a2, α3, a4, a5) be any 
vector in Cv and suppose that we know the information positions alf a2, and 
a3. Then the redundancy positions can be computed in terms of these as 
follows: 

#4 = ax + a3 

a5 = ax + a2 + a3. 

Any codeword (a1 ,a2 , . . . ,a5) in Cx satisfies these equations. They are the 
parity check equations for Cx. We can use them to write down all vectors in 
Cv So, for example, if ax - a2 = 1 and a3 = 0, then aA = 1 + 0 = 1, as = 1 
+ 1 + 0 = 0, and (1,1,0,1,0) is in Cv This is the sum of rows 1 and 2 of Gv 

A set of equations that give the redundancy positions in terms of the 
information positions are called parity check equations. We can express all 
such equations in terms of the parity check matrix. In order to do this, we use 
the inner product of two vectors. This is the same inner product we used in 
Hamming decoding. 

If u = (u, , . . . , un) and v = (ux,..., υη) are two vectors in V over GF(p\ 
for p a prime, then the inner product of u and v is u · v = EJLiW^ (mod /?). 
The inner product is linear in both variables, (axux + a2u2) Ίβχυχ + β2υ2) 
= <*j ß{ux · υχ + α, ß2ux · ν2 + α2 ßxu2 - υχ + α2 ß2u2 · υ2. Clearly u · ν -
ν u. 

If u · ν = 0, we say that u and v are orthogonal to each other. For binary 
vectors this means that they have an even number of l's in common. Let 

1 0 1 1 0\ 
1 1 1 0 1/* 

Note that a vector (al9 a2, a3, a4, a5) is orthogonal to the first row of Hx if 
ax + a3 + a4 = 0, which is the same as our first parity check equation 
a4 = ax 4- ay Similarly being orthogonal to the second row of Hx is the same 
as satisfying the second parity check equation. Hence we can now say that Cx 
is the set of all 5-tuples that are orthogonal to each row of the parity check 
matrix Hx. This is exactly the same as saying that the vectors in Cx satisfy the 
parity check equations given above. 

* -


