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Preface 

This book was written to provide a text for graduate and undergraduate 
students who took our courses in numerical methods. It incorporates the 
essential elements of all the numerical methods currently used extensively in 
the solution of partial differential equations encountered regularly in science 
and engineering. Because our courses were typically populated by students 
from varied backgrounds and with diverse interests, we attempted to eliminate 
jargon or nomenclature that would render the work unintelligible to any 
student. Moreover, in response to student needs, we incorporated not only 
classical (and not so classical) finite-difference methods but also finite-element, 
collocation, and boundary-element procedures. After an introduction to the 
various numerical schemes, each equation type—parabolic, elliptic, and hyper-
bolic—is allocated a separate chapter. Within each of these chapters the 
material is presented by numerical method. Thus one can read the book either 
by equation-type or numerical approach. 

After writing much of the finite-difference discussion found herein, Leon 
Lapidus died suddenly on May 5, 1977, while working in his office in the 
Department of Chemical Engineering at Princeton University. In completing 
the manuscript, I have attempted to keep his work intact. I also adopted his 
nomenclature and editorial style. 

The successful completion of this manuscript is, in no small measure, due to 
the efforts of those who gave generously of their time in reading, criticizing and 
modifying the early drafts of the book, and those who helped proofread the 
final copy. Particular recognition is due to Μ. B. Allen, N. R. Amundson, 
M. Celia, and D. H. Tang, who read the entire manuscript and to L. Abriola, 
V. V. Nguyen and R. Page, who helped verify the typesetting. Mrs. L. Lapidus 
was helpful throughout the preparation of the work, particularly in the final 
stages of publication. I also wish to thank Dorothy Hannigan, who produced a 
beautifully typed manuscript under very difficult circumstances. Finally, I 
would like to express my appreciation to my wife, Phyllis, who provided an 
environment and the encouragement essential to the completion of the work. 

GEORGE F. PINDER 

Princeton, New Jersey 
November 1981 
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Fundamental Concepts 

This chapter serves as a detailed introduction to many of the concepts and 
characteristics of partial differential equations (hereafter abbreviated PDEs). 
Commonly encountered notation and the classification of P D E are discussed 
together with some features of analytical and numerical solutions. 

1.0 NOTATION 

Consider a partial differential equation (PDE) in which the independent 
variables are denoted by x, y,z,... and the dependent variables by u, v, w,.... 
Direct functionality is often written in the form 

(1.0.1) u = u(x,y,z), 

which, in this particular case, designates Μ as a function of the independent 
variables x, y, and z. Partial derivatives are often denoted as follows: 

/ . n 3w du d2u 3 2 « 
* ox y ay x x x y ox ay 

Employing the definitions of (1.0.1) and (1.0.2), we can thus represent a PDE 
in the general form 

0·0·3) *t*. "> u y y , «Λ. , ) = 0 , 
where F is a function of the indicated quantities and at least one partial 
derivative exists. 

As examples, consider the following PDEs: 

« « + «>. y =0 

ux = u + x2 + y2 

u — u + u2 

xxx yy 

( 0 2 + ( " , ) 2 = e x p ( « ) . 

1 
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The order of a PDE is defined by the highest-order derivative in the 
equation. Therefore, 

ux — buv = 0 

is of first order, 

K.™ + " . , = 0 

is of second order, and 

^xxxx ^yyyy ^ 

is of fourth order. When several interdependent PDEs are encountered, the 
order is established by combining all the equations into a single equation. For 
example, the following system of equations is of second order although each 
contains only first-order derivatives; that is, 

(1.0.4a) ux + vy = u. 

(1.0.4b) u = wx 

(1.0.4c) v = wv 

can alternatively be written 

(1.0.5) + = 

When written in the form of (1.0.5), it is readily apparent that (1.0.4) is of 
second order. 

In the solution of PDEs, the property of linearity plays a particularly 
important role. Consider, for example, the first-order equation 

(1.0.6) a( )ux + b( - K = c ( ) . 

The linearity of this equation is established by the functionality of the 
coefficients a( ·), b( •), and c( · ) . In the case of (1.0.6), if the coefficients are 
constant or functions of the independent variables only, [()=(x,y)], the 
P D E is linear; if the coefficients are also functions of the dependent variable 
[(· )=(x, y, u)], the PDE is quasilinear; if the coefficients are functions of the 
first derivatives, [ ( · )=(x, y, u, ux, uv)], the P D E is nonlinear. Thus the follow-
ing PDEs are classified as indicated: 

ΐΛ, + fcM^O (linear) 

ux + uuv = x2 (quasilinear) 

ux + (uy γ = 0. (nonlinear) 



Notation 3 

In general, when the coefficients of an «th-order PDE depend upon /tth-order 
derivatives, the equation is nonlinear; when they depend upon mth-order 
derivatives, m<n, the equation is quasilinear. These features are important 
because whereas many analytical properties of linear and even quasilinear 
PDEs are known, as a general rule, each nonlinear PDE must be considered 
individually. 

The analytical solution of a PDE, which may be written 

u-u(x, y), 

denotes a function that, when substituted back into the PDE, generates an 
identity. Of course, when one discusses the solution of a PDE, it is necessary to 
consider appropriate auxiliary initial and boundary conditions. For example, 
the transient temperature distribution in a homogeneous rod of finite length 
with insulated sides is described by the system 

X >o, 0 < > > < 1 (PDE) 

u(0,y) = Ayl X =o, 0 < . y < l (initial condition) 

«(*,0) = *(*). y = 0, x>0 

«(*,!) = 9(x), y = 1, x>0. (boundary condition) 

Such a specification usually leads to a well-posed problem. Almost all reason-
able problems are well posed and yield a solution that is unique and depends 
continuously on the auxiliary conditions (Hadamard, 1923). Alternatively, a 
well-posed problem can be considered as one for which small perturbations in 
the auxiliary conditions lead to small changes in the solution. 

It is instructive at this point to compare briefly the solution properties of 
ordinary differential equations, herein denoted as ODEs. The general form of a 
first-order O D E is 

Έ = / U m ) ' 
where / is a function of the indicated quantities. In the case of an ODE, a 
specification of (x, u) yields a unique value of du/dx; by contrast, a specifica-
tion of (x, y, u) in a first-order PDE only gives a connection between ux and uY 

but does not uniquely determine each. In the case of a second-order ODE, the 
solution specifies a point and a tangent line on the solution trajectory in a 
plane; by contrast, these concepts of a point, plane, or tangent line for the O D E 
are extended to a curve, three-dimensional space, and tangent plane for the 
PDE. In other words, for an ODE, there are solution curves in a two-
dimensional space that are required to pass through a point, while for a PDE 
there are solution surfaces in three-dimensional space that are required to pass 
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through a curve or line. These differences are, of course, a direct result of the 
increase in number of independent variables in the PDE as compared to the 

1.1 FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 

In this section we consider some of the fundamental features of first-order 
PDEs. The principal objective is to present an overview of the basic concepts 
in this area; for a definitive analysis we recommend the books by Courant 
(1962) and Aris and Amundson (1973). 

1.1.1 First-Order Quasilinear Partial Differential Equations 

Consider the quasilinear PDE 

(1.1.1) a{x, y,u)ux + b(x, y,u)uy = c(x, y,u) 

in the two independent variables χ and y. The extension to more independent 
variables is rather obvious and thus is not discussed here. Also, the linear PDE 
is considered as a special case of (1.1.1) and is mentioned specifically when 
appropriate. 

Suppose that we are located at a point P(x, y, u) on the solution surface 
u = u(x, y) (Figure 1.1) and we move in a direction given by the vector 
{a, b, c). But at any point on the surface, the direction of the normal is given 
by the vector {ux, uy, — I). It is obvious from (1.1.1) that a scalar product of 
these two vectors vanishes (i.e., the two vectors are orthogonal). Thus (a , b, c) 
is perpendicular to the normal and must lie in the tangent plane of the surface 
u = u{x, y). Thus the PDE is a mathematical statement of the geometrical 
requirement that any solution surface through the point P(x, y, u) must be 
tangent to a vector with components {a, b,c). Further, since {a, b, c) is always 
tangent to the surface, we never leave the surface. Note also that since 

ODE. 

U 

{ a . b . c } 

X 

Figure 1.1. Solution surface u = 
u(x,y) with vector {a,b,c} tangent to 
u and vector (ux,uy, — \) normal to u 
at point P(x, y, u). 
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u = u(x, y) 

(1.1.2) du = uxdx + uydy 

and thus {a, b, c) = {dx, dy, du). 
The solution to (1.1.1) is readily obtained using the following theorem. 

Theorem 1 

The general solution of the quasilinear PDE 

aux + buy — c 

is given by 

G ( t > , w ) = 0 , 

where G is an arbitrary function and where v(x, y, «) = c, and w(x, y,u)~c2 

form a solution of the equations 

(1.1.3) dx = <t = du 
a b c 

Note that (1.1.3) comprises a set of two independent ODEs (a two-parameter 
family of curves in space). Further, one set of these can be written as 

ax a(x,y,u) 

and is termed a characteristic curve. When a — a(x, y) and b — b(x, y) only, 
(1.1.4) is a function in (x, y) space. In this case we refer to the curve as a 
characteristic ground or base curve. 

When a and b are constant, (1.1.4) defines a set of parallel lines in (*, y) 
space. In either of these last two cases (1.1.4) may be evaluated without 
knowing u(x, y)\ in the quasilinear case (1.1.4) cannot be evaluated until 
u(x, y) is also known. However, in any three-dimensional (x, y, u) plot, such 
as that in Figure 1.1, one can project down onto the x-y plane to obtain 

dy _ b(x,y,u) 
dx a(x,y,u) 

The characteristic equation (1.1.4) may be obtained directly through an 
examination of the PDE and (1.1.2). Restating these equations; we have two 
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(1.1.6) 
a 

dx 
b]\"x 

dy\[uy 

c 
du 

From the property above, it then follows that 

(1.1.7) det 

det 

a b 
dx dy 

a c 
dx du 

= 0 ; 

= 0 , 

det 
c b 

du dy = 0; 

implying linear dependence of ux and uv. Evaluating the determinants leads 
directly to the statement of (1.1.3), 

dx _ dy 
~a~~b 

du 
c 

1.1.2 Initial Value or Cauchy Problem 

Now we raise the question of how initial data (initial or boundary conditions) 
specified on a prescribed curve or line Γ interact with the equations given by 
(1.1.3). Suppose that this space curve Γ prescribes the values of x, y, and u as a 
function of some parameter r. This means that 

(1.1.8) x = x(r), y = y(r), u = u(r). 

The characteristic curves passing through Γ can be described using an indepen-
dent variable, say s, along the characteristic. Thus (1.1.3) can be restated as the 

equations in the values ux and uv: 

(1.1.5a) aux + buy = c 

(1.1.5b) (dx)ux + (dy)uv = du. 

Obviously, both equations must hold on the solution surface and yet one 
can interpret each equation as a plane element; these plane elements intersect 
on a line along which different values of ux and uv may exist. In other words, 
ux and u y are themselves indeterminate along this line, but at the same time 
they are related or determinate to each other since the equations must hold. 

To exploit this feature, we use a well-known principle of linear algebra. If a 
square coefficient matrix for a set of η linear simultaneous equations has a 
vanishing determinant, a necessary condition for finite solutions to exist is that 
when the right-hand side is substituted for any column of the coefficient 
matrix, the resulting determinants must also vanish. Thus, if we treat (1.1.5) as 
linear algebraic equations in ux and « v , we may write 
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set 

(1.1.9a) ^ = a 
as 

(1.1.9b) ^f = b 
as 

and along this curve the PDE merely becomes 

(1.1.9c) f = c. 
as 

Combination of (1.1.8) and (1.1.9) provides a solution to this problem which 
can be expressed in parametric terms as 

(1.1.10) x — x(r,s); y — y(r, s); u = u(r,s). 

We have now involved the initial curve Γ and the characteristics to yield 
u = u(r, s). The only problem that can occur is in the inversion of r, s, and u to 
functions of the independent variables χ and y. This can be done (see Aris and 
Amundson, 1973, p. 9) provided that the Jacobian J, defined as 

(1.1.11) J = xsyr-ysxr = ayr-bx„ 

is nonzero. When 7 = 0 , the initial curve Γ is itself a characteristic curve and 
there are infinitely many solutions of the initial value or Cauchy problem. 

1.1.3 Application of Characteristic Curves 

Example 1 

T o illustrate some of the features of the abbreviated discussion above, we 
consider two examples. The first involves the solution to the following form of 
the transport equation: 

(1-1.12) ux + v()uy = F(), 

where v( •) is the velocity of propagation of an initial profile. When v( • ) = 
v(x, y, u) the equation is quasilinear and the characteristics are curved and 
defined by substituting for a and b in (1.1.4): 

(1.1.13) & = v(x,y,u) 

and, from (1.1.3), 

0 U 4 ) * = „ . , . 
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When t>( · ) is constant, the problem of solving (1.1.13) is simplified, because 
now the characteristic equation is 

dy 
-r- = ν = constant 
dx 

and a given profile (see below) or initial condition at x~0 is propagated 
without change of shape in the direction of the χ axis with velocity v. 

When v( • )=cons tan t and F( • )=0, we have 

(1.1.15) ux + vuy=Q 

and the equations of interest are 

/ ι ι i<5\ dx _ dy _ du 
(1 .116) 1 " ο " 0 • 

The characteristics are now straight lines inclined to the χ axis at an angle 
θ = tan - 1 ν or with slope v. Along these characteristics du = 0 or u = constant. 
This leads to a plot such as Figure 1.2, where the parallel straight lines are 
shown. Each straight line has the equation >> = vx + constant with the constant 
determined by the particular conditions at x = 0 (initial conditions) o r > > = 0 
(boundary conditions). These are the conditions specified along the Γ data line. 
The solution u(x, y) slides up a characteristic unchanged in its value. 

Note that there is no approximation in this solution. The answer obtained is 
"correct" in the sense that only if dx /ds = a needs to be integrated numerically 
along the characteristics will any error be involved. 

Example 2 

As a second example, consider an isothermal plug flow reactor with a first-order 
reaction. The relevant PDE and boundary conditions are 

(1.1.17a) ux + C M , . = — ku 

(1.1.17b) M = 0 , x = 0 , y>0 

(1.1.17c) M = « 0 . * > 0 < v = 

where u represents the concentration of material, υ is the velocity of flow of 
material through the tube, and a first-order reaction (sink) is involved. The 
reactor contains no reactant initially and is then fed with a reactanl with a 
fixed concentration u 0 . Defining the dimensionless gtoups 
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Boundary Condi t ions 

Figure 1.2. Characteristic curves y = vx with boundary and initial conditions indi-
cated. 

we may rewrite (1.1.17) as 

(1.1.18a) τ,ί + η τ = - η 

(1.1.18b) τ ) = 0 , 0 = 0 , r>0 

(1.1.18c) ij = I, θ>0, τ=0. 

The characteristic equations are 

d0 _ dr _ — di\ 
T ~ T ~ η 

or 

(1.1.19a) 4ϊ = 1; e s s 0 , r>0 av 

and 

( , L 1 9 b ) Tr—^ „ = 1 , tf>0, τ = 0 . 

Because (1.1.19) are linear they are easily integrated to yield 

(1.1.20a) i } = 0 , τ > 0 

(1.1.20b) Tj = e~ T , τ < 0 . 

Equations 1.1.20 represent the complete solution for the problem. Using the 
arbitrary numerical values of θ and τ of 2.5, Figures 1.3 and 1.4 can be 
developed. These are two- and three-dimensional representations of η as a 
function of τ and θ. 



0=2.5 
2.5 

Figure 13. Two-dimensional representation of concentration (η) vs. distance (τ) 
with selected values of the second space variable Θ also indicated (see Figure 1.4). 

'2.5 

Θ 
Figure 1.4. Three-dimensional representation of concentration (η) vs. the two space 
coordinates τ and Θ. 

10 
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Although this is only a small sampling of applications of characteristic lines 
to the solution of first-order PDE, it serves as an introduction to the scheme we 
use later in developing a classification for second-order PDEs. Before turning 
our attention to second-order PDEs, let us briefly extend the concept of 
characteristic lines to nonlinear first-order PDEs. 

1.1.4 Nonlinear First-Order Partial Differential Equations 

When the first-order PDE is nonlinear, it can be written (see Section 1.0) 

A well-known problem described by an equation of the form of (1.1.21) arises 
in geometric optics. The appropriate expression is 

Much of what we introduced in the discussion of linear first-order P D E is 
still retained in the nonlinear case but in a more complex form. Now character-
istic lines become characteristic strips; the so-called Monge cone in which the 
tangent to the solution surface must lie is a surface generated by a one-
parameter family of straight lines through a fixed point of its vertex. In the 
quasilinear case, the cone becomes linear or a Monge axis. 

Without attempting to present the details of the derivation of the character-
istic equations, we indicate here that analogous to (1.1.9) (the initial value or 
Cauchy problem) there are now five ODEs: 

(1.1.21) F(x, y,u,ux,uy)-0, 

where 

u 

(1.1.22a) 

(1.1.22b) 

(1.1.22c) — = u F + u F 

(1.1.22d) 
U 

(1.1.22e) 
duv 

- ^ = -Fv-uyFu. 
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When F(x, y, u, ux, « , . )= a( • )ux + b( · )ut. — c = 0, the quasilinear case, 
(1.1.22), becomes (1.1.9). 

1.2 SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS 

Now let us consider some features of second-order PDE that will be useful in 
the ensuing chapters on numerical solutions. By comparison, the first-order 
P D E was relatively uncomplicated in the sense that the characteristic curves 
could be located and u{x, y) determined along those curves. In the second-order 
case, the characteristics may or may not play a role. 

Consider the following second-order PDE written in two independent 
variables: 

(1.2.1) a( • )uxx+2b( • )uxy + c( · )uyy + d( • )ux + e( · )uy 

+ / ( · ) « + « ( • ) = <>. 

As in earlier sections, we denote (1.2.1) as linear if a( • ) , b( ·), and c( · ) are 
constant or functions only of χ and y; quasilinear if a{ ·)<£>(' )< and c( • ) are 
functions of x, y, u, ux, and uv; and nonlinear in all other cases. Typical 
examples of second-order PDEs are the following well-known equations: 

« X X + Uyy = f{X>y) 

u = u 

U — U + U 

ux + uuv = kuyy 

Laplace's equation 

Poisson's equation 

heat flow or diffusion equation 

heat flow or diffusion equation 

Burger's equation 

uxx ~ u w w a v e equation 

1.2.1 Linear Second-Order Partial Differential Equations 

There exists an extensive body of knowledge regarding linear PDEs. This 
information is generally cataloged according to the form of the PDE. Every 
linear second-order PDE in two independent variables can be converted into 
one of three standard or canonical forms which we identify as hyperbolic, 
parabolic, or elliptic. In this canonical form at least one of the second-order 
terms in (1.2.1) is not present. 

There is a practical reason for identifying the type of PDE in which one is 
interested. When coupled with initial and boundary conditions, the method 
and form of solution will be dependent on the type of PDE. 
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The classification can take many forms. We assume (for now) that if 

(1.2.2a) b2 -ac>0 the PDE is hyperbolic 

(1.2.2b) b2 -ac=0 the PDE is parabolic 

(1.2.2c) b2 -ac<0 the PDE is elliptic. 

Let us now examine the canonical forms and their associated transforma-
tions. The three canonical forms are written in terms of the new variables ξ and 
η as: 

0 

hyperbolic 

0 

0 parabolic 

0. elliptic 

We shall see that the hyperbolic PDE has two real characteristic curves, the 
parabolic PDE has one real characteristic curve, and the elliptic PDE has no 
real characteristic curves. 

From (1.2.2) or (1.2.3) we can see that the heat flow equation ux = uyy is 
parabolic and already in canonical form, and the Laplace equation uxx + uvy = 0 
is elliptic and already in canonical form. There are other cases, however, in 
which (1.2.2) must be used and the equations and their classifications may 
change because of coefficients. Thus 

yuxx + uyy=0 

(l + y2)uxx+O + y2)uyy-ux=0 

uxx + uuyy = 0 

(1.2.3a) 

or 

(1.2.3b) 

(1.2.3c) 

u(t + 

Tricomi's equation, elliptic 
for ^ > 0 , hyperbolic for 7 < 0 

elliptic 

elliptic for « > 0 
hyperbolic for u < 0 

elliptic inside unit circle 
hyperbolic outside 

hyperbolic, x> 2 y 
parabolic, χ =2y 
elliptic, x< 2y 



14 Fundamental Concepts 

(1.2.5a) "x = « Α + M A 

(1.2.5b) uv = "A + « A 

(1.2.6) "xx = u f A +2uiv<t>xtx + M , A + · · · 

(1.2.7) = ««ΦΑ + "{„(ΦΑ + ΦΑ)+»„*A + 

(1.2.8) uyy 

= «{£Φν+2Μ£,φνψ, + Μ , Α + · · · · 

Substitution into (1.2.1) yields 

(1.2.9) auxx +2buxy + cuyy = Auu+2Bu^ + C M , , + • • • , 

where 

(1.2.10) A = a^l+2b4>x<t>Y + c<(>y 

(1.2.11) Β = βφ,ψ, + *(φ χ ψ,. + φ ,ψ , ) + οφ ν ψ ν 

(1.2.12) Γ = α ψ χ

2 + 2 Η χ Ψ , + Α 2 · 

From (1.2.10), (1.2.11), and (1.2.12) one can obtain the following relation-
ship between a, b, c and A, B,C: 

(1.2.13) B2-AC = (b2- ac)(Mr - φ , ψ , ) 2 . 

It is apparent that, under this change of variables, the sign of b2 - ac remains 
invariant with respect to B2 — AC; moreover, φχψ(. - φν.ψχ, which is the Jacobian 
of the transformation, must always be kept nonzero. If an explicit change of 
variables had been used, 

η = α 2 χ + )82 ν + γ 2 , 

the Jacobian requirement would mean that α,/? 2 ~ «201 ^ 0 -

With these preliminaries in hand, let us now consider the canonical transfor-
mations. We ignore all terms in (1.2.1) except the second derivatives because 
the lower-order terms do not influence the results. We introduce the change of 
variables (implicit here) of 

(1-2.4) ϊ = Φ(χ^), v = *(x,y) 

and develop, using the chain rule, 


