About this volume

The TMS 2011 Annual Meeting Supplemental Proceedings, Volume 2: Materials Fabrication, Properties, Characterization, and Modeling, is a collection of papers from the 2011 TMS Annual Meeting and Exhibition, held February 27-March 3, in San Diego, California, U.S.A. The papers in this volume were selected based on technical topic compatibility and represent thirteen symposia from the meeting. This volume, along with the other proceedings volumes published for the meeting, and archival journals, such as Metallurgical and Materials Transactions and the Journal of Electronic Materials, represents the available written record of the 74 symposia held at the 2011 TMS Annual Meeting.

The individual papers presented within this proceedings volume have not necessarily been edited or reviewed by the conference program organizers and are presented "as is." The opinions and statements expressed within the papers are those of the individual authors only and are not necessarily those of anyone else associated with the proceedings volume, the source conference, or TMS. No confirmations or endorsements are intended or implied.
This page intentionally left blank
Check out these new proceeding volumes from the TMS 2011 Annual Meeting, available from publisher John Wiley & Sons:

- 2nd International Symposium on High-Temperature Metallurgical Processing
- Energy Technology 2011: Carbon Dioxide and Other Greenhouse Gas Reduction Metallurgy and Waste Heat Recovery
- EPD Congress 2011
- Friction Stir Welding and Processing VI
- Light Metals 2011
- Magnesium Technology 2011
- Sensors, Sampling and Simulation for Process Control
- Shape Casting: Fourth International Symposium 2011
- Supplemental Proceedings: Volume 3: General Paper Selections

To purchase any of these books, please visit www.wiley.com.

TMS members should visit www.tms.org to learn how to get discounts on these or other books through Wiley.
About this volume

The TMS 2011 Annual Meeting Supplemental Proceedings, Volume 2: Materials Fabrication, Properties, Characterization, and Modeling, is a collection of papers from the 2011 TMS Annual Meeting and Exhibition, held February 27-March 3, in San Diego, California, U.S.A. The papers in this volume were selected based on technical topic compatibility and represent thirteen symposia from the meeting. This volume, along with the other proceedings volumes published for the meeting, and archival journals, such as Metallurgical and Materials Transactions and the Journal of Electronic Materials, represents the available written record of the 74 symposia held at the 2011 TMS Annual Meeting.

The individual papers presented within this proceedings volume have not necessarily been edited or reviewed by the conference program organizers and are presented "as is." The opinions and statements expressed within the papers are those of the individual authors only and are not necessarily those of anyone else associated with the proceedings volume, the source conference, or TMS. No confirmations or endorsements are intended or implied.
TABLE OF CONTENTS

2011 Functional and Structural Nanomaterials: Fabrication, Properties, Applications and Implications

Fabrication of Nanomaterials II
Fabrication of Gold-Platinum Nanoalloy by High-Intensity Laser Irradiation of Solution

T. Nakamura, Y. Herbani, and S. Sato

Nanomaterials-Characteristics
Crystallization Kinetics and Giant Magneto Impedance Behavior of FeCo Based Amorphous Wires

R. Roy, P. Sarkar, S. Singh, A. Panda, and A. Mitra

Sunday Evening Poster Session: Functional Materials
Fe-Based Amorphous-Nanocrystalline Thermal Spray Coatings

B. Movahedi, and M. Enayati

Enhanced Photocatalytic Activity of Modified TiO$_2$ for Degradation of CH$_2$O in Aqueous Suspension

H. Tonga, L. Zhaoc, D. Lia, and X. Zhanga

Preparation and Characterization of ZnS Thin Films Using Chemical Bath Deposition Method: Effects of Deposition Time and Thermal Treatment

W. Hsieh, K. Cheng, and S. Lue

Femtosecond Laser-Induced Synthesis of Colloidal AuAg Nanoalloys from Aqueous Mixture of Metallic Ions

Y. Herbani, T. Nakamura, and S. Sato
Electrochemical Performances of Nanoporous Carbon Anode for Super Lithium Ion Capacitor ...59
Z. Xiangyang, L. Shiju, Y. Juan, L. Changlin, and Z. Taikang

Effect of Temperature Schedule on the Particle Size of NiFe$_2$O$_4$ Spinel Nanopowder during Solid-State Reactions ..67
Z. Zhang, G. Yao, Y. Liu, and J. Du

Interfacial Properties of Cu-Nb Multilayers as a Function of Dislocation/Disconnection Content ..75
N. Abdolrahim, I. Mastorakos, H. Zbib, and D. Bahr

Long-Time Photoluminescence Kinetics in Quantum Dot Samples..........83
K. Kral, and M. Mensik

Synthesis and Characterization of Mullite ..91
K. Paithankar, D. Barbadikar, D. Peshwe, and A. Gandhi

Characterization of Hybrid Carbon-Nanotube Composite Interfaces as a Function of Length Scale ..99
H. Malecki, M. Duffy, S. Markkula, and M. Zupan

Synthesis and Characterization of Nanostructure Forsterite Bioceramic for Tissue Engineering Applications ..109
F. Tavangarian, R. Emadi, and M. Enayati

Investigation of Mechanical Properties of Silica/Epoxy Nano-Composites by Molecular Dynamics and Finite Element Modeling117
B. Mortazavi, J. Bardon, S. Ahzi, D. Ruch, and A. Laachachi

Tuesday Evening Poster Session: Ultra Fine Grained Materials

Basal-Plane Stacking-Fault Energies of Mg: A First-Principles Study of Li- And Al-Alloying Effects ...121
Z. Jin, J. Han, X. Su, and Y. Zhu

Development of Al-TiB2 Nanocomposite ...129
Z. Sadeghian, M. Enayati, B. Lotfi, and P. Beiss

Dry Sliding Wear and Corrosion Behavior of Ultrafine-grained HSLA Steel Processed using Multi Axial Forging137
A. Padap, G. Chaudhari, and S. Nath
Heterogenity of Microstructure Evolution in NiTi (50 at% Ni) Alloy Severely Deformed by High Pressure Torsion ...147

Aluminum Alloys: Fabrication, Characterization and Applications

Development and Application
Hot Tensile Behaviour and Constitutive Analysis of Al-5.5Zn-1.2Mg/Zr Alloys ...157
P. Leo, E. Cerri, and H. McQueen

Production of Continuous Cast 3105 Coil-Stock for Thin Gauge Roller Shutters ...167
D. Spathis, and J. Tsiros

Emerging Technologies
Preparation of Al-Li Alloys for Lithium-Air Secondary Battery by Solid Diffusion Method ...175
T. Cheng, Z. Lv, X. Zhai, M. Zhang, and G. Tu

Effects of Process Parameters on Rolled Precursor of Aluminum Foam Sandwich Panel ..179
B. Song, G. Yao, G. Zu, L. Wang, and Z. Guan

Preparation of Aluminum Foam Using a Novel Gas-Generating Agent185
D. Huo, X. Zhou, T. Zhang, J. Qin, J. Li, and H. Zhao

High Temperature Dry Sliding Wear Behaviour of Aluminium-Silicon / Graphite Composite Processed by Stir Casting191
G. Rajaram, S. Kumaran, T. Rao, and M. Kamaraj

Preparation and Characterization of Short Carbon Fiber Reinforced Aluminium Matrix Composites ...199
P. Yan, G. Yao, J. Shi, X. Sun, and G. Lv
Materials Characterization

Effect of Ultrasonic Impact Treatment on a 5456 Aluminum Alloy Characterized through Micro-Specimen Testing and X-Ray Tomography205
C. Scheck, K. Tran, C. Cheng, and M. Zupan

Failure Loads and Deformation in 6061-T6 Aluminum Alloy Spot Welds213
R. Florea, K. Solanki, D. Bammann, B. Jordon, and M. Castanier

Numerical Modeling

Modeling Performance of Protection Materials Aluminum 7020-T651 and Steel ...221
J. Chinella

Comprehensive Thermo-Mechanical Validation of Extrusion Simulation Cycle for Al 1100 Using HyperXtrude ..229
A. Parkar, C. Bouvard, S. Horstemeyer, E. Marin, P. Wang, and M. Horstemeyer

Mechanical Properties and Casting Characteristics of the Secondary Aluminum Alloy AlSi9Cu3(Fe) (A226) ..237
P. Pucher, H. Böttcher, H. Kaufmann, H. Antrekowitsch, and P. Uggowitzer

Comparison of Different FEM Codes Approach for Extrusion Process Analysis ...245
L. Donati, L. Tomesani, N. Khalifa, and A. Tekkaya

Numerical Prediction of Grain Shape Evolution during Extrusion of AA6082 Alloy ...253
A. Segatori, L. Donati, and L. Tomesani

Analysis of Charge Weld Evolution for a Multi-Hole Extrusion Die263
A. Segatori, L. Donati, B. Reggiani, and L. Tomesani

Solidification

Simulation of the Deformation of a Flexible Combo Bag in a DC Aluminium Casting ...273
A. Kharicha
Solidification Analysis of Al-Si Alloys Modified with Addition of Cu Using In-Situ Neutron Diffraction ..279
 D. Sediako, W. Kasprzak, I. Swainson, and O. Garlea

Novel Grain Refiner for Al-Si Alloys..291
 M. Nowak, and N. Babu

Application of Neutron Diffraction in Analysis of Residual Stress Profile in the Cylinder Web Region of as-Cast V6 Aluminum Engine Block with Cast-In Iron Liners ..299
 D. Sediako, R. Ravindran, C. Hubbard, F. D'Elia, A. Lombardi, A. Machin, and R. Mackay

Effects of Al–8B Grain Refiner on the Structure, Hardness and Tensile Properties of a New Developed Super High-Strength Aluminum Alloy309
 M. Alipour, M. Emamy, J. Rasizadeh, M. Karamouz, and M. Azarbarmas

Thermal Mechanical Processing

Study of the Artificial Aging Kinetics of Different AA6013-T4 Heat Treatment Conditions ...321
 J. Berneder, R. Prillhofer, J. Enser, P. Schulz, and C. Melzer

Estimating Response to Hot Rolling of Al-Mn-Mg Alloys from Hot Torsion Testing ...329
 H. McQueen

Microstructural Characterization and Heat Treatments of Different Al-Zn-Mg/Zr Alloys ..339
 P. Leo, E. Cerri, and H. McQueen
Commonality of Phenomena in Composite Materials II

Characterization and Processing Techniques for Composites

Thermo-Mechanical Behavior of Hdpe/Sugarcane Bagasse Fiber/Organoclay Nanocomposites

A. Castillo, A. Teran, A. Chinellato, M. Nascimento, F. Diaz, and E. Moura

Development of New Composite Materials

Machinable Aluminum Matrix Composite

W. Harrigan

Stability and Lithium Adsorption Property of LiMn$_2$O$_4$-LiSbO$_3$ Composite in Aqueous Medium

X. Shi, L. Ma, B. Chen, H. Xu, X. Yang, and K. Zhang

Reinforced Steel/Polymer/Steel Sandwich Composites with Improved Properties

H. Palkowski, O. Sokolova, and A. Carradó

Understanding Composite Performance

Higher-Order Micromechanics and Effective Elastic Moduli of Particle Reinforced Composites

K. Yanase, and J. Ju

Modelling Shear Fracture of Hybrid CFRP/Ti Laminates with Cohesive Elements; Effects of Geometry and Material Properties

P. Naghipour, M. Bartsch, J. Hausmann, and K. Schulze
Computational Thermodynamics and Kinetics

Brent Fultz Honorary Session II

Phonon Thermodynamics of Binary Fe Alloys ... 401
M. Lucas

Defects: Thermodynamics and Kinetics of Grain Boundaries, Interfaces, Surfaces and Dislocations

Phase-Field Simulation of Segregation to Stacking Fault (Suzuki Effect) in Co-Ni Based Superalloy ... 409
Y. Koizumi, S. Suzuki, T. Otomo, S. Kurosu, Y. Li, H. Matsumoto, and A. Chiba

Microstructural Evolution

Phase-Field Simulations of Bainitic Phase Transformation in 100Cr6 417
W. Song, U. Prahl, W. Bleck, and K. Mukherjee

Microstructure Evolution and Analysis of Single Crystal Nickel-Based Superalloy during Compression Creep ... 427
Z. Shu, T. Sugui, L. Fushui, L. Anan, and L. Jingjing

Poster Session: Computational Thermodynamics and Kinetics of Materials

The Application of Thermodynamic Analysis in Preparing the MnZn Ferrites Precursor ... 435
X. Ping, Y. Yaohua, Z. Peiyu, and C. Xiaofang

Phase Equilibria of the La-Ni-Cu Ternary System at 673 K: Thermodynamic Modeling and Experimental Validation 441
X. An, Q. Li, J. Zhang, S. Chen, and Y. Yang

Statistical Model of Precipitation Kinetics for Recycled Commercial Aluminum Alloys ... 449
Z. Liu, V. Mohles, O. Engler, and G. Gottstein
Thermodynamics Calculation of CuO-NH₃+NH₄Cl Solution System..................................457
W. Zheng, D. Li, Z. Xiao, Q. Chen, and H. Tong

Development of Accurate Models for the Microstructure and Properties of Molten Salts...461
A. Gray-Weale, P. Masset, and A. Jacob

S. Santhanakrishnan, and R. Kovacevic

Thermodynamics, Phase Stability and Phase Transformations

Thermomechanical Processing Design of Nanoprecipitate Strengthened Alloys Employing Genetic Algorithms ..477
P. Rivera-Diaz-del-Castillo, Maarten de Jong, and M. Sluiter

David Pope Honorary Symposium on Fundamentals of Deformation and Fracture of Advanced Metallic Materials

Deformation, Fracture, and Advanced Characterization Techniques

Intelligent Microscopy for the Study of Fracture and Fatigue ...489
D. Fullwood, B. Adams, T. Rampton, and A. Khosravani

Deformation, Fracture, and Hydrogen Effects

Influence of Hydrogen Loading on the Tensile Behavior of Fe-Ga Alloys497
M. Ramanathan, B. Saha, C. Ren, G. Garside, and S. Guruswamy

xii
Grain Boundaries, Phase Transformations, and Steels

Truncated Dislocation Sources in Nanometric Aluminum Crystals: A Molecular Dynamics Study ...505
 B. Biner, and L. Kubin

Geometrical Construction and Structure of Quasi-Periodic Grain Boundaries in Cubic Materials ...513
 M. Shamsuzzoha

Influences of Material and Process Parameters on Delayed Fracture in TRIP-Aided Austenitic Stainless Steels ...521
 X. Guo, and W. Bleck

Intermetallics I

Microstructure and Mechanical Properties of Dual Two-Phase Intermetallic Alloys Composed of Geometrically Close Packed Ni$_3$Al and Ni$_3$V Structures ...529
 T. Takasugi, and Y. Kaneno

Intermetallics II and Ti alloys

Some Unusual Aspects of the Deformation Of FeAl and Fe$_2$MnAl537
 I. Baker

Recent Progress in High Temperature TiAl Alloys ...547
 G. Chen, L. Zhao, J. Lin, and X. Xu

Intermetallics III, Superalloys, and Gum Metal

Overview of Creep Deformation of Nickel Base Superalloys and Intermetallics ...557
 D. Shah

Localized Shear Deformation in Gum Metal at Ideal Strength567
 S. Kuramoto, T. Furuta, N. Nagasako, and J. Morris
Deformation, Damage, and Fracture of Light Metals and Alloys

Session I
The Effect of Crystallographic Orientation on Void Growth: A Molecular Dynamics Study ... 577
M. Bhatia, K. Solanki, A. Moitra, and M. Tschopp

Room Temperature Creep and Substructure Formation in Pure Aluminum at Ultra-Low Strain Rates ... 585
S. Junjie, I. Ken-ichi, H. Satoshi, and N. Hideharu

Session II
Development of $<111>$ Fiber Texture and $\{111\}<112>$ Shear Bands in Pure Al Metal by Wire Drawing .. 593
M. Shamsuzzoha

Damage Evolution in Ultrasonic Welded Aluminum/Fiber-Reinforced Polymer Joints with Different Welding Geometries 601
N. Konchakova, R. Mueller, F. Barth, F. Balle, and D. Eifler

Role of Austenite Plasticity in the Deformation of Superelastic Nitinol 609
D. Xu, and R. Ritchie

Vanadium Effects on a BCC Iron Sigma 3 (111) [1-10] Grain Boundary Strength .. 617
S. Kim, S. Kim, and M. Horstemeyer

Fracture Behavior of Short Carbon Fiber Reinforced Aluminium Matrix Composite .. 621
P. Yan, G. Yao, J. Shi, and X. Sun

Session III
Stress Intensity Factor Solutions for Friction Stir Spot Welds of Magnesium AZ31 Alloy .. 627
T. Tang, M. Horstemeyer, B. Jordan, and P. Wang
Deformation Induced Phase Transformation during Machining of Ti-5553.....633
D. Yan, G. Littlefair, and T. Pasang

Fatigue and Corrosion Damage in Metallic Materials: Fundamentals, Modeling and Prevention

Fatigue and Corrosion Interaction and Materials Corrosion

Effect of Proximity and Dimension of Two Artificial Pitting Holes on the Fatigue Endurance of Aluminum Alloy 6061-T6 under Rotating Bending Fatigue Tests...643
G. Almaraz, V. Lemus, and J. López

Fatigue of Nanocrystalline Materials and Fatigue Property Enhancement

Research on HCF Tests and Damage Model of TC11 Alloy Welded Joints651
X. Liu, and G. Hai-ding

Fatigue Behavior of Al 6082-T4 and Al 7075-T73 after Ball Burnishing......659
Y. Fouad, M. Mhaede, and L. Wagner

Fatigue Property-Microstructure Relationships and Crack Growth

A Modified LEFM Approach for the Prediction of the Notch Effect in Fatigue ..667
M. Endo, K. Yanase, S. Ikeda, and A. McEvily

Resistivity Based Evaluation of the Fatigue Behaviour of Cast Iron.............675
H. Germann, P. Starke, and D. Eifler

Microstructure-Sensitive Probabilistic Fatigue Modeling of Notched Components..683
W. Musinski, and D. McDowell
Materials Corrosion and Prevention

 Electrochemical Evaluation of Martensitic-Austenitic Stainless Steel in Sulfuric Acid Solutions ... 691

 M. Sadawy

 Effect of Temperature on the Loss of Ductility of S-135 Grade Drill Pipe Steel and Characterization of Corrosion Products in CO₂ Containing Environment ... 699

 A. Bajvani Gavanluei, B. Mishra, and D. Olson

 Corrosion Behavior and Galvanic Corrosion Studies of Ti-6Al-4V Alloy GTA Weldment in HCl Solution ... 707

 M. Atapour, E. Mohammadi Zahrani, M. Shamanian, and M. Fathi

 Comparative Study of Hot Corrosion Behavior of Plasma Sprayed Yttria and Ceria Stabilized Zirconia Thermal Barrier Coatings in Na₂SO₄+V₂O₅ at 1050°C .. 715

 M. Mahdipoor, M. Rahimipour, and M. Habibi

 The Effect of Temperature on the Corrosion Behavior of 625 Superalloy in PbSO₄-Pb₃O₅-PbCl-ZnO Molten Salt System with 10 wt. % CdO 725

 E. Mohammadi Zahrani, and A. Alfantazi

 Frontiers in Solidification Science

 Experimental Studies

 Nucleation Catalysis Potency of Ceramic Nanoparticles in Aluminum Matrix Nanocomposites ... 737

 M. De Cicco, J. Perepezko, L. Turng, and X. Li

 Posters

 The Microstructure and Mechanical Properties of Direct-Quenched and Tempered AISI 4140 Steel ... 745

 A. Meysami, R. Ghasemzadeh, H. Seyedin, M. Aboutalebi, and R. Rezaei

 xvi
A Numerical Benchmark on the Prediction of Macrosegregation in Binary Alloys

H. Combeau, M. Bellet, Y. Fautrelle, D. Gobin, E. Arquis,
O. Budenkova, B. Dussoubs, Y. Duterrail, A. Kumar, B. Goyeau,
S. Mosbah, T. Quatravaux, M. Rady, C. Gandin, and M. Založnik

ICME: Overcoming Barriers and Streamlining the Transition of Advanced Technologies to Engineering Practice - The 12th MPMD Global Innovations Symposium

Emerging and Fundamental Techniques and the Advancement of ICME in Industry

Modeling and Simulation of Mechanical Properties of Magnesium Alloy Wheel Casting for Automobile

L. Huo, Z. Han, X. Zhu, J. Duan, A. Wang, and B. Liu

Modeling and Simulation Tools

Assessing Data Completeness and Predictive Potential in Magnesium Alloy Databases

K. Ferris, and D. Jones

Massively Parallel Simulations of Materials Response

Session II

Lights – Open Source Discrete Element Simulations of Granular Materials Based on Lamps

C. Kloss, and C. Gonina
Session III

Atomic Scale Deformation Mechanisms of Amorphous Polyethylene under Tensile Loading ..789
 M. Tschopp, J. Bouvard, D. Ward, and M. Horstemeyer

Recent Developments in the Processing, Characterization, Properties and Performance of Metal Matrix Composites

General and Nano-Composites

Low Density Magnesium Matrix Syntactic Foams...797
 J. DeFouw, and P. Rohatgi

Joining of Advanced Aluminum-Graphite Composite ..805
 N. Hung, M. Velamati, M. Garza-Castañon, E. Aguilar,
 and M. Powers

Multimodal, Processing and Microstructure

Effect of Al+B₄C Agglomerate Size on Mechanical Properties of Trimodal Aluminum Metal Matrix Composites ...813
 B. Yao, T. Patterson, Y. Sohn, M. Shaeffer, C. Smith,
 M. van den Bergh, and K. Cho

Effects of SPS Parameters on the Mechanical Properties and Microstructures of Titanium Reinforced with Multi-Wall Carbon Nanotubes Produced by Hot Extrusion...821
 T. Threrujirapapong, K. Kondoh, J. Umeda, B. Fugetsu,
 and T. Mimoto
Processing, Microstructure and Mechanical Properties I

Microstructural Development of Al–15wt.%Mg2Si In Situ Composite with Be Addition ... 829
 M. Azarbarmas, M. Emamy, J. Rasizadeh, M. Alipour,
 and M. Karamouz

Microstructural Properties and Wear Behaviour of AlSi9Mg Matrix B4Cp Reinforced Composites ... 837
 F. Toptan, I. Kerti, A. Sagin, M. Cigdem, S. Daglilar, and F. Yuksel

Modification of Al–Mg2Si In Situ Composite by Boron 843
 M. Azarbarmas, M. Emamy, J. Rasizadeh, M. Karamouz,
 and M. Alipour

In-Situ Synthesis of AlN/Mg Matrix Composites 851
 X. Ma, S. Kuplin, D. Johnson, and K. Trumble

Performance Evaluation of Particulate Reinforced Al-SiC Bolted Joints........ 859
 G. William, S. Shoukry, and J. Prucz

Processing, Microstructure and Mechanical Properties II

Effect of MgAl2O4 on the Superficial Hardness of Hybrid-Multimodal Al/SiC Composites Processed by Reactive Infiltration 867
 M. Montoya-Davila, M. Pech-Camul, and R. Escalera-Lozano

Corrosion and Wear Behaviour of Aluminum Alloy 6061-Fly Ash Composites ... 873
 A. Bhandakkar, B. Balaji, R. Prasad, and S. Sastry

Interface Evolution in Tungsten Wire Reinforced Stainless Steel Composites ... 883
 P. Kumar, and M. Kral

Effects of Annealing on the Growth Behavior of Intermetallic Compounds on the Interface of Copper/Aluminum Clad Metal Sheets 895
 L. Xiaobing, Z. Guoyin, and D. Qiang

xix
Surfaces and Heterostructures at Nano- or Micro-Scale and Their Characterization, Properties, and Applications

Coatings, Surfaces, and Interfaces II - and - Magnetic Heterostructures I

Application of the Strong Contrast Technique to Thermoelastic Characterization of Nanocomposites ... 905
 M. Baniassadi, A. Ghazavizadeh, D. Ruch, Y. Rémond, S. Ahzi, and H. Garmestani

Energy and Catalysis Technologies II - and - Biological Applications

Colloid-Chemical Nanoprocesses and Nanotechnologies on the Basis of Oxyhydrate Systems of Rare-Earth Elements... 911
 T. Prolubnikova, Y. Sucharev, T. Ukolkina, and K. Nosov

Thermally Activated Processes in Plastic Deformation

Deformation Mechanisms and Polycrystal Plasticity

Comparative Hot-Work Constitutive Analyses Of Carbon/HSLA and Stainless Steels with Linkage to Microstructural Evolution 921
 H. McQueen, Y. Li, I. Rieiro, M. Carsi, and O. Ruano

Grain Boundary Evolution and Dislocation Core Effects

Experimental Measurements of the Shear-Coupled Stress Driven Grain Boundary Migration in Al Bicrystals... 931
 D. Molodov, T. Gorkaya, and G. Gottstein
Experimental Study on Reduction Roasting and Separation of Nickeliferous Laterite by Microwave Heating

L. Yi, Z. Huang, B. Hu, X. Wang, and T. Jiang

Author Index

Subject Index
This page intentionally left blank
The proceedings contained in this section have not been edited or reviewed by the conference program organizers. The opinions and statements expressed in the proceedings are those of the authors only and are not necessarily those of the editors or TMS staff. No confirmations or endorsements are intended or implied.
FABRICATION OF GOLD-PLATINUM NANOALLOY BY HIGH-INTENSITY LASER IRRADIATION OF SOLUTION

Takahiro Nakamura, Yuliati Herbani, Shunichi Sato
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
Keywords: Femtosecond laser, Liquid, Au-Pt nanoalloy

Abstract
Gold-platinum (Au-Pt) solid solution nanoalloys were fabricated by high-intensity femtosecond laser irradiation of mixed solution of auric and platinum ions. Photo-absorption spectra of prepared solutions were measured by UV-visible spectrophotometer before and after irradiation. The fabricated particles were characterized by TEM and XRD. While two representative diffraction peaks are commonly observed between peak the positions of pure bulk gold and platinum for bulk because of a large immiscibility gap in a Au-Pt binary system, only a single diffraction peak was detected for single-nanometer sized Au-Pt nanoalloy particles fabricated by high-intensity laser irradiation of mixed solution of auric and platinum ions with the concentration of 5.0×10^{-4} M. This finding demonstrates that solid solution Au-Pt nanoalloys are successfully fabricated only by high-intensity laser irradiation of aqueous solution without any chemicals.

Introduction
Binary alloy nanoparticles (NPs) have been intensively studied especially in the research field of catalysis\(^1,2\) because of their bifunctional catalytic properties. Currently, gold-platinum (Au-Pt) nanoalloys are attracted much attention for electrocatalysis in a fuel cell\(^3,4\). The Au-Pt nanoalloys are expected to provide synergistic catalytic activities such as suppression of adsorbed poisonous species like carbon monoxide (CO) on Pt atoms, and the change in electronic band structure to modify the strength of the surface adsorption. The decreases of activation energy promoting oxidative desorption and suppressing the adsorption of CO was considered as a factor that leads to a sufficiently high adsorptivity to support catalytic oxidation in alkaline electrolytes\(^5,6\). Au-Pt nanoalloys are prepared mainly by chemical processes\(^7-13\) in a form supported on a specially prepared substrate such as SiO\(_2\)\(^14\) and carbon\(^12,13\) to date. The process commonly needs a series of complex procedures and often uses some chemicals that might be highly reactive and cause environmental and biological problems.

Recently, we have demonstrated a method for the preparation of metal NPs of gold\(^14\), platinum\(^15\) and silver by using high intensity laser irradiation of the metal ion solution. This technique is expected to produce many kinds of metal and their alloy NPs directly in the solution without any complex procedures and harmful chemicals. In this study, we describe the fabrication of Au-Pt nanoalloy in a mixed solution of auric and platinum ions by high intensity laser irradiation of the solution. Effects of the fraction of auric and platinum ions in the solution on the composition and structure of Au-Pt nanoalloys were investigated. The fabrication mechanism of the NPs was also discussed.

Experimental
Mixed solutions of auric and platinum ions with different fraction were prepared by the following procedure. Auric and platinum aqueous solutions were separately prepared by dissolving hydrogen tetrachloroaauric (III) tetrahydrate powder (HAuCl₄·3H₂O, Wako Pure Chemical Industries, Ltd., > 99.9 %) and hydrogen hexachloroplatinic (IV) hexahydrate powder (H₂PtCl₆·6H₂O, Sigma-Aldrich Co., > 99.9 %) in extra-pure water. The concentration of each solution was set to 5.0×10⁻⁴ M. Subsequently, both solutions were mixed with different molar fractions. Samples are labeled by the molar fraction of auric and platinum ions. For example, 50 % of auric and platinum solution is labeled as Au50Pt50. All the solutions were transparent, and no apparent difference was observed. Figure 1(a) shows UV-visible absorption spectra of prepared solutions with different molar fraction of auric and platinum ions measured by a UV-visible spectrophotometer (JASCO Co., V630 iRM). UV-visible absorption spectrum was shifted from that of auric (Au00Pt00) to platinum solution (Au00Pt100) with decreasing the fraction of auric ion in the solution. As a target of laser irradiation, 3 milliliters of each aqueous solution was dispensed in a 10×10×45 mm quartz glass cuvette that is optically transparent at the wavelength of incident laser light. Femtosecond laser beam was generated from a chirped-pulse amplified Ti:sapphire laser system with the wavelength of 800 nm. The pulse energy was 5 mJ with the pulse width of 100 fs and the repetition rate was 30 Hz. The laser beam was introduced to the cuvette normal to its surface and tightly focused in the solution by an aspheric lens with the focal length of 8 mm and the numerical aperture of 0.5. The spot diameter was estimated to be 175 μm in a diameter. Theoretical estimation of the laser intensity was 2.1×10¹⁴ W/cm² taking into account that a laser beam radius is 3.2 mm before the focusing lens, and the refractive index of the solution is 1.33 (water). The irradiation time was set to 30 min in every experiment. Optical characteristics of the solution after laser irradiation were evaluated by a UV-visible spectrometer. Transmission electron microscopes (TEM: JEOL, JEM2000EXII) were employed to take electron micrographs of the products after irradiation. The samples for TEM observation were prepared by falling a few drops of the solution on a carbon-coated copper grid (Okenshioji Co., Ltd., Micro grid type-B) immediately after the irradiation and dried in air at room temperature. The samples for the XRD measurement were prepared by freeze-drying and placing the obtained powder on a non-reflecting single crystal silicon plate (Rigaku Co.), which is specially made to avoid any diffraction peak of silicon over measurement range.

Figure 1. Uv-vis. absorption spectra of the mixed solution of auric and platinum ions with different fractionsf (a) before and (b) after irradiation.
Results

A tiny flash of luminescence and fine bubbles were observed around the focal point during laser irradiation. These gases were identified as oxygen and hydrogen by chromatographic analysis (GC-8A, Shimadzu Co.). The gases were probably produced by the decomposition of water molecules through the laser induced break down facilitated by a high intensity laser field. The transparency of the solution gradually changed during the laser irradiation and resultant color of the solution after 30 minutes irradiation strongly depended on the molar fraction of auric and platinum ions in the solution; red-purple for Au100Pt0 and light-brown for Au0Pt100.

Figure 1(b) shows a representative set of UV-visible absorption spectra of the solutions with different molar fractions after irradiation. The spectra were measured promptly after the irradiation. In the spectrum of auric solution (Au100Pt0), an absorption peak at 520 nm was observed arising from surface plasmon resonance (SPR) of gold nanoparticles. The peak position shifted to shorter wavelength, and the absorbance decreased with the decrease in the fraction of auric ion in the solution.

TEM bright field images of the particles are shown in Fig. 2. Mean particle size of each sample evaluated from the TEM images was also shown below the micrograph. As seen in the figure, particle size in the micrographs became smaller with the decrease in the fraction of auric ion in the solutions. This result is comparable to the fact that gold particles tend to grow and crystallize faster than other noble metals such as palladium and platinum because of its property of low melting point (1336 K) and no affinity to oxygen.

![Figure 2. TEM images of the NPs fabricated by high intensity laser irradiation of mixed solution of auric and platinum ions with different fractions.](image-url)
To determine the structural characteristics of the fabricated particles, XRD measurement were employed for all samples. A representative set of profiles is shown in Fig. 3. The typical XRD peak positions of gold and platinum from 1 1 1 planes are also indicated by broken lines for comparison. As seen in the figure, the diffraction patterns of the particles in Au100Pt0 and Au0Pt100 are indexed to be an fcc-type cubic lattice of bulk gold and platinum. XRD peaks in the profile were shifted from the peak position of gold to that of platinum with decreasing the fraction of auric ion in the solution. The results from the structural analysis of the fabricated particles by using Integrated X-ray Powder Diffraction Software (Rigaku Co.) are summarized in Table 1. Crystalline sizes of the particles calculated by Scherrer’s equation seemed to be larger than the particle sizes observed in TEM images (Fig. 2). This might be arising from crystal growth during sample preparation by freeze-drying. The crystalline sizes varied from 50 nm to 6 nm with the decrease in the composition of auric ion in the solution. This result denotes the same tendency as the result from TEM observation (Fig. 2). Lattice constants of the particles fabricated in the solutions of Au100Pt0 (a = 4.082 Å) and Au0Pt100 (a = 3.927 Å) were in a good agreement with those of bulk gold and platinum. Interestingly, lattice constant of the fabricated nanoalloy was almost linearly changed from that of bulk gold to platinum depending on the fraction of auric and platinum ions in the mixed solutions. This result clearly indicates the solid solution Au-Pt nanoalloys with intended composition were successfully fabricated in the solutions only by high-intensity laser irradiation of solutions without any chemical.

Figure 3. XRD profiles of the NPs fabricated by high intensity laser irradiation of mixed solution of auric and platinum ions with different fraction.

Table 1. Characteristic parameters of nanoparticles evaluated from XRD peaks

<table>
<thead>
<tr>
<th>Solution</th>
<th>2Θ (deg)</th>
<th>d (Å)</th>
<th>Peak (cps)</th>
<th>FWHM (deg)</th>
<th>a (Å)</th>
<th>SizeXRD (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au100Pt0</td>
<td>38.157</td>
<td>2.357</td>
<td>2564</td>
<td>0.174</td>
<td>4.082</td>
<td>504.9</td>
</tr>
<tr>
<td>Au60Pt10</td>
<td>38.270</td>
<td>2.350</td>
<td>538</td>
<td>0.589</td>
<td>4.070</td>
<td>149.2</td>
</tr>
<tr>
<td>Au80Pt20</td>
<td>38.403</td>
<td>2.342</td>
<td>407</td>
<td>0.993</td>
<td>4.056</td>
<td>88.5</td>
</tr>
<tr>
<td>Au70Pt30</td>
<td>38.546</td>
<td>2.334</td>
<td>327</td>
<td>1.259</td>
<td>4.043</td>
<td>69.8</td>
</tr>
<tr>
<td>Au50Pt50</td>
<td>38.816</td>
<td>2.318</td>
<td>153</td>
<td>1.477</td>
<td>4.015</td>
<td>59.6</td>
</tr>
<tr>
<td>Au40Pt60</td>
<td>39.099</td>
<td>2.302</td>
<td>262</td>
<td>1.428</td>
<td>3.987</td>
<td>61.6</td>
</tr>
<tr>
<td>Au40Pt60</td>
<td>39.496</td>
<td>2.282</td>
<td>266</td>
<td>1.484</td>
<td>3.953</td>
<td>59.4</td>
</tr>
<tr>
<td>Au30Pt70</td>
<td>38.562</td>
<td>2.276</td>
<td>289</td>
<td>1.320</td>
<td>3.942</td>
<td>66.8</td>
</tr>
<tr>
<td>Au20Pt80</td>
<td>39.651</td>
<td>2.271</td>
<td>268</td>
<td>1.041</td>
<td>3.933</td>
<td>84.7</td>
</tr>
<tr>
<td>Au10Pt90</td>
<td>39.640</td>
<td>2.272</td>
<td>264</td>
<td>0.830</td>
<td>3.935</td>
<td>106.3</td>
</tr>
<tr>
<td>Au0Pt100</td>
<td>39.171</td>
<td>2.268</td>
<td>278</td>
<td>0.612</td>
<td>3.928</td>
<td>144.1</td>
</tr>
</tbody>
</table>