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CHAPTER 14
Pricing Derivatives by Simulation

In Chapter 13, we introduced the main ideas behind the pricing of standard
financial derivative instruments, or simply derivatives. We saw that the

main assumption underlying derivative pricing schemes is the assumption
that there is no arbitrage in the markets. When there is no arbitrage, the
price of a derivative can be found as the expected value of its discounted
payouts when the expected value is taken with respect to a transformation
of the original probability distribution of outcomes, called the risk-neutral
probability measure.

The same principles that guide the computation of the fair price of stan-
dard derivatives extend to the pricing of more complex derivatives. How-
ever, the difference is that nice closed-form formulas of the Black-Scholes
type cannot necessarily be found for complex derivatives. Such derivatives
must be priced with different numerical techniques, and simulation is one
such tool.

We begin this chapter by showing how simulation can be used to price
some of the simple derivatives we discussed in Chapter 13, such as Eu-
ropean call options. Although simulation does not need to be applied in
this context, techniques that make the simulation procedures more effi-
cient can be demonstrated in a familiar setting, and benchmarked against
a known final price. These examples help us illustrate more advanced sim-
ulation techniques, called variance reduction methods, whose goal is to
make the simulation process as efficient as possible, and minimize the vari-
ance of the estimate. We review several such methods, including antithetic
variables, stratified sampling, importance sampling, and control variates.
We also review quasirandom (also called quasi–Monte Carlo) methods for
simulation that use low discrepancy number sequences to obtain a good rep-
resentation for the probability distribution being simulated. We then give
examples of pricing more complex derivatives, such as barrier options and
American options, by simulation, and discuss evaluating the sensitivity of
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532 DERIVATIVE PRICING AND USE

derivative to changes in underlying parameters by crude and pathwise sim-
ulation methods.

14.1 COMPUTING OPTION PRICES WITH CRUDE
MONTE CARLO SIMULATION

As we mentioned at the beginning of this chapter, the main idea behind
computing prices of options (and other financial securities) by simulation
is to generate a set of payoffs, and discount them to the present to find the
expected value of all discounted payoffs under a probability distribution
called the risk-neutral probability measure. The expected value of payoffs
is the “fair” price of the derivative. Typically, when pricing financial
derivatives, the prices of the underlying securities are assumed to follow
specific kinds of random walks.1 The most straightforward way to price
a derivative is to create paths of realizations of the random walks for the
derivative’s underlying, compute the payoff along each path, discount to
the present, and find the appropriate weighted average of the payoffs as
an estimator for the expected value of the payoff. This is referred to as
using crude Monte Carlo. It is not always the most efficient way to find a
derivative’s price, but it is tangible and easy to implement.

In this section, we give a couple of examples of how crude Monte Carlo
can be used for pricing options. Smart ways to simulate the prices of op-
tions that exploit knowledge about the simulation process or the underlying
distributions are discussed in section 14.2.

14.1.1 Pric ing a European Cal l Opt ion
by Simulat ion

As we explained in section 13.4.2, a widely used formula for European
options is the Black-Scholes formula.2 It provides a closed-form expression
for computing the price of the option. In section 13.4.2, we also showed
that the underlying assumption used in the derivation of the Black-Scholes
formula is that the underlying asset price follows a geometric Brownian
motion.3 The evolution of the asset price can then be described by the
equation

dSt = µSt dt + σ St dWt

where Wt is standard Brownian motion and µ and σ are the drift and
the volatility of the process, respectively. For technical reasons (absence of
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arbitrage), when pricing an option, the drift µ is replaced by the risk-free
rate r in the Black-Scholes formula.

Under the assumption for the random process followed by the asset
price, the value of the asset price ST at time T given the asset price St at time
t can be computed as

ST = St e(r− 1
2 σ 2)·(T−t)+σ ·

√
(T−t)·ε̃

where ε̃ is a standard normal random variable.4

Hence, the option price obtained from the Black-Scholes formula can
be approximated by simulation if a large number of values for the normal
random variable ε̃t are generated. By creating scenarios for the stock price
ST at time T, we can compute the discounted payoffs of the option, and find
the expected payoff. Suppose we generate N scenarios for ε̃: ε(1), . . . , ε(N).
Then the price of a European call option with strike price K will be

Ct = e−r ·(T−t) ·
N∑

n=1

1
N

· max
{

St e(r− 1
2 σ 2)·(T−t)+σ ·

√
(T−t)·ε(n) − K, 0

}

The expression above is the expected value of the option payoffs, that
is, the weighted average of the option payoffs. The “weight,” or the proba-
bility of each scenario, is assumed to be 1/N since the scenarios are picked
at random, and the frequency of their occurrence already incorporates the
probability distribution of ε̃. (See this chapter’s Software Hints, as well as
files Ch14-PricingBySimulation.xlsx, Ch14-OptionPricingVBA.xlsm, and
EuropeanCall.m, for an actual implementation of the simulation.)

It appears unnecessarily complicated to price the option this way, and
indeed, in practice simulation is rarely used for this kind of simple prob-
lem. There are more complex derivatives and more sophisticated models for
asset price behavior; in such cases, it can be simpler to generate scenarios
and evaluate prices by simulation than to derive closed-form analytical for-
mulas mathematically. For example, if the underlying asset follows a mean
reversion process, the Black-Scholes formula will not work for a European
call option, but simulation can help us evaluate the option price easily. In
addition, in the case of portfolios and baskets of multiple assets, generating
joint scenarios for multiple securities through simulation can help capture
the otherwise complicated effect of interactions among different risk factors
influencing the future value of the portfolio or derivatives.

Let us illustrate another advantage of simulating the price of a European
call option rather than using the Black-Scholes formula. Recall that one
of the assumptions in the Black-Scholes formula is that the interest rate r


