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Preface

This book teaches the basic concepts of modeling and simulation
and gives an introduction to the Modelica language to people who are
familiar with basic programming concepts. It gives a basic introduction
to the concepts of modeling and simulation, as well as the basics of
object-oriented component-based modeling for the novice. The book
has the following goals to be:

• A useful textbook in introductory courses on modeling and sim-
ulation.

• Easily accessible for people who do not previously have a back-
ground in modeling, simulation and object orientation.

• A basic introduction of the concepts of physical modeling,
object-oriented modeling, and component-based modeling.

• A demonstration of modeling examples from a few selected
application areas.

The book contains examples of models in a few different application
domains, as well as examples combining several domains.

All examples and exercises in this book are available in an elec-
tronic self-teaching material called DrModelica, based on this book
and the more extensive book Principles of Object-Oriented Modeling
of Simulation with Modelica 2.1 Fritzson (2004), for which an updated
version is planned. DrModelica gradually guides the reader from sim-
ple introductory examples and exercises to more advanced ones. Part
of this teaching material can be freely downloaded from the book’s
website, www.openmodelica.org, where additional (teaching) material
related to this book can be found.

xi
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CHAPTER 1

Basic Concepts

It is often said that computers are revolutionizing science and engineer-
ing. By using computers we are able to construct complex engineering
designs such as space shuttles. We are able to compute the properties
of the universe as it was fractions of a second after the big bang. Our
ambitions are ever-increasing. We want to create even more complex
designs such as better spaceships, cars, medicines, computerized cellu-
lar phone systems, and the like. We want to understand deeper aspects
of nature. These are just a few examples of computer-supported mod-
eling and simulation. More powerful tools and concepts are needed
to help us handle this increasing complexity, which is precisely what
this book is about.

This text presents an object-oriented component-based approach
to computer-supported mathematical modeling and simulation through
the powerful Modelica language and its associated technology. Mod-
elica can be viewed as an almost universal approach to high-level
computational modeling and simulation, by being able to represent a
range of application areas and providing general notation as well as
powerful abstractions and efficient implementations. The introductory
part of this book, consisting of the first two chapters, gives a quick
overview of the two main topics of this text:

• Modeling and simulation
• The Modelica language

Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica,
First Edition. By Peter Fritzson
 2011 the Institute of Electrical and Electronics Engineers, Inc. Published 2011 by John Wiley & Sons, Inc.
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2 CHAPTER 1 Basic Concepts

The two subjects are presented together since they belong together.
Throughout the text Modelica is used as a vehicle for explaining dif-
ferent aspects of modeling and simulation. Conversely, a number of
concepts in the Modelica language are presented by modeling and sim-
ulation examples. The present chapter introduces basic concepts such
as system, model , and simulation. Chapter 2 gives a quick tour of
the Modelica language as well as a number of examples, interspersed
with presentations of topics such as object-oriented mathematical mod-
eling. Chapter 3 gives an introduction to the Modelica class concept,
whereas Chapter 4 introduces modeling methodology for continuous,
discrete, and hybrid systems. Chapter 5 gives a short overview of
the Modelica Standard Library and some currently available Modelica
model libraries for a range of application domains. Finally, in two
of the appendices, examples are presented of textual modeling using
the OpenModelica electronic book OMNotebook tool, as well as very
simple graphical modeling.

1.1 SYSTEMS AND EXPERIMENTS

What is a system? We have already mentioned some systems such as
the universe, a space shuttle, and the like. A system can be almost any-
thing. A system can contain subsystems that are themselves systems.
A possible definition of system might be:

• A system is an object or collection of objects whose properties
we want to study.

Our wish to study selected properties of objects is central in this defi-
nition. The “study” aspect is fine despite the fact that it is subjective.
The selection and definition of what constitutes a system is somewhat
arbitrary and must be guided by what the system is to be used for.

What reasons can there be to study a system? There are many
answers to this question but we can discern two major motivations:

• Study a system to understand it in order to build it. This is the
engineering point of view.

• Satisfy human curiosity, for example, to understand more about
nature—the natural science viewpoint.
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1.1.1 Natural and Artificial Systems

A system according to our previous definition can occur naturally,
for example, the universe, it can be artificial such as a space shuttle,
or a mix of both. For example, the house in Figure 1.1 with solar-
heated warm tap water is an artificial system, that is, manufactured
by humans. If we also include the sun and clouds in the system, it
becomes a combination of natural and artificial components.

Even if a system occurs naturally, its definition is always highly
selective. This is made very apparent in the following quote from Ross
Ashby (1956, p. 39):

At this point, we must be clear about how a system is to be defined. Our
first impulse is to point at the pendulum and to say “the system is that
thing there.” This method, however, has a fundamental disadvantage:
every material object contains no less than an infinity of variables, and
therefore, of possible systems. The real pendulum, for instance, has not
only length and position; it has also mass, temperature, electric
conductivity, crystalline structure, chemical impurities, some
radioactivity, velocity, reflecting power, tensile strength, a surface film
of moisture, bacterial contamination, an optical absorption, elasticity,
shape, specific gravity, and so on and on. Any suggestion that we should
study all the facts is unrealistic, and actually the attempt is never made.

Collector

Storage tank

PumpCold water

Hot water

Electricity

Heater

Figure 1.1 A system: a house with solar-heated warm tap water, together with clouds
and sunshine.



4 CHAPTER 1 Basic Concepts

What is necessary is that we should pick out and study the facts that are
relevant to some main interest that is already given.

Even if the system is completely artificial, such as the cellular phone
system depicted in Figure 1.2, we must be highly selective in its def-
inition, depending on what aspects we want to study for the moment.

An important property of systems is that they should be observ-
able. Some systems, but not large natural systems like the universe,
are also controllable in the sense that we can influence their behavior
through inputs, that is:

• The inputs of a system are variables of the environment that
influence the behavior of the system. These inputs may or may
not be controllable by us.

• The outputs of a system are variables that are determined by
the system and may influence the surrounding environment.

In many systems the same variables act as both inputs and outputs . We
talk about acausal behavior if the relationships or influences between
variables do not have a causal direction, which is the case for relation-
ships described by equations. For example, in a mechanical system the
forces from the environment influence the displacement of an object,
but on the other hand the displacement of the object influences the
forces between the object and environment. What is input and what
is output in this case is primarily a choice by the observer, guided by
what is interesting to study, rather than a property of the system itself.

Regional
processor

Regional
processor

Regional
processor

Incoming callsIncoming callsIncoming calls

Central processor
in cellular phone system

Figure 1.2 Cellular phone system containing a central processor and regional proces-
sors to handle incoming calls.
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1.1.2 Experiments

Observability is essential in order to study a system according to our
definition of system. We must at least be able to observe some outputs
of a system. We can learn even more if it is possible to exercise a sys-
tem by controlling its inputs. This process is called experimentation ,
that is:

• An experiment is the process of extracting information from a
system by exercising its inputs.

To perform an experiment on a system, it must be both controllable
and observable. We apply a set of external conditions to the accessi-
ble inputs and observe the reaction of the system by measuring the
accessible outputs.

One of the disadvantages of the experimental method is that for
a large number of systems many inputs are not accessible and con-
trollable. These systems are under the influence of inaccessible inputs,
sometimes called disturbance inputs . Likewise, it is often the case that
many really useful possible outputs are not accessible for measure-
ments; these are sometimes called internal states of the system. There
are also a number of practical problems associated with performing
an experiment, for example:

• The experiment might be too expensive: Investigating ship dura-
bility by building ships and letting them collide is a very expen-
sive method of gaining information.

• The experiment might be too dangerous: Training nuclear plant
operators in handling dangerous situations by letting the nuclear
reactor enter hazardous states is not advisable.

• The system needed for the experiment might not yet exist . This
is typical of systems to be designed or manufactured.

The shortcomings of the experimental method led us to the model con-
cept. If we make a model of a system, this model can be investigated
and may answer many questions regarding the real system if the model
is realistic enough.
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1.2 THE MODEL CONCEPT

Given the previous definitions of system and experiment, we can now
attempt to define the notion of model:

• A model of a system is anything an “experiment” can be applied
to in order to answer questions about that system .

This implies that a model can be used to answer questions about a
system without doing experiments on the real system. Instead we
perform simplified “experiments” on the model, which in turn can
be regarded as a kind of simplified system that reflects properties of
the real system. In the simplest case a model can just be a piece of
information that is used to answer questions about the system.

Given this definition, any model also qualifies as a system.
Models, just like systems, are hierarchical in nature. We can cut out
a piece of a model, which becomes a new model that is valid for a
subset of the experiments for which the original model is valid. A
model is always related to the system it models and the experiments
to which it can be subjected. A statement such as “a model of a
system is invalid” is meaningless without mentioning the associated
system and the experiment. A model of a system might be valid
for one experiment on the model and invalid for another. The term
model validation, see Section 1.5.3, always refers to an experiment
or a class of experiment to be performed.

We talk about different kinds of models depending on how the
model is represented:

• Mental model—a statement like “a person is reliable” helps us
answer questions about that person’s behavior in various situa-
tions.

• Verbal model—this kind of model is expressed in words. For
example, the sentence “More accidents will occur if the speed
limit is increased” is an example of a verbal model. Expert
systems is a technology for formalizing verbal models.

• Physical model—this is a physical object that mimics some
properties of a real system, to help us answer questions about
that system. For example, during design of artifacts such as
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buildings, airplanes, and so forth, it is common to construct
small physical models with the same shape and appearance as
the real objects to be studied, for example, with respect to their
aerodynamic properties and aesthetics.

• Mathematical model—a description of a system where the rela-
tionships between variables of the system are expressed in math-
ematical form. Variables can be measurable quantities such as
size, length, weight, temperature, unemployment level, infor-
mation flow, bit rate, and so forth. Most laws of nature are
mathematical models in this sense. For example, Ohm’s law
describes the relationship between current and voltage for a
resistor; Newton’s laws describe relationships between velocity,
acceleration, mass, force, and the like.

The kinds of models that we primarily deal with in this book are
mathematical models represented in various ways, for example, as
equations, functions, computer programs, and the like. Artifacts rep-
resented by mathematical models in a computer are often called virtual
prototypes . The process of constructing and investigating such mod-
els is virtual prototyping. Sometimes the term physical modeling is
used also for the process of building mathematical models of physical
systems in the computer if the structuring and synthesis process is the
same as when building real physical models.

1.3 SIMULATION

In the previous section we mentioned the possibility of performing
“experiments” on models instead of on the real systems corresponding
to the models. This is actually one of the main uses of models, and
is denoted by the term simulation, from the Latin simulare, which
means to pretend. We define a simulation as follows:

• A simulation is an experiment performed on a model.

Analogous to our previous definition of model , this definition of sim-
ulation does not require the model to be represented in mathematical
or computer program form. However, in the rest of this text we
will concentrate on mathematical models , primarily those that have


