

Compiler Construction Using
Java, JavaCC, and Yace

^ IEEE
©computer

society

ΦΙΕΕΕ
Press Operating Committee

Chair
Linda Shafer

former Director, Software Quality Institute
The University of Texas at Austin

Editor-in-Chief
Alan Clements

Professor
University ofTeesside

Board Members

Mark J. Christensen, Independent Consultant
James W. Cortada, IBM Institute for Business Value

Richard E. (Dick) Fairley, Founder and Principal Associate, Software Engineering
Management Associates (SEMA)

Phillip Laplante, Professor of Software Engineering, Penn State University
Evan Butterfield, Director of Products and Services

Kate Guillemette, Product Development Editor, CS Press

IEEE Computer Society Publications
The world-renowned IEEE Computer Society publishes, promotes, and distributes a
wide variety of authoritative computer science and engineering texts. These books
are available from most retail outlets. Visit the CS Store at http://computer.org/store
for a list of products.

IEEE Computer Society / Wiley Partnership
The IEEE Computer Society and Wiley partnership allows the CS Press authored
book program to produce a number of exciting new titles in areas of computer sci-
ence, computing and networking with a special focus on software engineering. IEEE
Computer Society members continue to receive a 15% discount on these titles when
purchased through Wiley or at wiley.com/ieeecs

To submit questions about the program or send proposals please e-mail
kguillemette@computer.org or write to Books, IEEE Computer Society, 10662 Los
Vaqueros Circle, Los Alamitos, CA 90720-1314. Telephone +1-714-816-2169.

Additional information regarding the Computer Society authored book pro-
gram can also be accessed from our web site at http://computer.org/cspress.

Compiler Construction Using
Java, JavaCC, and Yace

ANTHONY J. DOS REIS
Slate University of New York at New Paltz

^ IEEE
«»computer

society

WILEY
A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2012 by the IEEE Computer Society, Inc.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representation or warranties with respect to the accuracy or completeness of
the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives or written sales materials.
The advice and strategies contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however,
may not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Calaloging-in-Publication Data:

Dos Reis, Anthony J.
Compiler construction using Java, JavaCC, and Yace / Anthony J. Dos Reis.

p. cm.
ISBN 978-0-470-94959-7 (hardback)

I. Compilers (Computer programs) 2. Java (Computer program language) I. Title.
QA76.76.C65D67 2011
005.4'53—dc23 2011013211

Printed in the United States of America.

oBook ISBN: 978-1-118-11276-2
ePDF ISBN: 978-1-118-11287-8
ePub ISBN: 978-1-118-11277-9
eMobi ISBN: 978-1-118-11288-5

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

To little sister

CONTENTS

Preface xv

Chapter 1 Strings, Languages, and Compilers 1

1.1 Introduction 1
1.2 Basic Language Concepts 1
1.3 Basic Compiler Concepts 3
1.4 Basic Set Theory 4
1.5 Null String 6
1.6 Concatenation 7
1.7 Exponent Notation 7
1.8 Star Operator 8
1.9 Concatenation of Sets of Strings 9
1.10 Plus Operator 11
1.11 Question Mark Operator 11
1.12 Shorthand Notation for a Set Containing a Single String 12
1.13 Operator Precedence 12
1.14 Regular Expressions 13
1.15 Limitations of Regular Expressions 15

Problems 16

Chapter 2 Context-Free Grammars, Part 1 19

2.1 Introduction 19
2.2 What is a Context-Free Grammar? 20
2.3 Derivations Using a Context-Free Grammar 21
2.4 Language Defined by a Context-Free Grammar 23
2.5 Different Ways of Representing Contet-Free Grammars 25
2.6 Some Simple Grammars 26
2.7 Techniques for Generating Languages with Context-Free Grammars 29
2.8 Regular and Right Linear Grammars 35

vii

viii CONTENTS

2.9 Counting with Regular Grammars 37
2.0 Grammars for Lists 39
2.10 An Important Language that is Not Context Free 44

Problems 45

Chapter 3 Context-Free Grammars, Part 2 49

3.1 Introduction 49
3.2 Parse Trees 49
3.3 Leftmost and Rightmost Derivations 51
3.4 Substitution 52
3.5 Ambiguous Grammars 54
3.6 Determining Nullable Nonterminals 59
3.7 Eliminating Lambda Productions 60
3.8 Eliminating Unit Productions 64
3.9 Eliminating Useless Nonterminals 66
3.10 Recursion Conversions 71
3.11 Adding the Null String to a Language 76

Problems 77

Chapter 4 Context-Free Grammars, Part 3 83

4.1 Introduction 83
4.2 Grammars for Arithmetic Expressions 83
4.3 Specifying Associativity and Precedence in Grammars 90
4.4 Backus-Naur Form 92
4.5 Syntax Diagrams 94
4.6 Abstract Syntax Trees and Three-Address Code 96
4.7 Noncontracting Grammars 97
4.8 Essentially Noncontracting Grammars 97
4.9 Converting a Context-Free Grammar to an Essentially Noncontracting 98

Grammar
4.10 Pumping Property of Context-Free Languages 101

Problems 104

Chapter 5 Chomsky's Hierarchy 107

5.1 Introduction 107
5.2 Context-Sensitive Productions 107
5.3 Context-Sensitive Grammars 110
5.4 Unrestricted Grammars 111

Problems 112

Chapter 6 Top-Down Parsing 115

6.1 Introduction 115
6.2 Top-Down Construction of a Parse Tree 115
6.3 Parses that Fail 117
6.4 A Bad Grammar for Top-Down Parsing 118
6.5 Deterministic Parsers 119
6.6 A Parser that Uses a Stack 120
6.7 Table Representation of a Stack Parser 124
6.8 Handling Productions with Nonleading Terminal 126

CONTENTS ix

6.9 Writing a Stack Parser in Java 127
Problems 134

Chapter 7 LL(1) Grammars 137

7.1 Introduction 137
7.2 FIRST Set of the Right Side of a Production 137
7.3 Determining Operation Sequences 140
7.4 Determining Selection Sets of Lambda Productions 142
7.5 Whatever-Follows-Left-Follows-Rightmost Rule 145
7.6 Selection Sets for Productions with Nuliable Right Sides 147
7.7 Selection Sets Containing End-of-Input Symbol 149
7.8 A Stack Parser for a Grammar with Lambda Productions 152
7.9 Converting a Non-LL(I) Grammar to an LL(1) Grammar 153
7.10 Parsing with an Ambiguous Grammar 160
7.11 Computing Fl RST and FOLLOW Sets 163

Problems 165

Chapter 8 Table-Driven Stack Parser 171

8.1 Introduction 171
8.2 Unifying the Operations of a Stack Parser 172
8.3 Implementing a Table-Driven Stack Parser 175
8.4 Improving Our Table-Driven Stack Parser 180
8.5 Parsers that are Not Deterministic—A Digression on Theory 181

Problems 183

Chapter 9 Recursive-Descent Parsing 185

9.1 Introduction 185
9.2 Simple Recursive-Descent Parser 185
9.3 Handling Lambda Productions 192
9.4 A Common Error 197
9.5 Java Code for Productions 198
9.6 Left Factoring in a Recursive-Descent Parser 199
9.7 Eliminating Tail Recursion 204
9.8 Translating the Star, Plus, and Question Mark Operators 108
9.9 Doing Things Backward 210

Problems 211

Chapter 10 Recursive-Descent Translation 215

10.1 Introduction 215
10.2 A Simple Translation Grammar 215
10.3 Converting a Translation Grammar to Java Code 217
10.4 Specifications for a Translation Grammar 218
10.5 Passing Information During a Parse 231
10.6 L-Attributed Grammars 236
10.7 New Token Manager 238
10.8 Solving the Token Lookahead Problem 241
10.9 Code for the New Token Manager 241
10.10 Translation Grammar for Prefix Expression Compiler 253

x CONTENTS

10.11 An Interesting Use of Recursion
Problems

Chapter 11 Assembly Language

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14
11.15

Chapt

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12

Chapt

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11
13.12
13.13

Introduction
Structure of the Jl Computer
Machine Language Instructions
Assembly Language Instructions
Pushing Characters
aout Instruction
Using Labels
Using the Assembler
s t a v Instruction
Compiling an Assignment Statement
Compiling p r i n t and p r i n t l n
Outputting Strings
Inputting Decimal Numbers
Ent ry Directive
More Assembly Language
Problems

er 12 SI—A Simple Compiler

Introduction
The Source Language
Grammar for Source Language
The Target Language
Symbol Table
Code Generator
Token Class
Writing the Translation Grammar
Implementing the S1 Compiler
Trying Out SI
Advice on Extending the S1 Compiler
Specifications for S2
Problems

er 13 JavaCC

Introduction
JavaCC Extended Regular Expressions
JavaCC Input File
Specifying Actions for Regular Expressions
JavaCC Input File for Slj
Files Produced by JavaCC
Using the Star and Plus Operators
Choice Points and the Lookahead Directive
JavaCC's Choice Algorithm
Syntactic and Semantic Lookahead
Using JavaCC to Create a Token Manager Only
Using the Token Chain
Suppressing Warning Messages
Problems

257
261

265

265
265
266
268
269
270
270
272
275
277
280
281
283
284
285
285

289

289
289
290
291
292
293
293
294
299
315
318
320
324

331

331
333
337
344
348
355
359
362
367
371
372
373
377
387

CONTENTS xi

Chapter 14 Building on S2 383

14.1 Introduction 383
14.2 Extending p r i n t i n and p r i n t 383
14.3 Cascaded Assignment Statement 388
14.4 Unary Plus and Minus 313
14.5 r e a d i n t Statement 393
14.6 Controlling the Token Trace from the Command Line 395
14.7 Specifications for S3 396

Problems 396

Chapter 15 Compiling Control Structures 399

15.1 Introduction 399
15.2 whi le Statement 399
15.3 i f Statement 403
15.4 do-whi le Statement 407
15.5 Range Checking of Numerical Constants 408
15.6 Handling Backslash-Quote in a String 410
15.7 Handling Backslash-Quote with JavaCC 411
15.8 Universal Blocks in JavaCC 416
15.9 Handling Strings that Span Lines 418
15.10 Handling Strings that Span Lines Using JavaCC 419
15.11 S PEC I AL_TOKEN Block in JavaCC 422
15.12 Error Recovery 424
15.13 Error Recovery in JavaCC 429
15.14 Specifications for S4 430

Problems 431

Chapter 16 Compiling Programs in Functional Form 435

16.1 Introduction 435
16.2 Separate Assembly and Linking 435
16.3 Calling and Returning from Fuctions 439
16.4 Source Language for S5 443
16.5 Symbol Table for S5 445
16.6 Code Generator for S5 446
16.7 Translation Grammar for S5 447
16.8 Linking with a Library 457
16.9 Specifications for S5 458
16.10 Extending S5 458

Problems 461

Chapter 17 Finite Automata 465

17.1 Introduction 465
17.2 Deterministic Finite Automata 466
17.3 Converting a DFA to a Regular Expression 468
17.4 Java Code for a DFA 472
17.5 Nondeterministic Finite Automata 474
17.6 Using an NFA as an Algorithm 476
17.7 Converting an NFA to a DFA with the Subset Algorithm 478
17.8 Converting a DFA to a Regular Grammar 479
17.9 Converting a Regular Grammar to an NFA 482

xii CONTENTS

17.10 Converting a Regular Expression to an NFA 484
17.11 Finding the Minimal DFA 488
17.12 Pumping Property of Regular Languages 493

Problems 495

Chapter 18 Capstone Project: Implementing Grep Using Compiler 499
Technology

18.1 Introduction 499
18.2 Regular Expressions for Our Grep Program 501
18.3 Token Manager for Regular Expression 501
18.4 Grammar for Regular Expressions 503
18.5 Target Language for Our Regular Expression Compiler 503
18.6 Using an NFA for Pattern Matching 508

Problems 513

Chapter 19 Compiling to a Register-Oriented Architecture 515

19.1 Introduction 515
19.2 Using the Register Instruction Set 516
19.3 Modifications to the Symbol Table for Rl 517
19.4 Parser and Code Generator for R1 518

Problems 526

Chapter 20 Optimization 529

20.1 Introduction 529
20.2 Using the ldc Instruction 531
20.3 Reusing Temporary Variables 532
20.4 Constant Folding 535
20.5 Register Allocation 537
20.6 Peephole Optimization 540

Problems 543

Chapter 21 Interpreters 547

21.1 Introduction 547
21.2 Converting S1 to 11 549
21.3 Interpreting Statements that Transfer Control 552
21.4 Implementing the Compiler-Interpreter CM 553
21.5 Advantages of Interpreters 558

Problems 559

Chapter 22 Bottom-Up Parsing 561

22.1 Introduction 561
22.2 Principles of Bottom-Up Parsing 561
22.3 Parsing with Right- versus Left-Recursive Grammars 565
22.4 Bottom-Up Parsing with an Ambiguous Grammar 566
22.5 Do-Not-Reduce Rule 569
22.6 SLR(l) Parsing 570
22.7 Shift/Reduce Conflicts 577
22.8 Reduce/Reduce Conflicts 579
22.9 LR(1) Parsing 579

Problems 584

CONTENTS xiii

Chapter 23 yace

23.1 Introduction
23.2 yace Input and Output Files
23.3 A Simple yacc-Generated Parser
23.4 Passing Values Using the Value Stack
23.5 Using yace With an Ambiguous Grammar
23.6 Passing Values down the Parse Tree
23.7 Implementing Sly
23.8 jflex

Problems

Appendix A Stack Instruction Set

Appendix B Register Instruction Set

References

587

587
587
588
596
602
604
606
612
618

621

625

629

Index 631

PREFACE

My principal goal in writing this book is to provide the reader with a clear exposition of
the theory of compiler design and implementation along with plenty of opportunities to
put that theory into practice. The theory, of course, is essential, but so is the practice.

NOTABLE FEATURES

• Provides numerous, well-defined projects along with test cases. These projects en-
sure that students not only know the theory but also know how to apply it. Instruc-
tors are relieved of the burden of designing projects that integrate well with the text.

• Project work starts early in the book so that students can apply the theory as they are
learning it.

• The compiler tools (JavaCC, Yace, and Lex) are optional topics.
• The entire book is Java oriented. The implementation language is Java. The princi-

pal target language is similar to Java's bytecode. The compiler tools generate Java
code. The form of attributed grammar used has a Java-like syntax.

• The target languages (one is stack oriented like Java's bytecode; the other is register
oriented) are very easy to learn but are sufficiently powerful to support advanced
compiler projects.

• The software package is a dream come true for both students and instructors. It auto-
matically evaluates a student's compiler projects with respect to correctness, run time,
and size. It is great for students: they get immediate feedback on their projects. It is
great for instructors: they can easily and accurately evaluate a student's work. With a
single command, an instructor can generate a report for an entire class. The software
runs on three platforms: Microsoft Windows, Linux, and the Macintosh OS X.

• Demonstrates how compiler technology is not just for compilers. In a capstone pro-
ject, students design and implement grep using compiler technology.

• Includes a chapter on interpreters that fits in with the rest of the book.

xv

xvi PREFACE

• Includes a chapter on optimization that is just right for an introductory course. Stu-
dents do not simply read about optimization techniques—they implement a variety
of techniques, such as constant folding, peephole optimization, and register
allocation.

• The book uses a Java-like form of grammars that students can easily understand and
use. This is the same form that JavaCC uses. Thus, students can make transition to
JavaCC quickly and easily.

• Provides enough theory that the book can be used for a combined compiler/automa-
ta/formal languages course. The book covers most of the topics covered in an au-
tomata/formal languages course: finite automata, stack parsers, regular expressions,
regular grammars, context-free grammars, context-sensitive grammars, unrestricted
grammars, Chomsky's hierarchy, and the pumping lemmas. Pushdown automata,
Turing machines, computability, and complexity are discussed in supplements in
the software package. The software package also includes a pushdown automaton
simulator and Turing machine simulator.

• Covers every topic that should be in a first course or in an only course on compilers.
Students will learn not only the theory and practice of compiler design but also im-
portant system concepts.

SOFTWARE PACKAGE

The software package for the textbook has some unusual features. When students run one
of their compiler-generated programs, the software produces a log file. The log file con-
tains a time stamp, the student's name, the output produced by the compiler-generated
program, and an evaluation of the compiler-generated program with respect to correct-
ness, program size, and execution time. If the output is not correct (indicating that the stu-
dent's compiler is generating incorrect code), the log file is marked with NOT COR-
RECT. If the compiled program is too big or the execution time too long, the log file is
marked with OVER LIMIT.

The name of a log file contains the student's name. For example, the log file for the S3
project of a student whose last name is Dos Reis would be S3.dosreis.log. Because each
log file name is unique, an instructor can store all the log files for a class in a single direc-
tory. A single command will then produce a report for the entire class.

The software supports two instruction sets: the stack instruction set and the register in-
struction set. The stack instruction set is the default instruction set. To use the register in-
struction set, a single directive is placed in the assembly language source program. The
software then automatically reconfigures itself to use the register instruction set.

The three principal programs in the software package are a (the assembler/linker), e
(the executor), and 1 (the library maker). The software package also includes p (a push-
down automaton simulator) and t (a Turing machine simulator).

The software package for this book is available from the publisher. The compiler tools
are available on the Web. At the time of this writing, JavaCC is at http://java.net/down-
loads/javacc, Byacc/j is at http://byaccj.sourceforge.net/, and Jflex is at http://jflex.de/.

PROJECTS

This textbook specifies many well-defined projects. The source language has six levels of
increasing complexity. A student can write a compiler for each level that translates to the

ACKNOWLEDGMENTS xvii

stack instruction set. A student can also write a compiler for each level that translates to
the register instruction set, or incorporates optimization techniques. For each level, a stu-
dent can write a pure interpreter or an interpreter that uses an intermediate code. A student
can implement several variations of grep using compiler technology. A student can write
the code for any of these projects by hand or by using JavaCC or Yace. Many of the chap-
ter problems provide additional projects. In short, there are plenty of projects.

For each project, the textbook provides substantial support. Moreover, many of the
projects are incremental enhancements of a previous project. This incremental approach
works well; each project is challenging but not so challenging that students cannot do it.

Most projects can be completed in a week's time. Thus, students should be able to do
ten or even more projects in a single semester.

USEFUL REFERENCES

For background material, the reader is referred to the author's An Introductions to Pro-
gramming Using Java (Jones & Bartlett, 2010) and Assembly Language and Computer
Architecture Using C++ and Java (Course Technology, 2004). Also recommended is
JFLAP (available at http://www.jflap.org), an interactive program that permits experi-
mentation with various types of automata and grammars.

ACKNOWLEDGMENTS

I would like to thank Professors Robert McNaughton and Dean Arden who years ago at
RPI taught me the beauty of formal language theory, my students who used preliminary
versions of the book and provided valuable feedback, Katherine Guillemette for her sup-
port of this project, my daughter Laura for her suggestions on the content and structure of
the book, and my wife for her encouragement.

ANTHONY J. DOS REIS
New Paltz, New York

October 2011

1
STRINGS, LANGUAGES,
AND COMPILERS

1.1 INTRODUCTION

Compiler construction is truly an engineering science. With this science, we can methodi-
cally—almost routinely—design and implement fast, reliable, and powerful compilers.

You should study compiler construction for several reasons:

• Compiler construction techniques have very broad applicability. The usefulness of
these techniques is not limited to compilers.

• To program most effectively, you need to understand the compiling process.
• Language and language translation are at the very heart of computing. You should

be familiar with their theory and practice.
• Unlike some areas of computer science, you do not typically pick up compiler con-

struction techniques "on the job." Thus, the formal study of these techniques is es-
sential.

To be fair, you should also consider reasons for not studying compiler construction.
Only one comes to mind: Your doctor has ordered you to avoid excitement.

1.2 BASIC LANG UAGE CONCEPTS

In our study of compiler design theory, we begin with several important definitions. An
alphabet is the finite set of characters used in the writing of a language. For example, the
alphabet of the Java programming language consists of all the characters that can appear
in a program: the upper- and lower-case letters, the digits, whitespace (space, tab, new-
line, and carriage return), and all the special symbols, such as =, +, and {. For most of the
examples in this book, we will use very small alphabets, such as {b, c} and {b, c, d}. We

Compiler Construction Using Java, JavaCC. and Yace, First Edition. Anthony J. Dos Reis l
© 2012 the IEEE Computer Society. Inc. Published 2012 by John Wiley & Sons, Inc.

8

2 STRINGS, LANGUAGES, AND COMPILERS

will avoid using the letter "a" in our alphabets because of the potential confusion with the
English article "a".

A string over an alphabet is a finite sequence of characters selected from that alphabet.
For example, suppose our alphabet is {b, c, d}. Then

cbd
cbcc
c

are examples of strings over our alphabet. Notice that in a string over an alphabet, each
character in the alphabet can appear any number of times (including zero times) and in
any order. For example, in the string cbcc (a string over the three-letter alphabet {b, c,
d}), the character b appears once, c appears three times, and d does not appear.

The length of a string is the number of characters the string contains. We will enclose
a string with vertical bars to designate its length. For example, |cbcc| designates the
length of the string cbcc. Thus, |cbcc| = 4.

A language is a set of strings over some alphabet. For example, the set containing just
the three strings cbd, cbcc, ahd c is a language. This set is not a very interesting lan-
guage, but it is, nevertheless, a language according to our definition.

Let us see how our definitions apply to a "real" language—the programming language
Java. Consider a Java program all written on a single line:

class C { public static void main(Stringf] args) {} }

Clearly, such a program is a single string over the alphabet of Java. We can also view a
multiple-line program as a single string—namely, the string that is formed by connecting
successive lines with a line separator, such as a newline character or a carriage
return/newline sequence. Indeed, a multiline program stored in a computer file is repre-
sented by just such a string. Thus, the multiple-line program

c l a s s C
{

public static void main(String!] args)

{
}

}

is the single string

c l a s s CD{ D p u b l i c s t a t i c void main (S t r ing!] a r g s) D {D } D}

where D represents the line separator. The Java language is the set of all strings over the
Java alphabet that are valid Java programs.

A language can be either finite or infinite and may or may not have a meaning asso-
ciated with each string. The Java language is infinite and has a meaning associated with
each string. The meaning of each string in the Java language is what it tells the com-
puter to do. In contrast, the language {cbd, cbcc, c} is finite and has no meaning as-
sociated with each string. Nevertheless, we still consider it a language. A language is
simply a set, finite or infinite, of strings, each of which may or may not have an asso-
ciated meaning.

1.3 BASIC COMPILER CONCEPTS 3

Syntax rules are rules that define the form of the language, that is, they specify which
strings are in a language. Semantic rules are rules that associate a meaning to each string
in a language, and are optional under our definition of language.

Occasionally, we will want to represent a string with a single symbol very much like*
is used to represent a number in algebra. For this purpose, we will use the small letters at
the end of the English alphabet. For example, we might use x to represent the string cbd
and v to represent the string cbcc.

1.3 BASIC COMPILER CONCEPTS

A compiler is a translator. It typically translates a program (the source program) written
in one language to an equivalent program (the target program) written in another lan-
guage (see Figure 1.1). We call the languages in which the source and target programs are
written the source and target languages, respectively.

Typically, the source language is a high-level language in which humans can program
comfortably (such as Java or C++), whereas the target language is the language the com-
puter hardware can directly handle (machine language) or a symbolic form of it (assem-
bly language).

If the source program violates a syntax rule of the source language, we say it has a syn-
tax error. For example, the following Java method has one syntax error (a right brace in-
stead of a left brace on the second line):

public void greetings ()

} // syntax error

System.out.printIn("hello");

}

A logic error is an error that does not violate a syntax rule but results in the computer
performing incorrectly when we run the program. For example, suppose we write the fol-
lowing Java method to compute and return the sum of 2 and 3:

p u b l i c i n t sum()
)

r e t u r n 2 + 30; / / l o g i c e r r o r
}

This method is a valid Java method but it tells the computer to do the wrong thing—to
compute 2 + 30 instead 2 + 3. Thus, the error here is a logic error.

A compiler in its simplest form consists of three parts: the token manager, the parser,
and the code generator (see Fig. 1.2).

The source program that the compiler inputs is a stream of characters. The token man-
ager breaks up this stream into meaningful units, called tokens. For example, if a token
manager reads

4 STRINGS, LANGUAGES, AND COMPILERS

i n t x; / / impor tan t example
x = 55;

it would output the following sequence of tokens:

i n t
x

X

55

The token manager does not produce tokens for white space (i.e., space, tab, newline, and
carriage return) and comments because the parser does need these components of the
source program. A token manager is sometimes called a lexical analyzer, lexer, scanner,
or tokenizer.

A parser in its simplest form has three functions:

1. It analyzes the structure of the token sequence produced by the token manager. If it
detects a syntax error, it takes the appropriate action (such as generating an error
message and terminating the compile).

2. It derives and accumulates information from the token sequence that will be needed
by the code generator.

3. It invokes the code generator, passing it the information it has accumulated.

The code generator, the last module of a compiler, outputs the target program based on
the information provided by the parser.

In the compilers we will build, the parser acts as the controller. As it executes, it calls
the token manager whenever it needs a token, and it calls the code generator at various
points during the parse, passing the code generator the information the code generator
needs. Thus, the three parts of the compiler operate concurrently. An alternate approach is
to organize the compiling process into a sequence of passes. Each pass reads an input file
and creates an output file that becomes the input file for the next pass. For example, we
can organize our simple compiler into three passes. In the first pass, the token manager
reads the source program and creates a file containing the tokens corresponding to the
source program. In the second pass, the parser reads the file of tokens and outputs a file
containing information required by the code generator. In the third pass, the code genera-
tor reads this file and outputs a file containing the target program.

1.4 BASIC SET THEORY

Since languages are sets of strings, it is appropriate at this point to review some basic set
theory. One method of representing a set is simply to list its elements in any order. Typi-

1.4 BASIC SET THEORY 5

cally, we use the left and right braces, "{" and " } " , to delimit the beginning and end, re-
spectively, of the list of elements. For example, we represent the set consisting of the inte-
gers 3 and 421 with

{3,421} or {421,3}

Similarly, we represent the set consisting of the two strings b and be with

{b, be} or {be , b}

This approach cannot work for an infinite set because it is, of course, impossible to list all
the elements of an infinite set. If, however, the elements of an infinite set follow some ob-
vious pattern, we can represent the set by listing just the first few elements, followed by
the ellipsis (.. .). For example, the set

{b , b b , b b b , . . .}

represents the infinite set of strings containing one or more b's and no other characters.
Representing infinite sets this way, however, is somewhat imprecise because it requires
the reader to figure out the pattern represented by the first few elements.

Another method for representing a set—one that works for both finite and infinite
sets—is to give a rule for determining its elements. In this method, a set definition has the
form

{E: defining rule}

where E is an expression containing one or more variables, and the defining rule general-
ly specifies the allowable ranges of the variables in E. The colon means "such that." We
call this representation the set-builder notation. For example, we can represent the set
containing the integers 1 to 100 with

\x : x is an integer and 1 < JC < 100}

Read this definition as "the set of all x such that x is an integer and x is greater than or
equal to 1 and less than or equal to 100." A slightly more complicated example is

{n2 : n is an integer and n 2: 1}

Notice that the expression preceding the colon is not a single variable as in the preceding
example. The defining rule indicates that n can be 1, 2, 3,4, and so on. The corresponding
values of«2 are the elements of the set—namely, 1, 4, 9, 16, etc. Thus, this is the infinite
set of integer squares:

{1,4,9, 16,. . .}

In set notation, the mathematical symbol €E means "is an element of." A superimposed
slash on a symbol negates the condition represented. Thus, ^ means "is not a element of."
For example, if P = {2, 3,4}, then 3 G. P, but 5 £ P.

The empty set [denoted by either {} or φ] is the set that contains no elements. The uni-
versal set (denoted by U) is the set of all elements under consideration. For example, if
we are working with sets of integers, then the set of all integers is our universe. If we are

6 STRINGS, LANGUAGES, AND COMPILERS

working with strings over the alphabet {b, c}, then the set of all strings over {b, c} is our
universe.

The set operations union, intersection, and complement, form new sets from given sets.
The union operator is most often denoted by the special symbol u . We, however, use the
vertical bar | to denote the union operator. The advantage of | is that it is available on stan-
dard keyboards. We will use n and ~ to denote the intersection and complement opera-
tors, respectively, n , the standard symbol for set intersection, unfortunately is not avail-
able on keyboards. However, we will use set intersection so infrequently that it will not be
necessary to substitute a keyboard character for n .

Set union, intersection, and complement are defined as follows:

Union of/5 andö: P\ Q= {x :x G Ροτχ G Q)

Intersection of P and Q: P r\Q= {x :x G P and x G Q)
Complement of P: ~P = {x : x G U and JC £ P]

Here are the definitions in words of these operators:

P | Q is the set of all elements that are in either P or Q or both.
P n Q is the set of elements that are in both P and Q.
~P is the set of all elements in the universe U that are not in P.

For example, ifP= {b, bb}, Q = {bb, bbb}, and our universe U= {b, bb, bbb , . . .},then

P\Q = {b, bb, bbb}
Ρ η ρ = {bb}
~P = {bbb, bbbb, bbbbb,. ..}
~Q = {b, bbbb, bbbbb, . . .}

A collection of sets is disjoint if the intersection of every pair of sets from the collec-
tion is the empty set (i.e., they have no elements in common). For example, the sets {b},
{bb, bbb}, and {bbbb} are disjoint since no two have any elements in common.

The set P is a subset of Q (denoted P QQ) if every element of P is also in Q. The set P
is a proper subset of the set Q (denoted P CQ) if P is a subset of Q, and Q has at least one
element not in P. For example, if P = {b, bb}, Q = {b, bb, bbb}, and R = {b, bb}, then P
is proper subset of Q, but P is not a proper subset of/?. However, P is a subset of/?. Two
sets are equal if each is the subset of the other. With P and R given as above, P C / ? and /?
C P. So we can conclude that P = R. Note that the empty set is a subset of any set; that is,
{} C 5 for any set 5.

We can apply the set operations union, intersection, and complement to any sets. We
will soon see some additional set operations specifically for sets of strings.

1.5 NULL STRING

When prehistoric humans started using numbers, they used the natural numbers 1 ,2 ,3 ,
It was easy to grasp the idea of oneness, twoness, threeness, and so on. Therefore, it was
natural to have symbols designating these concepts. In contrast, the number 0 is hardly a
natural concept. After all, how could something (the symbol 0) designate nothing? Today,

1.7 EXPONENT NOTATION 7

of course, we are all quite comfortable with the number 0 and put it to good use every day.
A similar situation applies to strings. It is natural to think of a string as a sequence of one or
more characters. But, just as the concept zero is useful to arithmetic, so is the concept of a
null string—the string whose length is zero—useful to language theory. The null string is
the string that does not contain any characters.

How do we designate the null string? Normally, we designate strings by writing them
down on a piece of paper. For example, to designate a string consisting of the first three
small letters of the English alphabet, we write abc. A null string, however, does not have
any characters, so there is nothing to write down. We need some symbol, preferably one
that does not appear in the alphabets we use, to represent the null string. Some writers of
compiler books use the Greek letter e for the null string. However, since e is easily con-
fused with the symbol for set membership, we will use the small Greek letter λ (lambda)
to represent the null string.

One common misconception about the null string is that a string consisting of a single
space is the null string. A space is a character whose length is one; the null string has
length zero. They are not the same. Another misconception has to do with the empty set.
The null string is a string. Thus, the set {A} contains exactly one string—namely the null
string. The empty set {}, on the other hand, does not contain any string.

1.6 CONCATENATION

We call the operation of taking one string and placing it next to another string in the order
given to form a new string concatenation. For example, if we concatenate bed and ef g,
we get the string bedef g. Note that the concatenation of any string x with the null string
λ yields x. That is,

χλ = Ax = x

1.7 EXPONENT NOTATION

A nonnegative exponent applied to a character or a sequence of characters in a string
specifies the replication of that character or sequence of characters. For example b4 is a
shorthand representation of bbbb. We use parentheses if the scope of the replication is
more than one character. Hence, b(cd)2e represents bedede. A string replicated zero
times is by definition the null string; that is, for any string x, x° = A.

We can use exponent notation along with set-builder notation to define sets of strings.
For example, the set

{ti: 1 < / < 3 }

is the set

{b \b 2 , b3} = {b, bb, bbb}

The exponent in exponent notation can never be less than zero. If we do not specify its
lower bound in a set definition, assume it is zero. For example, the set

{b ' ' : /<3}

8 STRINGS, LANGUAGES, AND COMPILERS

should be interpreted as

{bf: 0 < / < 3} = {b°, b1, b2, b3} = {A, b, bb, bbb}

Exercise 1.1

Describe in English the language defined by {b'c2': / ^ 0}.

Answer:

The set of all strings consisting of b's followed by c's in which the number of c's is twice
the number of b's. This set is {A, bcc, bbcccc, bbbcccccc , . . .}.

1.8 STAR OPERATOR (ALSO KNOWN AS THE ZERO-OR-MORE
OPERATOR)

We have just seen that an exponent following a character represents a single string (for
example, b3 represents bbb). In contrast, the star operator, *, following a character (for
example, b*) represents a set of strings. The set contains every possible replication (in-
cluding zero replications) of the starred character. For example,

b* = {b°, b \ b2, b \ . . . } = {b" : n > 0 } = {A, b, bb, bbb , . . . }

Think of the star operator as meaning "zero or more."
The star operator always applies to the item immediately preceding it. If a parenthe-

sized expression precedes the star operator, then the star applies to whatever is inside the
parentheses. For example, in (bed)*, the parentheses indicate that the star operation ap-
plies to the entire string bed. That is,

(bed)* = {A, bed, bedbed, bedbedbed, . . . }

The star operator can also be applied to sets of strings. If A is a set of strings, then A* is
the set of strings that can be formed from the strings of A using concatenation, allowing
any string in A to be replicated any number of times (including zero times) and used in
any order. By definition, the null string is always in A*.

Here are several examples of starred sets:

{b}*= {A, b, bb, bbb, . . .} = b*
jb, c}* = {A, b, c, bb, be, cb, cc, bbb, . . .}
{A}*={A}
Π*={λ}
{bb, cc}* = {A, bb, cc, bbbb, bbec, cebb, cccc,. . .}

{b, cc}* = {A, b, bb, cc, bbb, bcc, ccb, bbbb . . .}

Notice that {b) * = b*. That is, starring a set that contains just one string yields the same
set as starring just that string.

Here is how to determine if a given string is in A*, where A is an arbitrary set of
strings: If the given string is the null string, then it is in A* by definition. If the given
string is nonnull, and it can be divided into substrings such that each substring is in A,

1.9 CONCATENATION OF SETS OF STRINGS 9

then the given string is in A*. Otherwise, the string is not in A*. For example, suppose A =
{b, c c | . We can divide the string bccbb into four parts: b, cc, b, and b, each of which is
in A. Therefore, bccbb €Ξ A*. On the other hand, for the string bccc the required subdi-
vision is impossible. If we divide bccc into b, cc, and c, the first two strings are in A but
the last is not. All other subdivisions of bccc similarly fail. Therefore, bccc £ A*.

We call the set that results from the application of the star operator to a string or set of
strings the Kleene closure, in honor of Stephen C. Kleene, a pioneer in theoretical com-
puter science.

Let us now use the star operator to restate two important definitions that we gave earli-
er. Let the capital Greek letter Σ (sigma) represent an arbitrary alphabet. A string over the
alphabet Σ is any string in X*. For example, suppose Σ = {b, c}. Then

Σ* = {A, b, c, bb, be, cb, cc, bbb,. . .}

Thus, A, b, c, bb, be, cb, cc, bbb,... are strings over S. It may appear strange to view A
as a string over the alphabet Σ = {b, c}. Actually, this view is quite reasonable since A has
no characters not in Jb, c}. A is always a string over Σ regardless of the content of Σ be-
cause, by definition, A is always in Σ*. A language over the alphabet Σ is any subset of
Σ*. For example {A}, {b} , and {b, cc} are each languages over Σ = {b, c}. Even the
empty set is a language over Σ because it is a subset of X*.

Exercise 1.2

a) List all the strings of length 3 in {b, cc}*.
b) Isccbcc e {b, cc}*?

Answer:

a) bbb, bec, ccb.
b) Yes. To confirm this, subdivide ccbcc into cc, b, and cc, all of which are elements

of (b, cc}.

1.9 CONCATENATION OF SETS OF STRINGS

Concatenation can be applied to sets of strings as well as individual strings. If we let A
and B be two sets of strings, then AB, the concatenation of the sets A and B, is

{xy :xGA and y €Ξ B}

That is, AB is the set of all strings that can be formed by concatenating a string A with a
string B. For example, if A = {b, cc} and B = {d, dd}, then

AB = {bd, bdd, ccd, cedd}
BA = {db, dec, ddb, ddec}

As an example of concatenation, consider the set b*c*, the concatenation of the sets
b* and c*. Each string in b*c* consists of some string from b* concatenated to some

10 STRINGS, LANGUAGES, AND COMPILERS

string in c*. That is, each string consists of zero or more b's followed by zero or more
c's. The number of b's does not have to equal the number of c's, but all b's must precede
all c's. Thus, b*c* = {A, b, c, bb, be, cc, bbb, bbc, bec, c c c , . . . } . In exponent nota-
tion, b*c* = {b'd : i > 0 andy > 0}.

A string can also be concatenated with a set. If x is a string and A is a set of strings,
then xA, the concatenation of x with A is

{xy.ytEA}

Similarly, Ax is

{yx : y £ A}

For example, bbc*, the concatenation of the string bb and the set c*, is the set of all
strings consisting of bb followed by a string in c*. Thus,

bbc* = {bbA = bb, bbc, bbec, bbece, . . .}

Notice that it follows from our definitions that xA = {x}A, where x is an arbitrary string
and A is a set of strings. That is, we get the same result whether we concatenate x (the
string) or {x) (the set containing just x) to a set A.

Exercise 1.3

a) List all strings in b*cb* of length less than 3.
b) Write an expression using the star operator which defines the same set as {fc^e'd' : p

> 0 , ? > l , r > 2 } .

Answer:

a) c, be, cb.
b) b*cc*ddd*.

■
The union operator implies a choice with respect to the makeup of the strings in the

language specified. For example, we can interpret

{b}({c}|{d})

as the set of strings consisting of a b followed by a choice of c or d. That is, the set con-
sists of the strings be and bd.

Exercise 1.4

Describe in English the set defined by b*({c} | {d})e*.

Answer:

The set of all strings consisting of zero or more b's, followed by either c or d, followed
by zero or more e's.

