The Power and Beauty of Electromagnetic Fields

Frederic R. Morgenthaler

\[\nabla \cdot \left[-\frac{i}{c} (\mathbf{H} \times \mathbf{V})^i - \varepsilon_0 \mathbf{E} \times \mathbf{V} \right] = \mathbf{J}_o + \nabla \cdot [\mathbf{P} \times \mathbf{V}] \]

\[\nabla \cdot \left[\frac{i}{c} (\mathbf{E} \times \mathbf{V})^i - \mu_0 \mathbf{H} \times \mathbf{V} \right] = \nabla \cdot [\mu_0 \mathbf{M} \times \mathbf{V}] \]
THE POWER AND BEAUTY OF ELECTROMAGNETIC FIELDS
THE POWER AND BEAUTY
OF ELECTROMAGNETIC
FIELDS

F. R. Morgenthaler

IEEE Antenna Propagation Society, Sponsor

The IEEE Press Series on Electromagnetic Wave Theory
Andreas C. Cangellaris, Series Editor

IEEE Press

WILEY
A John Wiley & Sons, Inc., Publication
To my loving wife, Barbara,
our splendid daughters,
Ann and Janet,
and their wonderful children, Sarah, Brian,
Douglas, and Tessie
CONTENTS

Preface xxi
Acknowledgments xxvii
List of Figures xxix

PART I BASIC ELECTROMAGNETIC THEORY

1 Maxwell’s Equations 5

1.1 Mathematical notation 5

1.2 Free-space fields and forces 6
 Integral form of Maxwell’s Equations 6
 Units and fundamental constants 8
 Linearity and superposition 8
 Differential form of Maxwell’s Equations 9

1.3 Vector and scalar potentials 10
 Lorenz gauge 11
 Coulomb gauge 11

1.4 Inhomogeneous wave equations for E and H 12

1.5 Static fields 12
 Integration of Poisson’s Equation 13
 Electrostatics 14
 Magnetostatics 14

1.6 Integration of the inhomogeneous wave equation 15
 Current element (Hertzian electric dipole) 16
Current loop (Hertzian magnetic dipole) 17
1.7 Polarizable, magnetizable, and conducting media 18
Polarization and Amperian electric currents 19
Chu formulation 22
Electrically conducting materials 23
Perfect conductors 23
Dielectric and magnetic materials 23
1.8 Boundary conditions 24
Electric surface charges 24
Electric surface currents 24
Conservation of charge 25
1.9 The complex Maxwell Equations 26

2 Quasistatic Approximations 29
2.1 Quasistatic expansions of a standing wave 30
2.2 Electroquasistatic \((EQS)\) fields 31
Zero-order fields 31
Boundary conditions 32
First-order fields 32
2.3 Magnetoquasistatic \((MQS)\) fields 33
Zero-order fields 33
Boundary conditions 34
First-order fields 34
2.4 Conduction problems 35
\((EQS)\) regime 35
\((MQS)\) regime 36
2.5 Laplacian approximations 37

3 Electromagnetic Power, Energy, Stress, and Momentum 39
3.1 Introduction 39
Power conversion and force densities 39
Electromagnetic torque density 40
Uniqueness of \(S, W, T,\) and \(G\) 41
3.2 The Maxwell–Poynting representation 41
Maxwell stress tensor 41
Poynting Theorem 42
3.3 Quasistatic power and energy 43
Standard form of quasistatic power theorems 43
Modified form of quasistatic power theorems 44
3.4 Alternative representations 45
Introduction 45
An alternate Poynting theorem 46
An alternate stress-momentum theorem 48
Alternate (circuit-theory) representation 49
Electromagnetic force on a moving charge 51
Alternate accounting of power and momentum 51
CONTENTS

6.6 Uniqueness theorems 94
6.7 The equivalence principle 96
6.8 The induction theorem 97
6.9 Babinet’s Principle 98
Complementary structures 98
Dual structures and their complements 100
6.10 The reciprocity theorem 100

PART II FOUR-DIMENSIONAL ELECTROMAGNETISM

7 Four-Dimensional Vectors and Tensors 105
7.1 Space–time coordinates 105
7.2 Four-vector electric-current density 106
7.3 Four-vector potential (Lorenz gauge) 106
7.4 Four-Laplacian (wave equation) 107
7.5 Maxwell’s Equations and field tensors 107
7.6 The four-dimensional curl operator 109
7.7 Four-dimensional “statics” 110
7.8 Four-dimensional force density 112
7.9 Six-vectors and dual field tensors 113
7.10 Four-vector electric and magnetic fields 113
Lorentz force on an electric charge 114
Lorentz force on a magnetic charge 114
Lorentz invariance of four-vectors 115
7.11 The field tensors and Maxwell’s Equations revisited 115
7.12 Linear conductors revisited 116
Modified Lorenz gauge 117
Boundary conditions 117

8 Energy-Momentum Tensors 119
8.1 Introduction 119
Force and power conversion densities 119
Electromagnetic torque density 120
8.2 Maxwell–Poynting energy-momentum tensor 121
8.3 Alternate energy-momentum tensors 121
Dual Alternate energy-momentum tensor 122
Components of the Alternate tensor 124
Electromagnetic force on a moving charge 124
8.4 Boundary conditions and gauge considerations 125
8.5 Electromagnetic beauty revisited 126
9 **Dielectric and Magnetic Materials**

9.1 Introduction 129
9.2 Maxwell’s Equations with polarization and magnetization 130
9.3 Amperian energy-momentum tensors 131
 Modified energy-momentum tensors 132
 Linear dielectric and magnetic materials 134
 Complex Alternate-power theorems 137
 Quasistatic approximations 138

10 **Amperian, Minkowski, and Chu Formulations**

10.1 Introduction 141
10.2 Maxwell’s Equations in the Amperian formulation 141
10.3 Maxwell’s Equations in the Minkowski formulation 142
10.4 Maxwell’s Equations in the Chu formulation 143
10.5 Energy-momentum tensors and four-force densities 145
 Amperian energy momentum and four-force 145
 Minkowski energy momentum and four-force 146
 Chu energy momentum and four-force 147
10.6 Discussion of force densities 148
10.7 The principle of virtual power 150

PART III ELECTROMAGNETIC EXAMPLES

11 **Static and Quasistatic Fields**

11.1 Spherical charge distribution 157
11.2 Electric field in a rectangular slot 158
11.3 Current in a cylindrical conductor 160
 Static current 160
 Sinusoidal steady-state current 162
11.4 Sphere with uniform conductivity 163
 Quasistatic electric-field probe 163
 Power and energy 166
 Quasistatic magnetic-field probe 168
 Power and energy 169
11.5 Quasistatic analysis of a physical resistor 170
 Introduction 170
 Fields and potentials 171
 Equivalent circuits 178
11.6 Magnetic diffusion 179

12 **Uniformly Moving Electric Charges**

12.1 Point charge 183
 Uniform motion in free-space 183
 Motion in a dielectric (Čerenkov radiation) 185
12.2 Surface charges separating at constant velocity 185
 Introduction 185
CONTENTS

Waves and boundary conditions 251
Convolution integral 252

16 Plane Waves 255
16.1 Uniform TEM plane waves 255
 Propagation in free-space 255
 Propagation in uniform linear materials 256
16.2 Doppler-shifted TEM plane waves 257
16.3 Nonuniform plane waves 258
 TE waves 259
 TM waves 259
 Energy velocities 260
16.4 Skin-depth-limited current in a conductor 261

17 Waves Incident at a Material Interface 263
17.1 Reflected and transmitted plane waves 263
17.2 TE polarization 264
 Law of reflection and Snell’s Law 265
 Critical angle 265
 Reflection and transmission coefficients 265
 Magnetic Brewster Angle 266
 Alternate-power flux 267
17.3 TM polarization 267
 Reflection and transmission coefficients 267
 Brewster Angle 268
 Dual Alternate-power flux 268
17.4 Elliptically polarized incident waves 269

18 TEM Transmission Lines 271
18.1 General time-dependent solutions 271
 Source equivalence 272
 Power energy and stress momentum 273
18.2 Parallel-plate TEM line in the sinusoidal steady state 274
 Infinite line 274
 Short-circuit termination at z = 0 277
18.3 TEM tapered-plate “horn” transformer 280
18.4 TEM line with parallel plates of high conductivity 282
 Perfectly conducting plates 284
 High conductivity revisited (the complete potentials) 285
 Application of the complex power theorems 287
18.5 Parallel-plate TEM line loaded with linear material 289

19 Rectangular Waveguide Modes 293
19.1 Introduction 293
19.2 Periodic potentials and fields 294
CONTENTS

19.3 Waveguide dispersion
19.4 \(TE_{nm}\) modes
\(TE\) power fluxes
19.5 \(TM_{nm}\) modes
\(TM\) power fluxes
19.6 Null Alternate-power and Alternate-energy distributions
19.7 Uniqueness resolved

20 Circular Waveguide Modes

20.1 Introduction
Waveguide dispersion
20.2 \(TM_{nm}\) modes
\(TM\) power fluxes
20.3 \(TE_{nm}\) modes
\(TE\) power fluxes
20.4 Null Alternate power and energy distributions
20.5 Alternate energy momentum and photons
\(TE_0\) “circularly polarized” modes
\(TM_0\) “circularly polarized” modes
Modes of a square waveguide

21 Dielectric Waveguides

21.1 Introduction
21.2 Symmetric \(TE\) modes
21.3 Antisymmetric \(TE\) modes
21.4 Dispersion relations
\(TE\) modes
\(TM\) modes

22 Antennas and Diffraction

22.1 Introduction
22.2 Half-wave dipoles
\(Wire\) antenna
\(Thin\) slot in a ground plane
22.3 Self-complementary planar antennas
22.4 Traveling-wave wire antennas
\(Super\)-gain and end-fire antennas
22.5 The theory of simple arrays
\(Uniform\) linear arrays
\(Directivity\) as a function of \(N, kd,\) and angle
22.6 Diffraction by a rectangular slit
\(Maxwell\)--\(Poynting\) analysis
\(Alternate\)-representation analysis
22.7 Diffraction by a large circular aperture
\(On\)-axis fields and power
\(Fresnel\) zones
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-axis far-field radiation pattern</td>
<td>367</td>
</tr>
<tr>
<td>22.8 Diffraction by a small circular aperture</td>
<td>369</td>
</tr>
<tr>
<td>22.9 Diffraction by the complementary screen</td>
<td>371</td>
</tr>
<tr>
<td>22.10 Paraxial wave equation</td>
<td>372</td>
</tr>
<tr>
<td>Introduction</td>
<td>372</td>
</tr>
<tr>
<td>Gaussian-beam solutions</td>
<td>373</td>
</tr>
<tr>
<td>Higher-order solutions</td>
<td>374</td>
</tr>
<tr>
<td>23 Waves and Resonances in Ferrites</td>
<td>377</td>
</tr>
<tr>
<td>23.1 Introduction</td>
<td>377</td>
</tr>
<tr>
<td>23.2 Ferrites</td>
<td>378</td>
</tr>
<tr>
<td>Angular momentum and magnetic moments</td>
<td>378</td>
</tr>
<tr>
<td>Constitutive relations</td>
<td>379</td>
</tr>
<tr>
<td>Magnetic resonance</td>
<td>379</td>
</tr>
<tr>
<td>23.3 Large-signal equations</td>
<td>380</td>
</tr>
<tr>
<td>23.4 Linearized (small-signal) equations</td>
<td>381</td>
</tr>
<tr>
<td>Time-dependent equations</td>
<td>381</td>
</tr>
<tr>
<td>Complex Polder susceptibility and permeability tensors</td>
<td>382</td>
</tr>
<tr>
<td>23.5 Uniform precession in a small ellipsoid</td>
<td>383</td>
</tr>
<tr>
<td>23.6 Plane wave solutions</td>
<td>384</td>
</tr>
<tr>
<td>Electromagnetic waves</td>
<td>386</td>
</tr>
<tr>
<td>Magnetostatic waves</td>
<td>387</td>
</tr>
<tr>
<td>23.7 Small-signal power and energy</td>
<td>388</td>
</tr>
<tr>
<td>Maxwell–Poynting representation</td>
<td>388</td>
</tr>
<tr>
<td>Dual Alternate representation</td>
<td>390</td>
</tr>
<tr>
<td>23.8 Small-signal stress and momentum</td>
<td>391</td>
</tr>
<tr>
<td>Maxwell–Poynting representation</td>
<td>391</td>
</tr>
<tr>
<td>23.9 Quasiparticle interpretation (magnons)</td>
<td>393</td>
</tr>
<tr>
<td>24 Equivalent Circuits</td>
<td>395</td>
</tr>
<tr>
<td>24.1 Receiving circuit of a dipole</td>
<td>395</td>
</tr>
<tr>
<td>24.2 TEM transmission lines</td>
<td>398</td>
</tr>
<tr>
<td>Basic equations</td>
<td>398</td>
</tr>
<tr>
<td>Power and energy</td>
<td>400</td>
</tr>
<tr>
<td>Lossless, low-loss, and distortionless lines</td>
<td>400</td>
</tr>
<tr>
<td>Reflection coefficient and line impedance</td>
<td>401</td>
</tr>
<tr>
<td>Smith Chart</td>
<td>403</td>
</tr>
<tr>
<td>Impedance matching</td>
<td>404</td>
</tr>
<tr>
<td>24.3 Lossless tapered lines</td>
<td>406</td>
</tr>
<tr>
<td>24.4 Transients on transmission lines</td>
<td>408</td>
</tr>
<tr>
<td>24.5 Plane waves (oblique incidence)</td>
<td>411</td>
</tr>
<tr>
<td>TE waves</td>
<td>411</td>
</tr>
<tr>
<td>TM waves</td>
<td>412</td>
</tr>
<tr>
<td>Summary of parameters</td>
<td>413</td>
</tr>
<tr>
<td>24.6 Waveguides</td>
<td>413</td>
</tr>
<tr>
<td>TM modes</td>
<td>415</td>
</tr>
</tbody>
</table>
Contents

Force, power, and energy 529
A.2 Transformations between fixed and moving coordinates 530
Electromagnetic fields and scalars 530
Sinusoidal steady-state plane waves 533
Energy-momentum tensors 533

Appendix B 537
B.1 The unit step and $u_k(t)$ functions 537
B.2 Three-dimensional vector identities and theorems 538
Definitions 538
Basic operations 539
Curvilinear orthogonal coordinates 539
Three-space identities 541
Vector theorems 542
The Divergence Theorem 542
Stokes’ Theorem 542
B.3 Four-dimensional vector and tensor identities 543
Definitions 543
Basic operations 544
B.4 Four-space identities 544

Appendix C 547
C.1 Stationary spatially symmetric sources 547
Spherical symmetry 547
Cylindrical symmetry with no axial variation 548
Plane symmetry without planar variation 549
Superposition of high-symmetry fields 550
C.2 Multipole expansions of static fields 550
Electrostatics 550
Magnetostatics 552
C.3 Averaging property of Laplace’s Equation 553
C.4 Solutions of Laplace’s Equation 554
Cartesian coordinates 554
Polar coordinates 555
Cylindrical coordinates 556
Spherical coordinates 557
C.5 Laplace’s Equation in N dimensions 558
C.6 Ellipsoids in uniform fields 559
Prolate spheroid ($c > a$) 560
Oblate spheroid ($c < a$) 560
Sphere ($c = a$) 561

Appendix D 563
D.1 Alternate power, energy, stress, and momentum 563
Cartesian coordinates 564
Cylindrical coordinates 565
Spherical coordinates 566
D.2 Minkowski representations 568
Maxwell–Poynting–Minkowski representation 568
CONTENTS

Alternate–Minkowski representation 569
Dual Alternate–Minkowski representation 570
D.3 Stress-momentum representations of torque 571
Linear isotropic dielectric/magnetic conducting materials 574
Torque contribution from the Alternate-stress integral 575

Appendix E 577
E.1 Fields of specified charges and currents 577
E.2 Fields of a moving point charge 578
Retarded potentials when the velocity is constant 578
Contour integration 579
Lorentz transformation 580
Liénard–Wiechert Potentials 581
Fields of an accelerated charge 581
E.3 Method of images 583
Infinite ground plane 583
Infinite-length conducting cylinder 584
Conducting sphere 584
Image configurations for magnetic conductors 585
E.4 Characteristic impedances of TEM transmission lines 586
Coaxial line 586
Lecher line 587
Elliptic-function-based transformations 588
Strip with cylindrical shield 588
Coplanar strip line 588
Symmetric strip line 589
Parallel-plate line 590
Microstrip transmission line 592

Appendix F 593
F.1 Bessel functions 593
Integral definitions of zero-order functions 595
Series solutions and asymptotic approximations 595
Complex Hankel functions 596
Recurrence relations 596
Orthogonality and normalization integrals 596
Wronskian 598
F.2 Chebyshev polynomials 598
Polynomials of the first kind 598
Polynomials of the second kind 599
F.3 Hermite polynomials 600

Appendix G 601
G.1 Macsyma and Maxima 601
G.2 Macsyma program descriptions 602
Four-Dimensional Vectors and Operators 602
Four-Dimensional Electrodynamics (Free-Space) 603
Four-Dimensional Electrodynamics Workpad 603
G.3 Macsyma notebooks 605
CONTENTS

Setup and execution 605
4d-vector and 4d-em demos 606
4d-em workpad 606
G.4 Text of Macsyma/Maxima batch program 608

Appendix H 619
H.1 Animated fields of surface currents 619
Planar surface current: step pulse with exponential decay 619
Planar surface current: Gaussian pulse 619
Alternate null power flux: interaction of Gaussian pulses 620
Strip surface current, \(K_z(t) = K_o u_{-1}(t) \) 620
H.2 Animated fields of a cylindrical volume current, \(J_z(t) = J_o u_{-1}(t) \) 620
H.3 Animated fields of a cylindrical surface current, \(K_z(t) = K_o u_{-1}(t) \) 621
H.4 Animated fields of line-current transients 622
H.5 Animated field of a radiating Hertzian dipole 623
H.6 Animated beauty-power fluxes of cylindrical waveguide modes 623
H.7 Macsyma animations and graphics 624

References 627

Index 631
PREFACE

“The most beautiful thing we can experience is the mysterious. It is the source of all true art and science.”
—Albert Einstein

Anyone, who has taken the trouble to explore the rich legacy that James Clerk Maxwell left to the scientific world, cannot fail to be impressed. Because he made such outstanding and profound contributions in multiple disciplines within a life-span of only 48 years, his achievements are all the more remarkable. They include seminal work in thermodynamics, statistical mechanics, and electromagnetic theory, but it is the latter that we here consider.

Although this text was written to instruct advanced undergraduate and first-year graduate students in the basic concepts of classical macroscopic electromagnetic fields, it was done so with the hope of providing new insights into and appreciation for what is surely one of the supreme achievements in science. Certain topics (described below), that do not appear in traditional texts, are deserving of inclusion both in their own right and because they simplify the development of new material concerning electromagnetic power and energy. The title, The Power and Beauty of Electromagnetic Fields, was chosen because of its multiple meanings.

During a tour of the campus, more than one M.I.T. student has taken a non-scientist friend to the lobby of the Eastman Laboratories (Building 6) to stand before the marble wall on which mathematical symbols that represent Maxwell’s Equations are inscribed in bronze. Usually, the student attempts to convey to his friend just how powerful and useful these compact equations are and how they at first predicted (rather than explained)
the existence of electromagnetic waves propagating at the speed of light, c. How that, in turn, led to their widespread application – to radio, microwaves, television, light, and x-rays; to electrical generators, motors, transducers, control systems, and power-grids; to integrated-circuits, computers, CD-ROMs, and the Internet; to electrocardiograms, pacemakers, magnetic resonance imaging (MRI), computer aided tomography (CAT), biosensors, and other emerging marvels of biomedical technology. And the list goes on and on No one can doubt the utility – the power – of electromagnetic theory.

Mathematicians find beauty and elegance in equations – especially if they have general applicability and can be expressed with brevity; many other scientists and engineers share these feelings as well. Surely, Maxwell’s Equations qualify and may be considered beautiful as well as powerful. After all, Albert Einstein pondered their properties and shattered Newtonian concepts of space and time with his Theory of Special Relativity. That in turn led to the introduction (by Minkowski) of four-dimensional space-time (with \(ict\) the imaginary fourth-dimension). Recasting electrodynamics in four-dimensions made evident new symmetries that led to even higher levels of understanding and beauty. Finally, the pinnacle was reached when connections to the world of quantumphysics produced Quantum Electrodynamics (QED) – but the last is not a subject for this text.

But there are other meanings of power and beauty as well. In circuit theory, electrical power is voltage times current and flows into and out of network nodes; in electromagnetic theory, the power flux is commonly defined as the Poynting vector, \(S = E \times H\) (the vector cross-product of the electric and magnetic fields), which is largely exterior to all highly conducting pathways. Likewise, rather than being localized to the electric charges and currents, the Maxwell field energy density, \(W\), with terms proportional to the scalar products \(E \cdot E\) and \(H \cdot H\), is distributed throughout space. These quantities, related to each other at every point by the Poynting Theorem, invite physical interpretation on a per unit area or per unit volume basis. Even at very low-frequencies, that interpretation is very different from the approximate, highly-localized circuit-theory representation.

Nevertheless, as recounted by Julius Stratton [1, pp. 134], the Poynting interpretation was criticized as early as 1902 by H. M. Macdonald [2], and later by George H. Livens [3], and Max Mason and Warren Weaver [4, pp. 264] among other writers. In their thought provoking analogy, Mason and Weaver, while excepting highly localized regions of space having little or no influence outside of them,

“do not believe that ‘Where?’ is a fair or sensible question to ask concerning energy. Energy is a function of configuration, just as beauty of a certain black-and-white design [such as the ‘Tiled-Photons’ example] is a function of configuration. [They] see no more reason or excuse for speaking of a spatial energy density than they would for saying, in the case of a design, that its beauty was distributed over it with a certain density. Such a view would lead one to assign to a perfectly blank square inch in one portion of the design a certain amount of beauty, and to an equally blank square inch in another portion a certain different amount of beauty.”

Many who have pondered that criticism applaud its cleverness – but consider it a false analogy that does little to advance one’s understanding of the issue. After all, they had offered no alternate interpretation of (or replacement for) \(S\) and \(W\). If not in the fields, where does radiating electromagnetic wave power and energy reside? Because circuit-power is confined to the wires that carry electrical currents, it cannot be used to explain radiation without the addition of a rather mysterious “radiation-resistance” to the circuit path. Even with that artifice, when the source-current is turned-off and a
transmitting circuit stops radiating, one expects that the energy, that has been radiated, must be located somewhere in free-space prior to its eventual detection – possibly very far from the transmitter.

During his junior year as an electrical engineering student at M.I.T., this author recalls an instructor telling the class that “although sophomores believe that electrical power is confined to the wires that carry electrical currents in a circuit, we [who have learned about Poynting] know better.” One skeptical student asked the instructor if his belief in the Poynting vector was strong enough that he would be willing to touch the wires of a high-voltage circuit. Without hesitation, the instructor responded, “of course, provided that you show me how I can do so without putting my hand in the field.” We all laughed and became more than a little smug because of our new found superior knowledge – we really thought that we did know better! Nearly forty years later, I learned that we (or at least I) did not; that realization, which came near the end of a long academic career in electromagnetism, was the principal motivation for the writing of this text. The analysis that led to that realization forms an essential component of its content.

Although the “circuit” representation is very useful, conventional wisdom considers it only a low-frequency or quasistatic approximation. In this text, we show that this is not necessarily true and in the process find alternate representations of electromagnetic power and energy that differ from the familiar Poynting theorem values – yet are fully equivalent. The particular choice focussed on features highly-localized power and energy components and emphasizes the circuit rather than the wave nature of these quantities. Moreover, unlike the Poynting vector, this exact representation merges smoothly with well-known quasistatic approximations that have long been used to calculate power flows in both lumped and distributed circuits operating at low-frequencies. As required, the electromagnetic power-conversion density, \(\mathbf{E} \cdot \mathbf{J} \) (the dot product of electric-field and...
current-density), is the same in both the Poynting and all correct alternate representations of electromagnetic power. Maxwell’s Equations and the fields they describe are, of course, left unchanged. It is also possible to alter the Maxwell stress-tensor, T, and the associated electromagnetic momentum-density, G, in a similar manner without altering the electromagnetic force-density; when all four elements (S, W, T, G) are treated similarly, any of the resulting alternate-representations can replace the Maxwell-Poynting form without approximation. One specific choice is termed the Alternate-representation. For time-harmonic fields, the complex Poynting theorem, energy-theorem, and momentum-theorem all have alternate-counterparts. Electromagnetic angular-momentum also has an alternate counterpart that is shown to connect directly with the spin properties of photons.

For certain electromagnetic problems, the Alternate-representation leads to both conceptual and computational simplicity. It is especially useful when dealing with either antenna radiation or quasistatic fields. For example, the power radiated from a Hertzian electric-dipole and its radiation pattern both can be calculated without first finding the electric and/or magnetic field – not a single curl operation need be performed. For other problems, it is the Maxwell-Poynting representation that is mathematically simpler; having a choice adds both flexibility and insight to the process of problem solving. Some features are surprising; for steady-state single-frequency fields, the free-space Alternate power-flux and energy-density are time-independent. Consequently, Alternate reactive power-flows and energies are banished from free-space and restricted to the locations of the charges and currents.

The text is divided into four-parts: Basic Electromagnetic Theory; Four Dimensional Electromagnetism; Electromagnetic Examples; Backmatter. Part I is devoted to a fairly conventional presentation of the integral and differential forms of Maxwell’s Equations in free-space containing electric charges and currents that are subject to Lorentz-forces. Conservation of charge is assumed. The equivalent representation in terms of the magnetic vector-potential and the electric scalar-potential is also given in both Coulomb and Lorenz gauges. Materials with polarization and magnetization that may be electrically-conducting are considered, as are the boundary conditions at material and source interfaces.

When wave-propagation effects are negligible, fields that are mainly electric or magnetic are classified as either electroquasistatic (EQS) or magnetoquasistatic (MQS). The properties of quasistatic fields and their analysis by approximate methods are developed. Electromagnetic power, energy, stress, and momentum are presented in both the Maxwell-Poynting and Alternate representations. So too, are complex versions of power and energy theorems that apply to sinusoidal steady-state fields. For linear media, both homogeneous (source free) and inhomogeneous wave equations are studied in one, two, and three dimensions; extensive use is made of both symmetry and the principle of superposition The concepts of electromagnetic duality, equivalence, and Babinet’s Principle for complementary structures are other important topics that are included; the uniqueness-theorem, induction-theorem, and reciprocity-theorem are also derived.

All derivations contained in Part I are carried out in conventional three-space coordinates with time as a parameter, but it is actually easier to formulate (and generalize) electrodynamics using four-dimensional representations of both fields and forces. It then follows that power, energy, stress, and momentum are unified in terms of an energy-momentum tensor. In Part II, we introduce these concepts and emphasize the utility of expressing the various tensors in terms of four-vector electric and magnetic fields and the four-vector-potential. However, no prior knowledge of such representations is
assumed nor is the reader expected to be familiar with the electrodynamics of moving media which is also discussed. Although these topics must be considered advanced\(^1\), they depend upon straight-forward extensions of the standard vector-calculus – knowledge of which is a prerequisite for almost all texts (including this one) on electromagnetic-theory. Using this approach, an infinity of energy-momentum tensors are found that are fully equivalent to the usual Maxwell-Poynting form; these change the representation of the electromagnetic power, energy, momentum and stress in free-space without altering the four-vector electromagnetic-force density. As noted above, emphasis is given to the particular choice that directly connects with circuit-theory representations of quasistatic-fields. These results are generalized to include the presence of field interactions with matter; special emphasis is given to dielectric and magnetic materials that are linear. Because multiple representations lead to a deeper understanding, four-dimensional electromagnetics is presented in order to complement, illuminate, and (in many cases) simplify, the topics developed in Part I. In addition, the theory certainly possesses great “mathematical-beauty” and so is deserving of inclusion.

In Part III, classic field problems are considered that illustrate how solutions of Maxwell’s Equations can be combined in order to satisfy boundary conditions for a wide variety of examples that, in the main, depend upon topics covered in Part I. Solving problems is the best (perhaps the only) way for a student of electromagnetics to master both physical concepts and mathematical techniques. Gradually, one develops physical intuition concerning fields; most find the process challenging, but the rewards great. It is reassuring that, once gained, mastery of the subject will not become obsolete. Certainly, its application to new materials and devices will continue to refresh electromagnetics, but, if history is any guide, the basic field-equations will not be supplanted; Maxwell seems to have got it very right. The specific examples were chosen, not only because the fields themselves are of interest, but because detailed comparisons can be made between the Alternate and Maxwell-Poynting representations. In many cases, the time-averaged distributions agree exactly. However, in others, there are significant differences and not only is Alternate power and energy highly-localized on currents and charges, but, astonishingly, also in regions of free-space. When compared with the usual Poynting energy-density, the propagation of such distributed and localized forms of Alternate-energy at first seems to create grave paradoxes. However, on closer inspection and analysis of the measurement process – by means of which power is detected, all of these are resolved. In other cases, Alternate-power exists in regions free of electric and magnetic fields or vice-versa. These strange results are also reconciled. In addition to the examples, which are worked through in detail, a chapter of over 120 practice problems is included so that the reader can test his/her understanding of the basic concepts and sharpen problem-solving skills. Many of the problems were created by the author for use in both M.I.T. undergraduate and graduate courses; however, new ones have been added as well.

Part IV contains the Backmatter including Summary, Appendices, Bibliography, and Index. A photo gallery of many (unfortunately not all) electromagnetic luminaries is included so that the reader can humanize the science of electromagnetics. As might be expected, many of the pioneers lived interesting and multi-faceted lives; fascinating

\(^1\) If considered too demanding (or when there is insufficient time), Part II may be delayed (or bypassed altogether) until selected chapters of Part III have been studied. These contain topics and illustrative examples that depend mainly on knowledge of Part I. Used in this way, the text can serve both undergraduate and graduate students.
biographical information is readily available both in libraries and on the Internet. Eight appendices complete the text. Appendix-A includes elements of Special-Relativity including space-time coordinates and the Lorentz-transformation. Appendix-B is devoted to three-space vector identities and their four-space vector and tensor equivalents. Appendix-C contains important properties of Laplacian-fields and tabulates solutions of Laplace’s Equation. Appendix-D provides expressions for Alternate-power, energy, stress, and momentum in Cartesian, cylindrical, and spherical coordinate systems. Lorentz-torques and electromagnetic angular momentum formulations in both Maxwell-Poynting and Alternate formulations are also included. In Appendix-E, free-space fields associated with pre-specified electric charge and current distributions are considered. The method of images is included, as are formulas for the characteristic impedances of a variety of uniform TEM transmission-lines. Appendix-F reviews properties of Bessel functions and both Chebyshev and Hermite polynomials and provides useful recursion formulas and normalization integrals. Appendix-G discusses a very useful computer program: 4d-em.mac that has built-in knowledge of four-space electrodynamics; it runs under Macsyma and is included on the DVD that accompanies the text. For readers without access to Macsyma, the largely equivalent and freely available Maxima can be substituted and is included. Finally, Appendix-H contains a list of the avi movie files for several of the electromagnetic transients analyzed in the text. These animations are also included and can be viewed with standard media players.

The DVD also includes three electronic versions of the book. [Advanced Level] is the complete text (described above) that is suitable for graduate courses, reference, and self study. [Introductory Level] is intended for undergraduates; [Intermediate Level] for graduate and well prepared undergraduate students. Both omit Part II and abridge Parts III and IV by including appropriate selections of the [Advanced Level] examples, practice problems, and appendices. All three Levels are in PDF form suitable for on-line viewing using Adobe Reader; bookmarks and hyperlinks from the table of contents allow convenient browsing. The on-line versions of Appendix-H permit both the Macsyma Notebooks and the animations to be launched directly from icon hyperlinks.

The difference between the energy-momentum tensors in the Alternate and Maxwell-Poynting representation is itself a four-tensor, II^b, that produces neither electromagnetic-force nor E·J power-density. It is therefore an ephemeral quantity – yet one with components that can be calculated and presented graphically. In a bit of whimsy, that honors the insights of Mason and Weaver, this author has dubbed II^b the “electromagnetic-beauty;” this tensor joins electromagnetic-power to form still another set of meanings for the book title. The author believes that graphical rendering of the “beauty-power-flux” of an electromagnetic-field makes that final meaning plausible. Because selected examples are included in the Summary, the reader can either confirm or deny that judgement.

F. R. MORGENTHALER

Wellesley Hills, Massachusetts
November 2010
ACKNOWLEDGMENTS

Over the years, many colleagues and students at M.I.T. have provided stimulating interactions that greatly enriched academic life and helped the author gain some measure of understanding concerning electromagnetic fields. There are too many to name individually, but I am deeply grateful to them all. There are, however, two colleagues who require special mention.

It is a pleasure to acknowledge the influence of Julius A. Stratton whose seminal text: Electromagnetic Theory has inspired generations of students by revealing the true beauty of electromagnetism; that underlying the deceptively simple and very elegant Maxwell Equations.

It is an honor to acknowledge the debt owed to Lan Jen Chu who served for many years as mentor, advisor, and friend. He made significant contributions to electromagnetic theory in general, antenna theory in particular, and developed the elegant theory of electrodynamics that has come to be known as the Chu formulation. More than anyone, he encouraged his students to penetrate to the depths of a problem and taught, by example, that the solution of any electromagnetic problem was incomplete without a thorough understanding of the energies and power-flows.
JULIUS ADAMS STRATTON (1901–1994)
Reprinted with permission of the M.I.T. Museum

LAN JEN CHU (1913–1973)
Reprinted with permission of the M.I.T. Museum