ELECTRICAL PHENOMENA AT INTERFACES AND BIOINTERFACES
CONTENTS

PREFACE
xi

CONTRIBUTORS
xiii

PART I FUNDAMENTALS
1 Potential and Charge of a Hard Particle and a Soft Particle
Hiroyuki Ohshima
3

2 Electrostatic Interaction between Two Colloidal Particles
Hiroyuki Ohshima
17

3 The Derjaguin–Landau–Verwey–Overbeek (DLVO) Theory of Colloid Stability
Hiroyuki Ohshima
27

4 Electrophoretic Mobility of Charged Particles
Hiroyuki Ohshima
35

5 Electrophoretic Mobility of Gold Nanoparticles
Kimiko Makino and Hiroyuki Ohshima
51

6 Electrophoresis of Soft Particles in a Confined Space
Li-Hsien Yeh and Jyh-Ping Hsu
61

7 Surface Conductivity
Stanislav S. Dukhin, Ralf Zimmermann, and Carsten Werner
95
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Computer Simulations of Charged Colloids</td>
<td>127</td>
</tr>
</tbody>
</table>
| | 1. Mesoscopic Modeling
Yasuya Nakayama, Kang Kim, and Ryoichi Yamamoto | |
| 9 | Computer Simulations of Charged Colloids | 141 |
| | 2. Electrophoresis and Sedimentation
Kang Kim, Yasuya Nakayama, and Ryoichi Yamamoto | |
| 10 | Electrostatic and Steric Stabilization of Colloidal Dispersions | 153 |
| | Tharwat Tadros | |
| 11 | Aggregation Kinetics of Colloidal Particles | 173 |
| | Motoyoshi Kobayashi | |
| 12 | Electroacoustic Theories and Measurement Techniques | 193 |
| | Shin-Ichi Takeda | |
| 13 | Colloid Vibration Potential and Ion Vibration Potential in Surfactant Solutions | 209 |
| | Youichi Takata and Hiroyuki Ohshima | |
| 14 | Interfacial Tension of Aqueous Electrolyte Solutions:
Ion-Free Layer
Youichi Takata and Hiroyuki Ohshima | 223 |
<p>| | | |
| | | |
| | PART II APPLICATIONS IN NANO- AND ENVIRONMENTAL SCIENCES | 241 |
| 15 | Broadband Dielectric Spectroscopy on Electrode Polarization and Its Scaling | 243 |
| | Anatoli Serghei, Joshua R. Sangoro, and Friedrich Kremer | |
| 16 | Layer-by-Layer Assembly on Stimuli-Responsive Microgels | 275 |
| | John Erik Wong and Walter Richtering | |
| 17 | Dynamics of Polymers and Polyelectrolytes at Colloidal Interface and Subsequent Flocculation | 299 |
| | Yasuhisa Adachi | |
| 18 | Colloidal Particle Processing Using Heterocoagulation | 315 |
| | Hiroshi Sasaki, Chiharu Tokoro, and Hiroshi Hayashi | |
| 19 | Electrokinetic Coupling in Colloidal Arrays Formed under AC Electric Fields | 331 |
| | Satoshi Nishimura | |
| 20 | Size Distribution Measurements of Fine Particles Using Their Pearl Chain Formations under a DC Electric Field | 351 |
| | Akira Otsuki, Gjergi Dodbiba, and Toyohisa Fujita | |</p>
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Analysis of Functional Groups at Buried Liquid/Solid Interfaces</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>Utilizing Polarization Modulation Infrared External Reflection Spectroscopy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hiroharu Yui</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Fabrication of Liquid Crystal Displays Containing Capped Nanoparticles and Their Electro-optic Properties</td>
<td>373</td>
</tr>
<tr>
<td></td>
<td>Yukihide Shiraishi, Naoto Nishida, and Naoki Toshima</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Fabrication of Ordered Nanopattern Structures Using Two-Dimensional Colloidal Monolayers</td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>Takeshi Kawai</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Liquid-Phase Synthesis of Carbon Nanotubes and Other Carbon Nanomaterials</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>Kiyofumi Yamagiwa and Jun Kuwano</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Oxide Cathode Electrocatalysts for Fuel Cells</td>
<td>423</td>
</tr>
<tr>
<td></td>
<td>Morihiro Saito and Jun Kuwano</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Dynamics and Structure of Water Nanotube Clusters Confined to Nanoporous Molecular Crystals</td>
<td>441</td>
</tr>
<tr>
<td></td>
<td>Makoto Tadokoro</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Surface Electrochemistry of Electrospun Nanofibers</td>
<td>469</td>
</tr>
<tr>
<td></td>
<td>Hidetoshi Matsumoto and Akihiko Tanioka</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Shave-Off Profiling as a Nanoscale 3-D Element Imaging Technique</td>
<td>481</td>
</tr>
<tr>
<td></td>
<td>Masashi Nojima</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Interfacial Charge Storage of Manganese Oxide Electrodes for Electrochemical Capacitors</td>
<td>491</td>
</tr>
<tr>
<td></td>
<td>Shinichi Komaba, Naoaki Yabuuchi, and Tomoya Tsuchikawa</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Surface Functionalization of Diamond Electrodes</td>
<td>509</td>
</tr>
<tr>
<td></td>
<td>Takeshi Kondo</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Quantum Electrochemical Study of Benzene Derivatives</td>
<td>527</td>
</tr>
<tr>
<td></td>
<td>1. Electronic Structure and Evaluation of the Antioxidant Activity of Aspirin and Paracetamol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kazunaka Endo</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Quantum Electrochemical Study of Benzene Derivatives</td>
<td>541</td>
</tr>
<tr>
<td></td>
<td>Kazunaka Endo</td>
<td></td>
</tr>
</tbody>
</table>
33 Synthesis and Solution Properties of Fluorocarbon–Hydrocarbon Hybrid Surfactants 555
Yukishige Kondo

34 Electrochemical Dynamic Control of Self-Assemblies Formed by Redox-Active Surfactants 567
Koji Tsuchiya, Hirofumi Yajima, Hideki Sakai, and Masahiko Abe

35 Photoinduced Manipulation of Self-Organized Nanostructure of Block Copolymers 583
Kunihiko Okano and Takashi Yamashita

36 Applications of Electrical Phenomena in Membranes and Membrane Separation Processes 599
Kazuho Nakamura

PART III APPLICATIONS IN BIOSCIENCES 617

37 Dielectric Dispersion in Colloidal Systems: Applications in the Biological Sciences 619
María Luisa Jiménez, Silvia Ahualli, Raúl A. Rica, and Ángel V. Delgado

38 Electrokinetic Methods in Biological Interfaces: Possibilities and Limitations 645
Ángel V. Delgado, Julián López-Viota, and Fernando González-Caballero

39 Molecular Mechanisms of Membrane Fusion 673
Shinpei Ohki and Klaus Arnold

40 Drug Delivery System 709
Kimiko Makino

41 On-Chip Cell Electrophoresis and Evaluating Cellular Functions 725
Takanori Akagi and Takanori Ichiki

42 Surface Characteristics and Attachment Behaviors of Bacterial Cells 737
Hisao Morisaki

43 Design and Fabrication of Sterically Stabilized Liposomes Dispersed in Aqueous Solutions by Utilizing Electrostatic Interactions for Use in Biomedical Applications 755
Katsumi Uchida and Hirofumi Yajima
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>Cell Regulation through Membrane Rafts/Caveolae</td>
<td>767</td>
</tr>
<tr>
<td></td>
<td>Yohei Saito, Toshiyuki Owaki, and Fumio Fukai</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Oxidoreductases: Asymmetric Reduction Using Photosynthetic Organisms</td>
<td>783</td>
</tr>
<tr>
<td></td>
<td>Tetsuo Takemura and Kaoru Nakamura</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Surface Organization of Poly (Ethylene Glycol) (PEG)-Based Block Copolymers for Biomedical Applications</td>
<td>801</td>
</tr>
<tr>
<td></td>
<td>Hidenori Otsuka</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>PEGylated Nanoparticles for Biological and Pharmaceutical Applications</td>
<td>815</td>
</tr>
<tr>
<td></td>
<td>Hidenori Otsuka</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INDEX</td>
<td>839</td>
</tr>
</tbody>
</table>
PREFACE

This book is based on a joint project of the Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, and the Electrokinetic Society of Japan. Kunio Furusawa and I edited *Electrical Phenomena at Interfaces* (1990; 2nd Edition, 1998); although this book has a similar title, it is on completely different concepts. This book is written for scientists, engineers, and graduate students who want to study theoretical and experimental aspects of electrical phenomena at interfaces and bioInterfaces. The principal purpose of this book is to bridge three different fields: nano-, bio-, and environmental sciences. As a basis of these three different fields, the understanding of electrical phenomena at interfaces and bioInterfaces is becoming more and more important.

This book is divided into three parts. Part I contains the fundamentals of electrical phenomena at interfaces and bioInterfaces. Parts II and III treat many topics in this field, including applications in nano- and environmental sciences (Part II) and applications in biosciences (Part III).

I would like to gratefully acknowledge the assistance provided by Ms. Anita Lekhwani, Senior Acquisitions Editor, and Ms. Rebekah Amos, Editorial Program Coordinator, at John Wiley & Sons.

HIROYUKI OHSHIMA

Faculty of Pharmaceutical Sciences and Center for Colloid and Interface Science
Research Institute for Science and Technology
Tokyo University of Science, Japan
CONTRIBUTORS

Masahiko Abe, Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Yasuhsisa Adachi, Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1, Tennnoudai, Tsukuba-shi, Ibaraki 305-8572 Japan

Silvia Ahualli, Department of Applied Physics, School of Sciences, Campus Fuentenueva, University of Granada, 18071 Granada, Spain

Takanori Akagi, Department of Bioengineering, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan

Klaus Arnold, Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig 04103, Germany

Ángel V. Delgado, Department of Applied Physics, School of Sciences, Campus Fuentenueva, University of Granada, 18071 Granada, Spain

Gjergi Dodibba, Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan

Stanislav S. Dukhin, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
Kazunaka Endo, Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 12-1 Ichigaya-funagawara, Shinjuku, Tokyo 162-0826, Japan

Toyohisa Fujita, Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan

Fumio Fukai, Faculty of Pharmaceutical Sciences and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Fernando González-Caballero, Department of Applied Physics, School of Sciences, Campus Fuentenueva, University of Granada, 18071 Granada, Spain

Hiroshi Hayashi, Department of Resources and Environmental Engineering, School of Creative Science and Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Jyh-Ping Hsu, Department of Chemical Engineering, National Taiwan University Taipei, Taiwan 10617

Takanori Ichiki, Department of Bioengineering, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan

María Luisa Jiménez, Department of Applied Physics, School of Sciences, Campus Fuentenueva, University of Granada, 18071 Granada, Spain

Kang Kim, Institute for Molecular Science, Okazaki 444-8585, Japan

Takeshi Kawai, Department of Industrial Chemistry, Faculty of Engineering and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 12-1 Ichigaya-funagawara, Shinjuku, Tokyo 162-0826, Japan

Motoyoshi Kobayashi, Graduate School of Life and Environmental Sciences, UniversityofTsukuba,1-1-1,Tennoudai,Tsukuba-shi,Ibaraki305-8572,Japan

Takeshi Kondo, Department of Industrial Chemistry, Faculty of Engineering and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 12-1 Ichigaya-funagawara, Shinjuku, Tokyo 162-0826, Japan

Yukishige Kondo, Department of Industrial Chemistry, Faculty of Engineering and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 12-1 Ichigaya-funagawara, Shinjuku, Tokyo 162-0826, Japan
Shinichi Komaba, Department of Applied Chemistry, Faculty of Science and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka 1-3, Shinjuku, Tokyo 162-8601, Japan

Friedrich Kremer, Institute of Experimental Physics I, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany

Jun Kuwano, Department of Industrial Chemistry, Faculty of Engineering and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 12-1 Ichigaya-funagawara, Shinjuku, Tokyo 162-0826, Japan

Kimiko Makino, Faculty of Pharmaceutical Sciences, Center for Colloid and Interface Science, Center for Physical Pharmaceutics, Research Institute for Science and Technology, and Center for Drug Delivery Research, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Hisao Morisaki, Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan

Hidetoshi Matsumoto, Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-S8-27 Ookayama, Meguro-Ku, Tokyo 152-8552, Japan

Kaoru Nakamura, Science Shop, Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada, Kobe 657-8501, Japan

Kazuho Nakamura, Department of Chemical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

Yasuya Nakayama, Department of Chemical Engineering, Kyushu University, Fukuoka 819-0395, Japan

Naoto Nishida, Department of Applied Chemistry, Tokyo University of Science Yamaguchi, Sanyo-Onoda-shi, Yamaguchi 756-0884, Japan

Satoshi Nishimura, Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Higashil-1-1, Tsukuba, Ibaraki, 305-8565, Japan

Masashi Nojima, Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Shinpei Ohki, Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
Hiroyuki Ohshima, Faculty of Pharmaceutical Sciences and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Kunihiko Okano, Department of Pure and Applied Chemistry, Faculty of Science and Technology and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Hidenori Otsuka, Department of Applied Chemistry, Faculty of Science and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Akira Otsuki, Chemical and Biomolecular Engineering, University of Melbourne, Parkville, VIC, 3010, Australia

Toshiyuki Owaki, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Rafael A. Rica, Department of Applied Physics, School of Sciences, Campus Fuentenueva, University of Granada, 18071 Granada, Spain

Walter Richtering, Lehrstuhl für Physikalische Chemie II, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany

Morihiro Saito, Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan

Yohei Saito, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Hideki Sakai, Department of Pure and Applied Chemistry, Faculty of Science and Technology and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Joshua R. Sangoro, Institute of Experimental Physics I, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany

Hiroshi Sasaki, Department of Resources and Environmental Engineering, School of Creative Science and Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Anatoli Serghei, Université Lyon 1, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France

Yukihide Shiraishi, Department of Applied Chemistry, Tokyo University of Science Yamaguchi, SanyoOnoda-shi, Yamaguchi 756-0884, Japan, and
Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Makoto Tadokoro, Department of Chemistry, Faculty of Science and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Tharwat Tadros, 89 Nash Grove Lane, Wokingham, Berkshire RG40 4HE, UK

Youichi Takata, Department of Chemical and Biological Engineering, Ube National College of Technology, Tokiwadai 2-14-1, Ube, Yamaguchi 755-8555, Japan

Shin-ichi Takeda, Takeda Colloid Techno-Consulting Co., Ltd., Senriyamanishi 1-41-14, Suita, Osaka 565-0851, Japan

Tetsuo Takemura, Department of Chemistry, Faculty of Science and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Akihiko Tanioka, Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-S8-27 Ookayama, Meguro-Ku, Tokyo 152-8552, Japan

Chiharu Tokoro, Department of Resources and Environmental Engineering, School of Creative Science and Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Naoki Toshima, Department of Applied Chemistry, Tokyo University of Science Yamaguchi, SanyoOnoda-shi, Yamaguchi 756-0884, Japan

Tomoya Tsuchikawa, Department of Applied Chemistry, Faculty of Science and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka 1-3, Shinjuku, Tokyo 162-8601, Japan

Koji Tsuchiya, Department of Applied Chemistry, Faculty of Science and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka 1-3, Shinjuku, Tokyo 162-8601, Japan

Katsumi Uchida, Department of Applied Chemistry, Faculty of Science and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka 1-3, Shinjuku, Tokyo 162-8601, Japan
Julián López-Viota, Department of Physics, Polytechnic School, University of Jaén, Campus Linares, 23700 Linares, Jaén, Spain

Carsten Werner, Leibniz Institute of Polymer Research Dresden & The Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany and Technische Universität Dresden, Center of Regenerative Therapies Dresden, Tatzberg 47, 01307 Dresden, Germany

John Erik Wong, RWTH Aachen University, Chemical Process Engineering, Turnmstrasse 46, 52064 Aachen, Germany

Naoaki Yabuuchi, Department of Applied Chemistry, Faculty of Science and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Hirofumi Yajima, Department of Applied Chemistry, Faculty of Science and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan

Kiyofumi Yamagiwa, Department of Industrial Chemistry, Faculty of Engineering and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 12-1 Ichigaya-funagawara, Shinjuku, Tokyo 162-0826, Japan

Ryoichi Yamamoto, Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan

Takashi Yamashita, Department of Pure and Applied Chemistry, Faculty of Science and Technology and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Li-Hsien Yeh, Department of Chemical Engineering, National Taiwan University Taipei, Taiwan 10617

Hiroharu Yui, Department of Chemistry, Faculty of Science and Center for Colloid and Interface Science, Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Ralf Zimmermann, Leibniz Institute of Polymer Research Dresden & The Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
PART I

FUNDAMENTALS
POTENTIAL AND CHARGE OF A HARD PARTICLE AND A SOFT PARTICLE

HIROYUKI OHSHIMA

1.1 INTRODUCTION

When a charged colloidal particle is immersed in an electrolyte solution, mobile electrolyte ions form an ionic cloud around the particle. As a result of electrostatic interaction between electrolyte ions and particle surface charges, in the ionic cloud the concentration of counterions (electrolyte ions with charges of the sign opposite to that of the particle surface charges) becomes very high, while that of coions (electrolyte ions with charges of the same sign as the particle surface charges) is very low. Figure 1.1 schematically shows the distribution of ions around a charged spherical particle of radius a. The ionic cloud together with the particle surface charge forms an electrical double layer. Such an electrical double layer is often called an electrical diffuse double layer since the distribution of electrolyte ions in the ionic cloud takes a diffusive structure due to the thermal motion of ions. The electrostatic interaction between colloidal particles and the motion of colloidal particles in an external field (e.g., electric field and gravitational field) depend strongly on the distributions of electrolyte ions and of the electric potential across the electrical double layer around the particle surface [1–5].
1.2 THE POISSON–BOLTZMANN EQUATION

Consider a uniformly charged particle immersed in a liquid containing N ionic species with valence z_i and bulk concentration (number density) n_i^∞ ($i = 1, 2 \ldots N$) (in units of cubic meter). From the electroneutrality condition, we have

$$\sum_{i=1}^{N} z_i n_i^\infty = 0. \quad (1.1)$$

The electric potential $\psi(r)$ at position r outside the particle, measured relative to the bulk solution phase, where ψ is set equal to zero, is related to the charge density $\rho_\text{el}(r)$ at the same point by the Poisson equation, viz.,

$$\Delta \psi(r) = -\frac{\rho_\text{el}(r)}{\varepsilon_r \varepsilon_0}, \quad (1.2)$$

where Δ is the Laplacian, ε_r is the relative permittivity of the electrolyte solution, and ε_0 is the permittivity of a vacuum. We assume that the distribution of the electrolyte ions $n_i(r)$ obeys Boltzmann’s law, viz.,

$$n_i(r) = n_i^\infty \exp \left(-\frac{z_i e \psi(r)}{kT} \right). \quad (1.3)$$

Figure 1.1. Electrical double layer of thickness $1/\kappa$ around a spherical charged particle of radius a.
where \(n_i(r) \) is the concentration (number density) of the \(i \)th ionic species at position \(r \), \(e \) is the elementary electric charge, \(k \) is Boltzmann’s constant, and \(T \) is the absolute temperature. The charge density \(\rho_{el}(r) \) at position \(r \) is thus given by

\[
\rho_{el}(r) = \sum_{i=1}^{N} z_i n_i(r) = \sum_{i=1}^{N} z_i e n_i^\infty \exp\left(-\frac{z_i e \psi(r)}{kT}\right).
\] (1.4)

Combining Equations 1.2 and 1.4 gives

\[
\Delta \psi(r) = -\frac{1}{\varepsilon_i \varepsilon_0} \sum_{i=1}^{N} z_i e n_i^\infty \exp\left(-\frac{z_i e \psi(r)}{kT}\right).
\] (1.5)

This is the Poisson–Boltzmann equation for the potential distribution \(\psi(r) \), which is subject to the following boundary conditions:

\[
\psi(r) = \psi_o \text{ at the particle surface}
\] (1.6)

and

\[
\psi(r) \to 0 \text{ as } r = |r| \to \infty.
\] (1.7)

If the internal electric fields inside the particle can be neglected, then the surface charge density \(\sigma \) of the particle is related to the potential derivative normal to the particle surface as

\[
\frac{\partial \psi}{\partial n} = -\frac{\sigma}{\varepsilon_i \varepsilon_0},
\] (1.8)

where \(n \) is the outward normal at the particle surface.

1.3 LOW POTENTIAL CASE

If the potential \(\psi \) is low, viz.,

\[
\left|\frac{z_i e \psi}{kT}\right| \ll 1,
\] (1.9)

then Equation 1.5 reduces to the following linearized Poisson–Boltzmann equation (Debye–Hückel equation):

\[
\Delta \psi = \kappa^2 \psi
\] (1.10)

with

\[
\kappa = \left(\frac{1}{\varepsilon_i \varepsilon_0 kT} \sum_{i=1}^{N} z_i^2 e^2 n_i^\infty\right)^{1/2},
\] (1.11)
TABLE 1.1. Debye–Hückel Parameter for Various Electrolytes

<table>
<thead>
<tr>
<th>Electrolyte Type</th>
<th>Debye–Hückel Parameter Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetrical electrolyte of valence (z) and bulk concentration (n)</td>
<td>(\kappa = \left(\frac{2z^2e^2n}{\varepsilon n \varepsilon kT} \right)^{1/2})</td>
</tr>
<tr>
<td>2-1 electrolyte of bulk concentration (n)</td>
<td>(\kappa = \left(\frac{6e^2n}{\varepsilon n \varepsilon kT} \right)^{1/2})</td>
</tr>
<tr>
<td>Mixed solution of 1-1 electrolyte of bulk concentration (n_1) and 2-1 electrolyte of bulk concentration (n_2)</td>
<td>(\kappa = \left(\frac{2(n_1 + 3n_2)e^2}{\varepsilon n \varepsilon kT} \right)^{1/2})</td>
</tr>
</tbody>
</table>

where \(\kappa\) is called the Debye–Hückel parameter. The reciprocal of \(\kappa\) (i.e., \(1/\kappa\)), which is called the Debye length, corresponds to the thickness of the double layer. Note that \(n_i^\infty\) in Equations 1.5 and 1.10 is given in units of cubic meter. If one uses the units of \(M\) (mole per liter), then \(n_i^\infty\) must be replaced by \(1000 N_A n_i^\infty\), \(N_A\) being Avogadro’s number. Expressions for \(\kappa\) for various types of electrolytes are explicitly given in Table 1.1.

Linearized Equation 1.10 can be solved for particles of various shapes. Table 1.2 gives the potential distribution for a planar surface, a sphere of radius \(a\), and a cylinder of radius \(a\), which can be obtained by solving Equation 1.10 (with \(\Delta = d^2/dx^2\) for a planar surface, \(\Delta = d^2/dr^2 + 2/r\cdot d/dr\) for a sphere, and \(\Delta = d^2/dr^2 + 1/r\cdot d/dr\) for a cylinder) subject to Equations 1.6 and 1.7, where \(x\) is the distance from the planar surface located at \(x = 0\) and \(r\) is the distance from the sphere center or the cylinder axis. Table 1.2 also shows the surface potential \(\psi\)/surface charge density \(\sigma\) relationship, which can be obtained by substituting \(\psi\) into Equation 1.8.

1.4 ARBITRARY POTENTIAL CASE

The nonlinear Poisson–Boltzmann Equation 1.5 (with \(\Delta = d^2/dx^2\)) for a planar surface can be solved analytically. For a planar surface in contact with a \(z\)-\(z\) symmetrical electrolyte solution, a 2-1 electrolyte solution, or a mixed solution of 1-1 electrolyte of bulk concentration \(n_1\) and 2-1 electrolyte of bulk concentration \(n_2\), the potential distribution \(\psi(x)\) and the surface potential \(\psi_s\)/surface charge density \(\sigma\) relationship are given in Table 1.3.

Consider the asymptotic behavior of the potential distribution at large distances, which will also be used for calculating the electrostatic inter-
TABLE 1.2. Solution to the Linearized Poisson–Boltzmann Equation

<table>
<thead>
<tr>
<th>Potential Distribution</th>
<th>Surface Potential ψ_o/Surface Charge Density σ Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planar surface</td>
<td>$\psi(x) = \psi_o e^{-\kappa x}$</td>
</tr>
<tr>
<td></td>
<td>$\psi_o = \frac{\sigma}{\varepsilon \varepsilon_0 \kappa}$</td>
</tr>
<tr>
<td>Sphere of radius a</td>
<td>$\psi(r) = \psi_o \frac{a}{r} e^{-\kappa(r-a)}$</td>
</tr>
<tr>
<td></td>
<td>$\psi_o = \frac{\sigma}{\varepsilon \varepsilon_0 \kappa(1+1/\kappa a)}$</td>
</tr>
<tr>
<td>Cylinder of radius a</td>
<td>$\psi(r) = \psi_o \frac{K_0(\kappa r)}{K_0(\kappa a)}$</td>
</tr>
<tr>
<td></td>
<td>$\psi_o = \frac{\sigma}{\varepsilon \varepsilon_0 \kappa} K_1(\kappa a)$</td>
</tr>
</tbody>
</table>

Note: $x (>0)$ is the distance from the planar surface and $r (>a)$ is the distance from the center O of the sphere or that from the axis of the cylinder. $K_n(z)$ is the modified Bessel function of the second kind of order n.

action between two particles. When a planar surface is in contact with a z-symmetrical electrolyte, the potential distribution $\psi(x)$ around the surface (see Table 1.3) in the region far from the surface, that is, at large κx, takes the form

$$\psi(x) = \frac{4kT}{ze} \gamma e^{-\kappa x} = \frac{4kT}{ze} \tanh \left(\frac{z e \psi_o}{4kT} \right) e^{-\kappa x}. \quad (1.12)$$
<table>
<thead>
<tr>
<th>Electrolytes</th>
<th>$\psi(x)$</th>
<th>ψ_o/σ Relationship</th>
<th>ψ_{eff}</th>
</tr>
</thead>
<tbody>
<tr>
<td>z-z</td>
<td>$\psi(x) = \frac{2kT}{ze} \ln \left(\frac{1 + \gamma e^{-kx}}{1 - \gamma e^{-kx}} \right)$</td>
<td>$\sigma = \frac{2e_i e_o e z \psi_o}{2kT} \sinh \left(\frac{ze \psi_o}{2kT} \right)$</td>
<td>$\psi_{\text{eff}} = \frac{4kT}{ze} \gamma$</td>
</tr>
<tr>
<td>2-1</td>
<td>$\psi(x) = \frac{kT}{e} \ln \left(\frac{\frac{2}{3} \gamma' e^{-kx} + \frac{1}{2}}{1 - \frac{1}{3} \gamma' e^{-kx}} \right) - \frac{1}{2}$</td>
<td>$\sigma = \frac{e_i e_o kT}{e} \left{ 1 - \exp \left(-\frac{e \psi_o}{kT} \right) \right}$</td>
<td>$\psi_{\text{eff}} = \frac{4kT}{e} \gamma'$</td>
</tr>
<tr>
<td>1-1 plus 2-1</td>
<td>$\psi(x) = \frac{kT}{e} \ln \left(\frac{1}{1 - \eta/3} \right) \left{ \frac{1 + (1 - \eta/3) \gamma'' e^{-kx}}{1 - (1 - \eta/3) \gamma'' e^{-kx}} \right}$</td>
<td>$\sigma = \frac{e_i e_o kT}{e} (1 - e^{-\eta})$</td>
<td>$\psi_{\text{eff}} = \frac{4kT}{e} \gamma''$</td>
</tr>
</tbody>
</table>

Note: $\gamma = \tanh \left(\frac{ze \psi_o}{4kT} \right) = \frac{\exp(ze \psi_o/2kT) - 1}{\exp(ze \psi_o/2kT) + 1}$

$$\gamma' = \frac{3}{2} \left[\left(\frac{2}{3} e^{\eta/3} + \frac{1}{3} \right)^{1/2} - 1 \right]$$
$$\gamma'' = \left(\frac{1}{1 - \eta/3} \right) \left[\left(\frac{1 - \eta/3}{3} \right)^{1/2} + 1 \right] - 1$$
$$\eta = \frac{3n_2}{n_1 + 3n_2}$$
$$y_0 = \frac{e \psi_o}{kT}$$
Comparing Equation 1.12 with the linearized form $\psi(x) = \psi_o \exp(-\kappa x)$ (see Table 1.2), we find that the effective surface potential ψ_{eff} of the plate is given by

$$\psi_{\text{eff}} = \frac{4kT}{ze} \gamma = \frac{kT}{ze} \cdot 4 \tanh \left(\frac{z e \psi_o}{4kT} \right),$$

(1.13)

This result, together with those for other types of electrolytes, is given in Table 1.3.

For a sphere, the nonlinear Poisson–Boltzmann equation has not been solved analytically. Loeb et al. [6] tabulated numerical computer solutions to the nonlinear spherical Poisson–Boltzmann equation and approximate analytic solutions are given in References 7–9 (Table 1.4). For the case of an infinitely long cylindrical particle of radius a, approximate solutions are derived in References 7 and 10 (Table 1.5).

Table 1.4. Potential Distribution $\psi(r)$ and Surface Potential ψ_o/Surface Charge Density σ Relationship for a Sphere of Radius a with Arbitrary Surface Potential

Potential distribution $\psi(r) = \frac{2kT}{ze} \ln \left[\frac{(1 + Bs)(1 + \frac{Bs}{2ka + 1})}{(1 - Bs)(1 - \frac{Bs}{2ka + 1})} \right] (z-z)$

Surface potential ψ_o/surface charge density σ relationship

$$\sigma = \frac{2e_s e_o kT}{ze} \sinh \left(\frac{ze \psi_o}{2kT} \right) \times \left[1 + \frac{1}{\kappa a \cosh^2(ze \psi_o / 4kT)} + \frac{1}{(\kappa a)^2} \frac{8 \ln \cosh(z e \psi_o / 4kT)}{\sinh^2(ze \psi_o / 2kT)} \right]^{1/2} (z-z)$$

(2-1)

Note: $s = \frac{a}{r} \exp(-\kappa(r-a))$, $B = \frac{(2ka + 1)}{1 + \frac{2ka + 1}{\kappa a + 1} \tanh \left(\frac{ze \psi_o}{4kT} \right)}$, $p = 1 - \exp(-e \psi_o / kT)$, $q = \left[\frac{2}{3} \exp(e \psi_o / kT) + 1 \right]^{1/2}$, $t = \left(\frac{1 - \eta}{3} \right) \exp \left(\frac{e \psi_o}{kT} \right) + \frac{\eta}{3}^{1/2}$, $\eta = \frac{3n_z}{n_1 + 3n_2}$.

1.5 SOFT PARTICLES

We consider the case where the particle core is covered by an ion-penetrable surface layer of polyelectrolytes, which we term a surface charge layer (or, simply, a surface layer). Polyelectrolyte-coated particles are often called soft particles (Fig. 1.2) [3–5]. Soft particles serve as a model for biocolloids such as cells. Figure 1.3 gives a schematic representation of ion and potential distributions around a hard surface (Fig. 1.3a) and a soft surface (Fig. 1.3b), which shows that the potential deep inside the surface layer is practicably equal to the Donnan potential \(\psi_{\text{DON}} \), if the surface layer is much thicker than the Debye length \(1/\kappa \). Also we term \(\psi_o \equiv \psi(0) \) (which is the potential at the boundary...