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Preface

Inverse synthetic aperture radar (ISAR) has been proven to be a powerful 
signal processing tool for imaging moving targets usually on the two- 
dimensional (2D) down-range cross-range plane. ISAR imagery plays an 
important role especially in military applications such as target identification, 
recognition, and classification. In these applications, a critical requirement of 
the ISAR image is to achieve sharp resolution in both down-range and cross-
range domains. The usual way of obtaining the 2D ISAR image is by collecting 
the frequency and aspect diverse backscattered field data from the target. For 
synthetic aperture radar (SAR) and ISAR scenarios, there is always a trade-off 
between the down-range resolution and the frequency bandwidth. In contrast 
to SAR, the radar is usually fixed in the ISAR geometry and the cross-range 
resolution is attained by target’s rotational motion, which is generally unknown 
to the radar engineer.

In order to successfully form an ISAR image, the target’s motion should 
contain some degree of rotational component with respect to radar line of 
sight (RLOS) direction during the coherent integration time (or dwell time) 
of the radar system. But in some instances, especially when the target is moving 
along the RLOS direction, the target’s viewing angle width is insufficient to 
be able to form an ISAR image. This restriction can be eliminated by utilizing 
bistatic or multistatic configurations that provide adequate look-angle diver-
sity of the target. Another challenging problem occurs when the target’s rota-
tional velocity is sufficiently high such that the target’s viewing angle width is 
not small during the dwell time of the radar. The target’s translational move-
ment is another issue that has to be addressed before displaying the final 
motion-free ISAR image. Therefore, motion effects have to be removed or 
mitigated with the help of motion compensation algorithms.

This book is devoted to the conceptual description of ISAR imagery and 
the explanation of basic ISAR research. Although the primary audience will 
be graduate students and other interested researchers in the fields of electrical 
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engineering and physics, I hope that colleagues working in radar research and 
development or in a related industry may also benefit from the book. Numerical 
or experimental examples in Matlab technical language are provided for the 
presented algorithms with the aim of improving the understanding of the 
algorithms by the reader.

The organization of the book is as follows. In the first chapter, an overview 
of Fourier theory, which plays an important and crucial role in radar imaging, 
is presented to provide a fair knowledge of Fourier-based signal processing 
basics. Noting that the ISAR imaging can also be treated as a signal processing 
tool, an understanding of signal processing and Fourier theory will be required 
to get the full benefit from the chapters within the book. The next chapter is 
devoted to radar fundamentals. Since ISAR itself is a radar, the key parame-
ters of the radar concept that is related to ISAR research are revisited. These 
include electromagnetic scattering, radar cross section, the radar equation, and 
the radar waveforms. Then, before stepping into inverse problem of ISAR, the 
forward problem of SAR is reviewed in Chapter 3. SAR and ISAR provide 
dual problems and share dual algorithms with similar difficulties. Therefore, 
understanding the ISAR imagery could not be complete without understand-
ing the SAR concepts. In the SAR chapter, therefore, important concepts of 
SAR such as resolution, pulse compression, and image formation are given 
together with associated Matlab codes. Furthermore, some advanced concepts 
and trends in SAR imaging are also presented.

After providing the fundamentals for SAR imaging, we provide the detailed 
imaging procedure for conventional ISAR imaging and the basic ISAR con-
cepts with associated Matlab codes in Chapter 4. The topics include range 
profile concept, range/cross-range resolutions, small-angle small-bandwidth 
ISAR imaging, large-angle wide-bandwidth ISAR imaging, polar reformatting, 
and three-dimensional ISAR imaging. In Chapter 5, we provide some design 
aspects that are used to improve the quality of the ISAR image. Down sam-
pling/up sampling, image aliasing, point spread function and smoothing are 
covered in this chapter. Several imaging tricks and fine-tuning procedures such 
as zero-padding and windowing that are used for enhancing the image quality 
are also presented.

In Chapter 6, range-Doppler ISAR image processing is given in detail. 
ISAR waveforms, ISAR receiver for these waveforms, quadrature detection, 
Doppler shift phenomena, and range-Doppler ISAR imaging algorithms are 
presented. The design examples with Matlab codes are also provided. In 
Chapter 7, scattering center representation, which has proven to be a sparse 
but an effective model of ISAR imaging, is presented. We provide algorithms 
to reconstruct both the image and the field data from the scattering centers 
with good fidelity. In Chapter 8, motion compensation (MOCOMP), one  
of the most important and challenging problems of ISAR imagery, is  
taken up in detail. The concepts include Doppler effect due to target motion, 
translational and motion compensation routines, range tracking, and Doppler 
tracking subjects. Algorithms and numerical examples with Matlab codes are 
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provided for the most popular MOCOMP techniques, namely, cross-correla-
tion method, minimum entropy method, and joint-time frequency (JTF) - based 
motion compensation. In the fi nal chapter, applications of the ISAR imaging 
concept to different but related engineering problems are presented. The 
employment of ISAR imagery to the antenna scattering problem (i.e., antenna 
SAR) and also to the antenna coupling problem (i.e., antenna coupling SAR) 
are explained. The imaging algorithms together with numerical examples 
are given. In addition, the application of the SAR/ISAR concept to the 
ground penetrating radar application is presented. 

 All MATLAB fi les may be accessed on the following ftp site:  ftp://ftp.wiley.
com/public/sci_tech_med/inverse_synthetic.  

   C ANER   Ö  ZDEMİR         

ftp://ftp.wiley.com/public/sci_tech_med/inverse_synthetic
ftp://ftp.wiley.com/public/sci_tech_med/inverse_synthetic




xvii

Acknowledgments

I would like to address special thanks to the people below for their help and 
support during the preparation of this book. First, I am thankful to my wife 
and three children for their patience and continuous support while writing this 
book. I am very thankful to Dr. Hao Ling of the University of Texas at Austin 
for being a valuable source of knowledge, ideas, and also inspiration. He has 
been a great advisor since I met him.

I would like to express my sincere thanks to my former graduate students 
Betül Yılmaz, Deniz Üstün, Enes Yiğit, Şevket Demirci, and Özkan Kırık, who 
carried out some of the research detailed in this book.

Last but not least, I would like to show my special thanks to Dr. Kai Chang 
for inviting me to write this book. Without his kind offer, this study would not 
have been possible.

C.Ö.





1

CHAPTER ONE

Basics of Fourier Analysis

1.1 FORWARD AND INVERSE FOURIER TRANSFORM

Fourier transform (FT) is a common and useful mathematical tool that is 
utilized in numerous applications in science and technology. FT is quite practi-
cal, especially for characterizing nonlinear functions in nonlinear systems, 
analyzing random signals, and solving linear problems. FT is also a very impor-
tant tool in radar imaging applications as we shall investigate in the forthcom-
ing chapters of this book. Before starting to deal with the FT and inverse 
Fourier transform (IFT), a brief history of this useful linear operator and its 
founders is presented.

1.1.1 Brief History of FT

Jean Baptiste Joseph Fourier, a great mathematician, was born in 1768 in 
Auxerre, France. His special interest in heat conduction led him to describe a 
mathematical series of sine and cosine terms that can be used to analyze 
propagation and diffusion of heat in solid bodies. In 1807, he tried to share his 
innovative ideas with researchers by preparing an essay entitled “On the 
Propagation of Heat in Solid Bodies.” The work was examined by Lagrange, 
Laplace, Monge, and Lacroix. Lagrange’s oppositions caused the rejection of 
Fourier’s paper. This unfortunate decision caused colleagues to wait for 15 
more years to read his remarkable contributions on mathematics, physics, and, 
especially, signal analysis. Finally, his ideas were published in the book The 
Analytic Theory of Heat in 1822 [1].

Discrete Fourier transform (DFT) was developed as an effective tool in 
calculating this transformation. However, computing FT with this tool in the 

Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms, First Edition. 
Caner Özdemir.
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2    Basics of fourier analysis

19th century was taking a long time. In 1903, Carl Runge studied the minimiza-
tion of the computational time of the transformation operation [2]. In 1942, 
Danielson and Lanczos utilized the symmetry properties of FT to reduce the 
number of operations in DFT [3]. Before the advent of digital computing 
technologies, James W. Cooley and John W. Tukey developed a fast method  
to reduce the computation time in DFT. In 1965, they published their technique 
that later on became famous as the fast Fourier transform (FFT) [4].

1.1.2 Forward FT Operation

The FT can be simply defined as a certain linear operator that maps functions 
or signals defined in one domain to other functions or signals in another 
domain. The common use of FT in electrical engineering is to transform signals 
from time domain to frequency domain or vice versa. More precisely, forward 
FT decomposes a signal into a continuous spectrum of its frequency compo-
nents such that the time signal is transformed to a frequency-domain signal. 
In radar applications, these two opposing domains are usually represented as 
“spatial frequency” (or wave number) and “range” (distance). Such use of FT 
will be examined and applied throughout this book.

The forward FT of a continuous signal g(t) where −∞ < t < ∞ is described 
as

 
G f g t

g t e dtj ft

( ) = ( ){ }

= ( )⋅ −

−∞

∞

∫
ℱ

2π .
 (1.1)

To appreciate the meaning of FT, the multiplying function e−j2πft and operators 
(multiplication and integration) on the right side of Equation 1.1 should be 
investigated carefully: The term e j f ti− 2π  is a complex phasor representation for 
a sinusoidal function with the single frequency of fi. This signal oscillates only 
at the frequency of fi and does not contain any other frequency component. 
Multiplying the signal in interest, g(t), with the term e j f ti− 2π  provides the simi-
larity between each signal, that is, how much of g(t) has the frequency content 
of fi. Integrating this multiplication over all time instances from −∞ to ∞ will 
sum the fi contents of g(t) over all time instants to give G( fi); that is, the 
amplitude of the signal at the particular frequency of fi. Repeating this process 
for all the frequencies from −∞ to ∞ will provide the frequency spectrum of 
the signal; that is, G( f ) . Therefore, the transformed signal represents the 
continuous spectrum of frequency components; that is, representation of the 
signal in “frequency domain.”

1.1.3 IFT

This transformation is the inverse operation of the FT. IFT, therefore, synthe-
sizes a frequency-domain signal from its spectrum of frequency components 
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to its time-domain form. The IFT of a continuous signal G( f )  where −∞ < f < ∞ 
is described as

 
g t G f

G f e dfj ft

( ) = ( ){ }

= ( )⋅

−

−∞

∞

∫
ℱ 1

2π .
 (1.2)

1.2 FT RULES AND PAIRS

There are many useful Fourier transform rules and pairs that can be very 
helpful when applying the FT or IFT to different real-world applications. We 
will briefly revisit them to remind the reader of the properties of FT. Provided 
that FT and IFT are defined as in Equations 1.1 and 1.2, respectively, FT pair 
is denoted as

 g t G f( )↔ ( )
ℱ

,  (1.3)

where ℱ represents the forward FT operation from time domain to frequency 
domain. The IFT operation is represented by ℱ − 1 and the corresponding 
alternative pair is given by

 G f g t( ) ↔ ( )
−ℱ 1

.  (1.4)

Here, the transformation is from frequency domain to time domain. Based on 
these notations, the properties of FT are listed briefly below.

1.2.1 Linearity

If G(f) and H(f) are the FTs of the time signals g(t) and h(t), respectively, the 
following equation is valid for the scalars a and b:

 a g t b h t a G f b H f⋅ ( ) + ⋅ ( )↔ ⋅ ( ) + ⋅ ( )
ℱ

.  (1.5)

Therefore, the FT is a linear operator.

1.2.2 Time Shifting

If the signal is shifted in time with a value of to, then its frequency domain 
signal is multiplied with a phase term as listed below: 

 g t t e G fo
j fto−( )↔ ⋅ ( )−

ℱ
2π  (1.6)
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1.2.3 Frequency Shifting

If the time signal is multiplied by a phase term of e j f to2π , then the FT of this 
time signal is shifted in frequency by fo:

 e g t G f fj f t
o

o2π ⋅ ( )↔ −( )
ℱ

 (1.7)

1.2.4 Scaling

If the time signal is scaled by a constant a, then the spectrum is also scaled 
with the following rule:

 g at
a

G
f
a

a a( )↔ 



 ∈ ≠

ℱ 1
0, , .R    (1.8)

1.2.5 Duality

If the spectrum signal G( f )  is taken as a time signal G(t), then the correspond-
ing frequency-domain signal will be the time reversal equivalent of the original 
time-domain signal, g(t):

 G t g f( )↔ −( )
ℱ

.  (1.9)

1.2.6 Time Reversal

If the time is reversed for the time-domain signal, then the frequency is also 
reversed in the frequency-domain signal:

 g t G f−( )↔ −( )
ℱ

.  (1.10)

1.2.7 Conjugation

If the conjugate of the time-domain signal is taken, then the frequency-domain 
signal is conjugated and frequency-reversed:

 g t G f* * .( )↔ −( )
ℱ

 (1.11)

1.2.8 Multiplication

If the time-domain signals g(t) and h(t) are multiplied in time, then their spec-
trum signals G( f )  and H( f )  are convolved in frequency:

 g t h t G f H f( )⋅ ( )↔ ( ) ( )
ℱ

* .  (1.12)
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1.2.9 Convolution

If the time-domain signals g(t) and h(t) are convolved in time, then their spec-
trum signals G( f )  and H( f )  are multiplied in the frequency domain:

 g t h t G f H f( )∗ ( )↔ ( )⋅ ( )
ℱ

.  (1.13)

1.2.10 Modulation

If the time-domain signal is modulated with sinusoidal functions, then the 
frequency-domain signal is shifted by the amount of the frequency at that 
particular sinusoidal function:

 
g t cos f t G f f G f f

g t sin f t
j

G f

o o o

o

( )∗ ( )↔ +( ) + −( )( )

( )∗ ( )↔ +

2
1
2

2
2

π

π

ℱ

ℱ

ff G f fo o( ) − −( )( ).
 (1.14)

1.2.11 Derivation and Integration

If the derivative or integration of a time-domain signal is taken, then the cor-
responding frequency-domain signal is given as below:
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 (1.15)

1.2.12 Parseval’s Relationship

A useful property that was claimed by Parseval is that since the FT (or IFT) 
operation maps a signal in one domain to another domain, the signals’ energies 
should be exactly the same as given by the following relationship:

 g t dt G f df( ) ↔ ( )
−∞

∞

−∞

∞

∫ ∫2 2
ℱ

.  (1.16)

1.3 TIME-FREQUENCY REPRESENTATION OF A SIGNAL

While the FT concept can be successfully utilized for the stationary signals, 
there are many real-world signals whose frequency contents vary over time. 
To be able to display these frequency variations over time, joint time-frequency 
(JTF) transforms/representations are used.
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1.3.1 Signal in the Time Domain

The term “time domain” is used while describing functions or physical signals 
with respect to time either continuous or discrete. The time-domain signals are 
usually more comprehensible than the frequency-domain signals since most 
of the real-world signals are recorded and displayed versus time. A common 
equipment to analyze time-domain signals is the oscilloscope. In Figure 1.1, a 
time-domain sound signal is shown. This signal is obtained by recording an 
utterance of the word “prince” by a lady [5]. By looking at the occurrence 
instants in the x-axis and the signal magnitude in the y-axis, one can analyze 
the stress of the letters in the word “prince.”

1.3.2 Signal in the Frequency Domain

The term “frequency domain” is used while describing functions or physical 
signals with respect to frequency either continuous or discrete. Frequency-
domain representation has been proven to be very useful in numerous engi-
neering applications while characterizing, interpreting, and identifying signals. 
Solving differential equations and analyzing circuits and signals in communica-
tion systems are a few applications among many others where frequency-
domain representation is much more advantageous than time-domain 
representation. The frequency-domain signal is traditionally obtained by 
taking the FT of the time-domain signal. As briefly explained in Section 1.1, 
FT is generated by expressing the signal onto a set of basis functions, each of 
which is a sinusoid with the unique frequency. Displaying the measure of the 
similarities of the original time-domain signal to those particular unique  

FIGURE 1.1 The time-domain signal of “prince” spoken by a lady.
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frequency bases generates the Fourier transformed signal, or the frequency-
domain signal. Spectrum analyzers and network analyzers are the common 
equipment which analyze frequency-domain signals. These signals are not as 
quite perceivable when compared to time-domain signals. In Figure 1.2, the 
frequency-domain version of the sound signal in Figure 1.1 is obtained by 
using the FT operation. The signal intensity value at each frequency compo-
nent can be read from the y-axis. The frequency content of a signal is also 
called the spectrum of that signal.

1.3.3 Signal in the (JTF) Plane

Although FT is very effective for demonstrating the frequency content of a 
signal, it does not give the knowledge of frequency variation over time. 
However, most of the real-world signals have time-varying frequency content 
such as speech and music signals. In these cases, the single-frequency sinusoidal 
bases are not suitable for the detailed analysis of those signals. Therefore, JTF 
analysis methods were developed to represent these signals both in time and 
frequency to observe the variation of frequency content as the time 
progresses.

There are many tools to map a time-domain or frequency-domain signal 
onto the JTF plane. Some of the most well-known JTF tools are the short-time 
Fourier transform (STFT) [6], the Wigner–Ville distribution [7], the Choi-
Willams distribution [8], the Cohen’s class [9], and the time-frequency dis-
tribution series (TFDS) [10]. Among these, the most appreciated and commonly 
used is the STFT or the spectrogram. The STFT can easily display the  

FIGURE 1.2 The frequency-domain signal (or the spectrum) of “prince.”
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variations in the sinusoidal frequency and phase content of local moments of 
a signal over time with sufficient resolution in most cases.

The spectrogram transforms the signal onto two-dimensional (2D) time-
frequency plane via the following famous equation:

 
STFT g t G t f

g w t e dj f

( ){ } ( )

= ( )⋅ −( ) −

−∞

∞

∫
� ,

.τ τ τπ τ2
 (1.17)

This transformation formula is nothing but the short-time (or short-term) 
version of the famous FT operation defined in Equation 1.1. The main signal, 
g(t), is multiplied with a shorter duration window signal, w(t). By sliding this 
window signal over g(t) and taking the FT of the product, only the frequency 
content for the windowed version of the original signal is acquired. Therefore, 
after completing the sliding process over the whole duration of the time-
domain signal g(t) and putting corresponding FTs side by side, the final 2D 
STFT of g(t) is obtained.

It is obvious that STFT will produce different output signals for different 
duration windows. The duration of the window affects the resolutions in both 
domains. While a very short-duration time window provides a good resolution 
in the time domain, the resolution in the frequency domain becomes poor. This 
is because of the fact that the time duration and the frequency bandwidth of 
a signal are inversely proportional to each other. Similarly, a long duration 
time signal will give a good resolution in the frequency domain while the reso-
lution in the time domain will be bad. Therefore, a reasonable compromise 
has to be attained about the duration of the window in time to be able to view 
both domains with fairly good enough resolutions.

The shape of the window function has an effect on the resolutions as well. 
If a window function with sharp ends is chosen, there will be strong sidelobes 
in the other domain. Therefore, smooth waveform type windows are usually 
utilized to obtain well-resolved images with less sidelobes with the price  
of increased main lobe beamwidth; that is, less resolution. Commonly used 
window types are Hanning, Hamming, Kaiser, Blackman, and Gaussian.

An example of the use of spectrograms is demonstrated in Figure 1.3. The 
spectrogram of the sound signal in Figure 1.1 is obtained by applying the STFT 
operation with a Hanning window. This JTF representation obviously demon-
strates the frequency content of different syllables when the word “prince” is 
spoken. Figure 1.3 illustrates that while the frequency content of the part 
“prin . . .” takes place at low frequencies, that of the part “. . . ce” occurs at 
much higher frequencies.

JTF transformation tools have been found to be very useful in interpreting 
the physical mechanisms such as scattering and resonance for radar applica-
tions [11–14]. In particular, when JTF transforms are used to form the 2D 
image of electromagnetic scattering from various structures, many useful phys-
ical features can be displayed. Distinct time events (such as scattering from 
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point targets or specular points) show up as vertical line in the JTF plane as 
depicted in Figure 1.4a. Therefore, these scattering centers appear at only one 
time instant but for all frequencies. A resonance behavior such as scattering 
from an open cavity structure shows up as horizontal line on the JTF plane. 
Such mechanisms occur only at discrete frequencies but over all time instants 
(see Fig. 1.4b). Dispersive mechanisms, on the other hand, are represented on 
the JTF plane as slanted curves. If the dispersion is due to the material, then 
the slope of the image is positive as shown in Figure 1.4c,d. The dielectric 
coated structures are the good examples of this type of dispersion. The reason 

FIGURE 1.3 The time-frequency representation of the word “prince.”
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FIGURE 1.4 Images of scattering mechanisms in the joint time-frequency plane: 
(a) scattering center, (b) resonance, (c and d) dispersion due to material, (e and f) 
dispersion due to geometry of the structure.
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for having a slanted line is because of the modes excited inside such materials. 
As frequency increases, the wave velocity changes for different modes inside 
these materials. Consequently, these modes show up as slanted curves in the 
JTF plane. Finally, if the dispersion is due to the geometry of the structure, 
this type of mechanism appears as a slanted line with a negative slope. This 
style of behavior occurs for such structures such as waveguides where there 
exist different modes with different wave velocities as the frequency changes 
as seen in Figure 1.4e,f.

An example of the use of JTF processing in radar application is shown in 
Figure 1.5 where spectrogram of the simulated backscattered data from a 
dielectric-coated wire antenna is shown [14]. The backscattered field is col-
lected from the Teflon-coated wire (εr = 2.1) such that the tip of the electric 
field makes an angle of 60° with the wire axis as illustrated in Figure 1.5. After  
the incident field hits the wire, infinitely successive scattering mechanisms 
occur. The first four of them are illustrated on top of Figure 1.5. The first return 
comes from the near tip of the wire. This event occurs at a discrete time that 

FIGURE 1.5 JTF image of a backscattered measured data from a dielectric-coated 
wire antenna using spectrogram.


