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PREFACE

Ever since surfactant science detached its umbilical cord from the body of 
colloid science and established its unique identity as an independent entity in 
the 1950s, great leaps in its theoretical and applied fronts have occurred. The 
real thrust of surfactant science and technology is centered on applications, 
although its importance in understanding frontline areas like the origin of life 
and soft matter (a subfield of condensed matter studies) technology is built 
upon the self-organizing power of surfactants into structures such as micelles 
or bilayers.

This book, when originally conceived in the 1970s, forecast the impend-
ing revolution that surfactant science was to witness in the future, and was 
developed to bridge the gap between fundamental knowledge and industrial 
applications. Later editions of the book incorporated advances in theory with 
a special link to end uses.

The importance of surfactants continues to emerge, as evidenced by the  
use of polymeric surfactants during the Gulf oil spill of 2010 to disperse  
the floating oil film in the ocean, in processing materials such as the silicon 
chip, and in the still emerging areas of in vivo biotechnology and in vitro 
nanotechnology.

The present edition has been updated to embrace these cutting-edge  
and state-of-the-art topics in surfactant application by the addition of  
three new chapters: Chapter 13, “Surfactants in Biology”; Chapter 14, “Surfac-
tants in Nanotechnology”; and Chapter 15, “Surfactants and Molecular 
Modeling.”

Most of the previously existing chapters have been revised with some new 
materials in the form of expanded, rewritten or new sections, and/or additional 
references and problems. Specifically, the following new sections (in bold) are 
added or existing ones revised (in italics): environmental effects of surfactants, 
electronic searching of surfactant literature, zwitterioncs (Chapter 1); mecha-
nism of adsorption and aggregation (Chapter 2); rheology of surfactant solu-
tions (Chapter 3); solubilization (Chapter 4); accurate depiction of equations 
in film elasticity, foaming and antifoaming in organic media (Chapter 7); micro-
emulsions, demulsification (Chapter 8); limitations of the DLVO theory, design 

xv
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of new dispersants (Chapter 9); biosurfactants and enzymes in detergent for-
mulations (Chapter 10); and problems (Chapters 1, 2, 5–10, and 12).
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1  Characteristic Features 
of Surfactants

Surfactants are among the most versatile products of the chemical industry, 
appearing in such diverse products as the motor oils we use in our automobiles, 
the pharmaceuticals we take when we are ill, the detergents we use in cleaning 
our laundry and our homes, the drilling muds used in prospecting for petro-
leum, and the flotation agents used in beneficiation of ores. The last decades 
have seen the extension of surfactant applications to such high-technology 
areas as electronic printing, magnetic recording, biotechnology, microelectron-
ics, and viral research.

A surfactant (a contraction of the term surface-active agent) is a substance 
that, when present at low concentration in a system, has the property of 
adsorbing onto the surfaces or interfaces of the system and of altering to a 
marked degree the surface or interfacial free energies of those surfaces (or 
interfaces). The term interface indicates a boundary between any two immis-
cible phases; the term surface denotes an interface where one phase is a gas, 
usually air.

The interfacial free energy is the minimum amount of work required to 
create that interface. The interfacial free energy per unit area is what we 
measure when we determine the interfacial tension between two phases. It is 
the minimum amount of work required to create unit area of the interface or 
to expand it by unit area. The interfacial (or surface) tension is also a measure 
of the difference in nature of the two phases meeting at the interface (or 
surface). The greater the dissimilarity in their natures, the greater the interfa-
cial (or surface) tension between them.

When we measure the surface tension of a liquid, we are measuring the 
interfacial free energy per unit area of the boundary between the liquid and 
the air above it. When we expand an interface, therefore, the minimum work 
required to create the additional amount of that interface is the product of 
the interfacial tension γI and the increase in area of the interface; 
Wmin = γI × Δinterfacial area. A surfactant is therefore a substance that at low con-
centrations adsorbs at some or all of the interfaces in the system and signifi-
cantly changes the amount of work required to expand those interfaces. 

Surfactants and Interfacial Phenomena, Fourth Edition. Milton J. Rosen and Joy T. Kunjappu.
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2  ChARACTERISTIC FEATuRES oF SuRFACTAnTS 

Surfactants usually act to reduce interfacial free energy rather than to increase 
it, although there are occasions when they are used to increase it.

The questions that immediately arise are the following: under what condi-
tions can surfactants play a significant role in a process? how does one know 
when to expect surfactants to be a significant factor in some system under 
investigation? how and why do they work as they do?

I.  CONDITIONS UNDER WHICH INTERFACIAL PHENOMENA 
AND SURFACTANTS BECOME SIGNIFICANT

The physical, chemical, and electrical properties of matter confined to phase 
boundaries are often profoundly different from those of the same matter in 
bulk. For many systems, even those containing a number of phases, the fraction 
of the total mass that is localized at phase boundaries (interfaces, surfaces) is 
so small that the contribution of these “abnormal” properties to the general 
properties and behavior of the system is negligible. There are, however, many 
important circumstances under which these “different” properties play a sig-
nificant, if not a major, role.

one such circumstance is when the phase boundary area is so large relative 
to the volume of the system that a substantial fraction of the total mass of the 
system is present at boundaries (e.g., in emulsions, foams, and dispersions of 
solids). In this circumstance, surfactants can always be expected to play a major 
role in the system.

Another such circumstance is when the phenomena occurring at phase 
boundaries are so unusual relative to the expected bulk phase interactions that 
the entire behavior of the system is determined by interfacial processes (e.g., 
heterogeneous catalysis, corrosion, detergency, or flotation). In this circum-
stance also, surfactants can play an important role in the process. It is obviously 
necessary to understand the causes of this abnormal behavior of matter at the 
interfaces and the variables that affect this behavior in order to predict and 
control the properties of these systems.

II.  GENERAL STRUCTURAL FEATURES AND BEHAVIOR  
OF SURFACTANTS

The molecules at a surface have higher potential energies than those in the 
interior. This is because they interact more strongly with the molecules in the 
interior of the substance than they do with the widely spaced gas molecules 
above it. Work is therefore required to bring a molecule from the interior to 
the surface.

Surfactants have a characteristic molecular structure consisting of a struc-
tural group that has very little attraction for the solvent, known as a lyophobic 
group, together with a group that has strong attraction for the solvent, called 
the lyophilic group. This is known as an amphipathic structure. When a mol-
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ecule with an amphipathic structure is dissolved in a solvent, the lyophobic 
group may distort the structure of the solvent, increasing the free energy of 
the system. When that occurs, the system responds in some fashion in order 
to minimize contact between the lyophobic group and the solvent. In the case 
of a surfactant dissolved in aqueous medium, the lyophobic (hydrophobic) 
group distorts the structure of the water (by breaking hydrogen bonds between 
the water molecules and by structuring the water in the vicinity of the hydro-
phobic group). As a result of this distortion, some of the surfactant molecules 
are expelled to the interfaces of the system, with their hydrophobic groups 
oriented so as to minimize contact with the water molecules. The surface of 
the water becomes covered with a single layer of surfactant molecules with 
their hydrophobic groups oriented predominantly toward the air. Since air 
molecules are essentially nonpolar in nature, as are the hydrophobic groups, 
this decrease in the dissimilarity of the two phases contacting each other at 
the surface results in a decrease in the surface tension of the water. on the 
other hand, the presence of the lyophilic (hydrophilic) group prevents the 
surfactant from being expelled completely from the solvent as a separate 
phase, since that would require dehydration of the hydrophilic group. The 
amphipathic structure of the surfactant therefore causes not only concentra-
tion of the surfactant at the surface and reduction of the surface tension of 
the water, but also orientation of the molecule at the surface with its hydro-
philic group in the aqueous phase and its hydrophobic group oriented away 
from it.

The chemical structures of groupings suitable as the lyophobic and lyophilic 
portions of the surfactant molecule vary with the nature of the solvent and 
the conditions of use. In a highly polar solvent such as water, the lyophobic 
group may be a hydrocarbon or fluorocarbon or siloxane chain of proper 
length, whereas in a less polar solvent, only some of these may be suitable 
(e.g., fluorocarbon or siloxane chains in polypropylene glycol). In a polar 
solvent such as water, ionic or highly polar groups may act as lyophilic groups, 
whereas in a nonpolar solvent such as heptane, they may act as lyophobic 
groups. As the temperature and use conditions (e.g., presence of electrolyte or 
organic additives) vary, modifications in the structure of the lyophobic and 
lyophilic groups may become necessary to maintain surface activity at a suit-
able level. Thus, for surface activity in a particular system, the surfactant 
molecule must have a chemical structure that is amphipathic in that solvent 
under the conditions of use.

The hydrophobic group is usually a long-chain hydrocarbon residue, and 
less often a halogenated or oxygenated hydrocarbon or siloxane chain; the 
hydrophilic group is an ionic or highly polar group. depending on the nature 
of the hydrophilic group, surfactants are classified as

1. Anionic. The surface-active portion of the molecule bears a negative 
charge, for example, RCoo−na+ (soap), RC H SO Na6 4 3

− + (alkylbenzene 
sulfonate).
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2. Cationic. The surface-active portion bears a positive charge, for example, 
RNH Cl3

+ − (salt of a long-chain amine), RN CH Cl( )3 3
+ − (quaternary ammo-

nium chloride).
3. Zwitterionic. Both positive and negative charges may be present in the 

surface-active portion, for example, Rn+h2Ch2Coo− (long-chain amino 
acid), RN CH CH CH SO+ −( )3 2 2 2 3  (sulfobetaine).

4. Nonionic. The surface-active portion bears no apparent ionic charge, for 
example, RCooCh2ChohCh2oh (monoglyceride of long-chain fatty 
acid), RC6h4(oC2h4)xoh (polyoxyethylenated alkylphenol), R(oC2h4)x 
oh(polyoxyethylenated alcohol).

A.  General Use of Charge Types

Most natural surfaces are negatively charged. Therefore, if the surface is to be 
made hydrophobic (water-repellent) by use of a surfactant, then the best type 
of surfactant to use is a cationic. This type of surfactant will adsorb onto the 
surface with its positively charged hydrophilic head group oriented toward the 
negatively charged surface (because of electrostatic attraction) and its hydro-
phobic group oriented away from the surface, making the surface water-
repellent. on the other hand, if the surface is to be made hydrophilic 
(water-wettable), then cationic surfactants should be avoided. If the surface 
should happen to be positively charged, however, then anionics will make it 
hydrophobic and should be avoided if the surface is to be made hydrophilic.

nonionics adsorb onto surfaces with either the hydrophilic or the hydro-
phobic group oriented toward the surface, depending upon the nature of the 
surface. If polar groups capable of h bonding with the hydrophilic group of 
the surfactant are present on the surface, then the surfactant will probably be 
adsorbed with its hydrophilic group oriented toward the surface, making the 
surface more hydrophobic; if such groups are absent from the surface, then 
the surfactant will probably be oriented with its hydrophobic group toward 
the surface, making it more hydrophilic.

Zwitterionics, since they carry both positive and negative charges, can 
adsorb onto both negatively charged and positively charged surfaces without 
changing the charge of the surface significantly. on the other hand, the adsorp-
tion of a cationic onto a negatively charged surface reduces the charge on the 
surface and may even reverse it to a positive charge (if sufficient cationic is 
adsorbed). In similar fashion, the adsorption of an anionic surfactant onto a 
positively charged surface reduces its charge and may reverse it to a negative 
charge. The adsorption of a nonionic onto a surface generally does not affect 
its charge significantly, although the effective charge density may be reduced 
if the adsorbed layer is thick.

differences in the nature of the hydrophobic groups are usually less pro-
nounced than those in the nature of the hydrophilic group. Generally, they are 
long-chain hydrocarbon residues. however, they include such different struc-
tures as
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1. Straight-chain, long alkyl groups (C8–C20)
2. Branched-chain, long alkyl groups (C8–C20)
3. long-chain (C8–C15) alkylbenzene residues
4. Alkylnaphthalene residues (C3 and greater-length alkyl groups)
5. Rosin derivatives (rosin is obtained from plant resins)
6. high-molecular-weight propylene oxide polymers (polyoxypropylene 

glycol derivatives)
7. long-chain perfluoroalkyl groups
8. Polysiloxane groups
9. lignin derivatives

B.  General Effects of the Nature of the Hydrophobic Group

1.  Length of the Hydrophobic Group  Increase in the length of the hydro-
phobic group (1) decreases the solubility of the surfactant in water and 
increases its solubility in organic solvents, (2) causes closer packing of the 
surfactant molecules at the interface (provided that the area occupied by the 
hydrophilic group at the interface permits it), (3) increases the tendency of 
the surfactant to adsorb at an interface or to form aggregates, called micelles, 
(4) increases the melting point of the surfactant and of the adsorbed film and 
the tendency to form liquid crystal phases in the solution, and (5) increases 
the sensitivity of the surfactant, if it is ionic, to precipitation from water by 
counterions.

2.  Branching, Unsaturation  The introduction of branching or unsaturation 
into the hydrophobic group (1) increases the solubility of the surfactant in 
water or in organic solvents (compared to the straight-chain, saturated isomer), 
(2) decreases the melting point of the surfactant and of the adsorbed film, (3) 
causes looser packing of the surfactant molecules at the interface (the cis 
isomer is particularly loosely packed; the trans isomer is packed almost as 
closely as the saturated isomer) and inhibits liquid crystal phase formation in 
solution, (4) may cause oxidation and color formation in unsaturated com-
pounds, (5) may decrease biodegradability in branched-chain compounds, and 
(6) may increase thermal instability.

3.  Aromatic Nucleus  The presence of an aromatic nucleus in the hydropho-
bic group may (1) increase the adsorption of the surfactant onto polar surfaces, 
(2) decrease its biodegradability, and (3) cause looser packing of the surfactant 
molecules at the interface. Cycloaliphatic nuclei, such as those in rosin deriva-
tives, are even more loosely packed.

4.  Polyoxypropylene  or  Polyoxyethylene  (POE)  Units  Polyoxypropylene 
units increase the hydrophobic nature of the surfactant, its adsorption onto 
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polar surfaces, and its solubility in organic solvents. PoE units decrease the 
hydrophobic character or increase the hydrophilicity of the surfactant.

5.  Perfluoroalkyl  or  Polysiloxane  Group  The presence of either of these 
groups as the hydrophobic group in the surfactant permits reduction of the 
surface tension of water to lower values than those attainable with a 
hydrocarbon-based hydrophobic group. Perfluoroalkyl surfaces are both 
water- and hydrocarbon-repellent.

With such a variety of available structures, how does one choose the proper 
surfactant for a particular purpose? Alternatively, why are only certain surfac-
tants used for a particular purpose and not other surfactants? Economic 
factors are often of major importance—unless the cost of using the surfactant 
is trivial compared to other costs, one usually chooses the most inexpensive 
surfactant that will do the job. In addition, such considerations as environmen-
tal effects (biodegradability, toxicity to and bioconcentration in aquatic organ-
isms; Section IIIA) and, for personal care products, skin irritation (Section 
IIIB) are important considerations. The selection of the best surfactants or 
combination of surfactants for a particular purpose in a rational manner, 
without resorting to time-consuming and expensive trial-and-error experimen-
tation, requires a knowledge of (1) the characteristic features of currently 
available surfactants (general physical and chemical properties and uses), (2) 
the interfacial phenomena involved in the job to be done and the role of the 
surfactant in these phenomena, (3) the surface chemical properties of various 
structural types of surfactants and the relation of the structure of a surfactant 
to its behavior in various interfacial phenomena. The following chapters 
attempt to cover these areas.

III.  ENVIRONMENTAL EFFECTS OF SURFACTANTS

A.  Surfactant Biodegradability

Surfactants are “performance” chemicals; that is, they are used to perform a 
particular function in some process or product, in contrast to other organic 
chemicals that may be used to produce another chemical or product. Since 
they are used in products or processes that impact on the environment, there 
are concerns regarding their effect, particularly their biodegradability in the 
environment and their toxicity, and of their biodegradation products to marine 
organisms and human beings.

of late, these concerns in the public mind have become so serious that,  
to many people, the term “chemical” has become synonymous with “toxic 
chemical.”* As a result, many manufacturers and users of chemicals, including 

* one of the authors actually heard a college student, upon seeing “organic chemistry” written 
on a door, exclaim, “if it is organic, how can it be chemistry?”
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surfactants, have paid serious attention to the biodegradability and toxicity of 
surfactants. In addition, they have sought new surfactants based upon renew-
able resources, so-called “green” surfactants (Section IvE, below).

An excellent review of surfactant biodegradability (Swisher, 1987) points 
out that biodegradability increases with increased linearity of the hydrophobic 
group and is reduced, for isomeric materials, by branching in that group, par-
ticularly by terminal quaternary carbon branching. A single methyl branch in 
the hydrophobic group does not change the biodegradation rate, but addi-
tional ones do.

In isomeric alkylbenzene and alkylphenol derivatives, degradation decreases 
as the phenyl group is moved from a position near the terminal end of a linear 
alkyl group to a more central position.

In PoE nonionics, biodegradation is retarded by an increase in the number 
of oxyethylene groups. The inclusion of oxypropylene or oxybutylene groups 
in the molecule tends to retard biodegradation. Secondary ethoxylates degrade 
more slowly than primary ethoxylates even when both have linear hydropho-
bic groups.

In cationic quaternary ammonium surfactants, compounds with one linear 
alkyl chain attached to the nitrogen degrade faster than those with two, and 
these degrade faster than those with three. The replacement of a methyl group 
attached to the nitrogen by a benzyl group retards the rate of degradation 
slightly. Pyridinium compounds biodegrade significantly more slowly than the 
corresponding trimethylammonium compounds, while imidazolinium com-
pounds biodegrade rapidly. Carboxylic acids have been identified as the meta-
bolic end products of linear alcohol ethoxylates (AEs) and alkyl aryl 
sulfonates.

B.  Surfactant Toxicity; Skin Irritation

Since surfactants are used in many products and formulations, such as cleaning 
solutions, cutting fluids, inks, and paints (Kunjappu, 2001), their skin irritability 
is important, and they can end up in aquifers and other water sources. LD50 
(the median lethal dose—the dose required to kill half the members of a tested 
population) and IC50 (the half maximal inhibitory concentration—a measure 
of the effectiveness of a compound in inhibiting biological or biochemical 
function) data are used to represent the toxicity.

The toxicity of surfactants to marine organisms and their concentration in 
them depends upon their tendency to adsorb onto them and their ability to 
penetrate their cell membranes (Rosen et al., 1999). The parameter ∆G am

s
ad /° , 

where ∆Gad°  is the standard free energy of adsorption of the surfactant at the 
aqueous solution–air interface (Chapter 2, Section IIIF) and am

s  is the minimum 
cross-sectional area of the surfactant at that interface (Chapter 2, Section 
IIIB), was found to correlate well for several anionic and nonionic surfactants 
with rotifer toxicity. The same parameter was found to correlate well for a 
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series of cationic surfactants with rotifer and green algae toxicity and, for a 
series of linear alkylbenzenesulfonates (lASs), with bioconcentration in fish 
(Rosen et al., 2001).

Thus, toxicity increases with an increase in the length of the hydrophobic 
group and, for isomeric materials, decreases with branching or movement of 
the phenyl group to a more central position in the linear alkyl chain; in linear 
PoE alcohols, toxicity increases with decrease in the number of oxyethylene 
units in the molecule, all due to the expected changes in the values of both 
∆Gad°  and of am

s
. Consequently, from the data in this section and in Section IvA 

above, it appears that some chemical structures in the surfactant molecule that 
promote biodegradability (such as increased length and linearity of the hydro-
phobic group or decreased oxyethylene content) increase its toxicity to or 
bioconcentration in marine organisms.

Cationic surfactants are found to be more toxic than anionics, and the 
anionics are more toxic than the nonionics. Although anionic surfactants are 
more irritable to skin than nonionics, sodium dodecyl sulfate (SdS) is used in 
many personal care products. Sodium alkyl ether sulfates are much milder 
than alkyl sulfates, and are used in many hand dishwashing formulations. The 
widely distributed, negatively charged groups in lipids, proteins, and nucleic 
acids may be responsible for the higher toxicity of ionic surfactants because 
of possible electrostatic interaction, which may explain the acute toxicity and 
genotoxicity of some of these surfactants.

Even in small doses, some surfactants produce dermatological problems. 
EC50, half maximal effective concentration, refers to the concentration of a 
drug, antibody, or toxicant that induces a response halfway between the base-
line and maximum after some specified exposure time (for SdS, the 
EC50 = 0.071% w/v for the human epidermis (Cannon et al., 1994). Polyol 
surfactants like alkyl glucosides, and zwitterionics like betaines and amidobe-
taines are known to be mild toward skin. The biocidal effects are studied by 
the effect on mucous membrane and on the bacterial surface. Biological toxic-
ity has also been evaluated from the partition of the surfactant between oil 
and water (Salager et al., 2000).

IV.  CHARACTERISTIC FEATURES AND USES OF 
COMMERCIALLY AVAILABLE SURFACTANTS

Surfactants are major industrial products with millions of metric tons pro-
duced annually throughout the world. Table 1.1 lists surfactant consumption 
in the united States and Canada for the year 2000. Table 1.1 shows consump-
tion of the various surfactant charge types by percentage (A) and the con-
sumption of the five major types of surfactant by tonnage (B). The projected 
average increase in surfactant consumption is 2.4% annually, although exact 
updated numbers are not available at this point (see table source line).
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A.  Anionics

1.  Carboxylic Acid Salts 

Sodium and Potassium Salts of Straight-Chain Fatty Acids,  
RCOO−M+ (Soaps) 

properties  Below 10 carbons, too soluble for surface activity; above 20 
carbons (straight chain), too insoluble for use in aqueous medium but usable 
for nonaqueous systems (e.g., detergents in lubricating oils or dry-cleaning 
solvents).

advantages  Easily prepared by neutralization of free fatty acids or saponi-
fication of triglycerides in simple equipment. Can be made in situ (e.g., for use 
as an emulsifying agent) (1) by adding fatty acid to oil phase and alkaline 
material to aqueous phase or (2) by partial saponification of triglyceride oil. 
Excellent physical properties for use in toilet soap bars.

disadvantages  (1) Form water-insoluble soaps with divalent and trivalent 
metallic ions; (2) insolubilized readily by electrolytes, such as naCl; (3) unsta-
ble at ph below 7, yielding water-insoluble free fatty acid.

TABLE 1.1  Surfactant Consumption—United States and 
Canada (Excluding Soap), 2000

A. Surfactant, by Charge Type

Type %

Anionics 59
Cationics 10
nonionics 24
Zwitterionics and others 7
Total 100

B. Major Surfactants, by Tonnage

Surfactant Thousand Metric Tons

linear alkylbenzenesulfonates 420
Alcohol ethoxysulfates 380
Alcohol sulfates 140
Alcohol ethoxylates 275
Alkylphenol ethoxylates 225
other 1625
Total 3065

Source: Colin A. houston and Associates, Inc.
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major types and their uses  Sodium salts of tallow (animal fat) acids. (Tallow 
acids are oleic, 40–45%; palmitic, 25–30%; stearic, 15–20%.) used in toilet soap 
bars and for degumming of silk, where alkaline solution is required. For indus-
trial use in hard water, lime soap dispersing agents (sulfonates and sulfates) 
are added to prevent precipitation of insoluble lime soaps.

Sodium and Potassium Salts of Coconut Oil Fatty Acids (Coconut fatty acids 
are C12, 45–50%; C14, 16–20%; C16, 8–10%; oleic, 5–6%; <C12, 10–15%). used 
as electrolyte-resistant soaps (seawater washing) and in liquid soaps, especially 
as the potassium soaps.

Sodium and Potassium Salts of Tall Oil Acids (Tall oil, a by-product of paper 
manufacture, is a mixture of fatty acids and rosin acids from wood; 50–70% 
fatty acid, mainly oleic and linoleic, 30–50% rosin acids related to abietic acid, 
the main constituent of rosin.) Mainly “captive” use or in situ preparation for 
various industrial cleaning operations. used as foaming agents for concrete.

advantages  Inexpensive. More water-soluble and hard-water-resistant than 
tallow soaps. lower viscosity solutions than tallow soaps at high concentra-
tions, better wetting.

Soaps of synthetic long-chain fatty acids are produced in Europe but not 
in the united States at present.

Amine Salts Triethanolamine salts are used in nonaqueous solvents and in 
situ preparation as an emulsifying agent (free fatty acid in oil phase, trietha-
nolamine in aqueous phase). Ammonia, morpholine, and other volatile amine 
salts are used in polishes, where evaporation of the amine following hydrolysis 
of the salt leaves only water-resistant material in film.

Other Types 

acylated aminoacids  (See Section IvE).

Acylated Polypeptides (From partially hydrolyzed protein from scrap leather 
and other waste protein.) used in hair preparations and shampoos, alkaline 
cleaning preparations, wax strippers. Good detergency and resistance to hard 
water.

advantages  Soluble in concentrated aqueous solutions of alkaline salts. 
nonirritating to skin; reduces skin irritation produced by other surfactants  
(e.g., SdS). Substantive to hair. Imparts soft “hand” to textiles.

disadvantages  Precipitated by high concentrations of Ca2+ or Mg2+, acids 
(below ph 5). lower foaming than lauryl sulfates. Requires foam booster (e.g., 
alkanolamides) when foaming is important.
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Polyoxyethylenated Fatty Alcohol Carboxylates (Alkyl Ether Carboxylates), 
RO(CH2CH2O)xCH2COO−M+ (x = 4, Usually) Products of the reaction of 
the terminal oh group of an AE with sodium monochloroacetate. less basic 
than soaps of comparable chain length, ascribed to the ether oxygen atom 
adjacent to the carboxylate group in the molecule.

uses  hair care and skin care detergents, for the product based on C12–14 
alcohol with low Eo content. Emulsifying agent, solubilizing agent, dispersion 
agent. Textile and metal detergent. Industrial detergent for products having a 
short alkyl chain (C4–8) because of low foaming power.

advantages  low skin irritancy. Good resistance to hard water. Good stabil-
ity in alkaline medium.

2.  Sulfonic Acid Salts 

LAS, RC H SO M6 4 3
- +  Three processes for the production of alkylbenzenes 

(alkylate) are used commercially. All are based on linear alkenes. They include 
alkylation with hF, AlCl3, and solid acid alkylation catalysts. The product from 
all alkylation technologies is a mixture of linear alkyl benzene with the phenyl 
group at all positions in the alkyl chain with the exception of the 1-phenyl 
position. Alkylation by AlCl3 and the current commercial solid acid alkylation 
catalysts favors the same higher 2- and 3- positions, and these are called high 
2-phenyl alkylates. The hF alkylation process gives a more uniform or statisti-
cal distribution of phenyl groups along the hydrocarbon chain and is consid-
ered a low 2-phenyl alkylate. There are some differences as well as many 
similarities between the two types of alkylate. Alkylate produced from the 
older hF alkylation technology (low 2-phenyl) is still a large percentage of 
the production; however, all new plants as well as improved AlCl3 alkylation 
plants are all high 2-phenyl alkylate. The high 2-phenyl alkylate has advantages 
for the growing production of liquid detergents, while the low 2-phenyl alkyl-
ate is used mainly in powder detergent applications. The sulfonation product 
is sold mainly as the sodium salt, but calcium salt (which may be oil-soluble 
or dispersible) and amine salts, which are also organic solvent-soluble or dis-
persible, are also sold. The chain length of the alkyl portions is about 12 
carbons in most cases. lAS is relatively cheap, but requires acid-resistant 
equipment for manufacturing and sophisticated So3 sulfonation equipment 
for large-scale production. This applies also to alcohol sulfates (ASs) and ether 
sulfates (see “Sulfuric Acid Ester Salts”), which may be manufactured in the 
same or similar sulfonation equipment. Major amounts are sold as free sul-
fonic acid for neutralization (by processors) with amines. The sodium salt is 
the most widely used surfactant in industrial and high-foaming household 
detergents. The triethanolamine salt is in liquid detergents and cosmetics; the 
isopropylamine salt is in dry cleaning, since it is hydrocarbon-soluble; and the 
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dimethylamine salt is in agricultural emulsions and dry-cleaning solvents (to 
solubilize the water used to remove water-soluble stains).

advantages  Completely ionized, water-soluble, free sulfonic acid; therefore 
solubility is not affected by low ph. Calcium and magnesium salts are water-
soluble and therefore not affected by hard water. Sodium salt is sufficiently 
soluble in the presence of electrolyte (naCl, na2So4) for most uses. Resistant 
to hydrolysis in hot acid or alkali.

disadvantages  Sodium alkylbenzenesulfonate (lAS) is not soluble in 
organic solvents except alcohols. lAS is readily, rapidly, and completely bio-
degradable under aerobic conditions, which is the critical property for removal 
in the environment. however, lAS undergoes only primary biodegradation 
under anaerobic conditions. no evidence of complete biodegradation of lAS 
under anaerobic conditions has been reported. May cause skin irritation.

The introduction of a methyl group at an internal position in the linear alkyl 
chain of the hydrophobic group increases the water solubility and the perfor-
mance properties of lAS.

Higher Alkylbenzenesulfonates C13–C15 homologs are more oil-soluble, and 
are useful as lubricating oil additives.

Benzene-, Toluene-, Xylene-, and Cumenesulfonates Are used as hydrotropes, 
for example, for increasing the solubility of lAS and other ingredients in 
aqueous formulations, for thinning soap gels and detergent slurries.

Ligninsulfonates These are by-products of paper manufacture, prepared 
mainly as sodium and calcium salts, also as ammonium salts. They are used as 
dispersing agents for solids and as O/W (oil-in-water) emulsion stabilizers. 
They are sulfonated polymers of molecular weight 1000–20,000 of complex 
structure containing free phenolic, primary and secondary alcoholic, and car-
boxylate groupings. The sulfonate groups are at the α- and β-positions of C3 
alkyl groups joining the phenolic structures. They reduce the viscosity of and 
stabilize aqueous slurries of dyestuffs, pesticides, and cement.

advantages  They are among the most inexpensive surfactants and are avail-
able in very large quantities. They produce very little foam during use.

disadvantages  very dark color, soluble in water but insoluble in organic 
solvents, including alcohol. They produce no significant surface tension 
lowering.

Petroleum Sulfonates Products of the refining of selected petroleum fractions 
with concentrated sulfuric acid or oleum in the production of white oils. Metal 
or ammonium salts of sulfonated complex cycloaliphatic and aromatic 
hydrocarbons.


