Decontamination of Fresh and Minimally Processed Produce

Attempts to provide safer and higher quality fresh and minimally processed produce have given rise to a wide variety of decontamination methods, each of which have been extensively researched in recent years. Decontamination of Fresh and Minimally Processed Produce is the first book to provide a systematic view of the different types of decontaminants for fresh and minimally processed produce. By describing the different effects – microbiological, sensory, nutritional and toxicological – of decontamination treatments, a team of internationally respected authors reveals not only the impact of decontaminants on food safety, but also on microbial spoilage, vegetable physiology, sensory quality, nutritional and phytochemical content and shelf-life. Regulatory and toxicological issues are also addressed.

The book first examines how produce becomes contaminated, the surface characteristics of produce related to bacterial attachment, biofilm formation and resistance, and sub-lethal damage and its implications for decontamination. After reviewing how produce is washed and minimally processed, the various decontamination methods are then explored in depth, in terms of definition, generation devices, microbial inactivation mechanisms, and effects on food safety. Decontaminants covered include: chlorine, electrolyzed oxidizing water, chlorine dioxide, ozone, hydrogen peroxide, peroxyacetic acid, essential oils and edible films and coatings. Other decontamination methods addressed are biological strategies (bacteriophages, protective cultures, bacteriocins and quorum sensing) and physical methods (mild heat, continuous UV light, ionizing radiation) and various combinations of these methods through hurdle technology. The book concludes with descriptions of post-decontamination methods related to storage, such as modified atmosphere packaging, the cold chain, and modeling tools for predicting microbial growth and inactivation.

The many methods and effects of decontamination are detailed, enabling industry professionals to understand the available state-of-the-art methods and select the most suitable approach for their purposes. The book serves as a compendium of information for food researchers and students of pre- and postharvest technology, food microbiology and food technology in general. The structure of the book allows easy comparisons among methods, and searching information by microorganism, produce, and quality traits.

The Editor

Dr Vicente M. Gómez-López is a Senior Researcher at the Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC, Murcia, Spain) and a former Associate Professor at the Instituto de Ciencia y Tecnología de Alimentos, Facultad de Ciencias, Universidad Central de Venezuela.

Also available from Wiley-Blackwell

Modified Atmosphere Packaging for Fresh-Cut Fruits and Vegetables
Edited by Aaron L. Brody, Hong Zhuang and Jung H. Han / ISBN 978-0-8138-1274-8

Microbial Safety of Fresh Produce
Edited by Xuetong Fan et al. / ISBN 978-0-8138-0416-3

Cover design: Meaden Creative
Cover images: Top – © iStockphoto.com/SilviaJansen; Bottom – © iStockphoto.com/grebcha
Decontamination of Fresh and Minimally Processed Produce
Decontamination of Fresh and Minimally Processed Produce

Edited by

Vicente M. Gómez-López
Senior Researcher,
Centro de Edafología y Biología Aplicada del Segura
(CEBAS-CSIC, Murcia, Spain)
and
Former Associate Professor,
Instituto de Ciencia y Tecnología de Alimentos,
Facultad de Ciencias,
Universidad Central de Venezuela
Contents

Preface xvi
List of Contributors xix

SECTION I PRODUCE CONTAMINATION 1

1 Microbial ecology 3
Marilyn C. Erickson
1.1 Introduction 3
1.2 Sources of preharvest contamination 4
1.3 Fate of pathogen contamination in plant production systems 12
 1.3.1 Experimental studies – field studies versus growth chamber studies 12
 1.3.2 Rhizosphere and bulk soil systems 16
 1.3.3 Phyllosphere 22
1.4 Molecular and biochemical responses of enteric pathogens and plant hosts 27
 1.4.1 Mechanisms employed by enteric pathogens to survive as plant endophytes or epiphytes 27
 1.4.2 Mechanisms employed by plant hosts to resist invasion by enteric pathogens 27
1.5 Cross-contamination of enteric pathogens to produce during harvest 28
1.6 Concluding comments 29
References 29

2 Surface characteristics of fresh produce and their impact on attachment and removal of human pathogens on produce surfaces 43
Hua Wang, Bin Zhou, and Hao Feng
2.1 Introduction 43
2.2 Produce surface characteristics 44
 2.2.1 Surface topography 44
 2.2.2 Surface hydrophobicity 46
2.3 Means to determine produce surface characteristics 47
 2.3.1 Determination of surface roughness 47
 2.3.2 Surface roughness determination with CLSM 48
 2.3.3 Determination of hydrophobicity 51
2.4 Effect of surface characteristics on attachment and removal of human pathogens 51
 2.4.1 Effect of surface roughness 51
Contents

2.4.2 Effect of hydrophobicity 54
2.4.3 Effect of hydrodynamics 55
References 55

3 Biofilms 59
Shin-Hee Kim and Cheng-i Wei
3.1 Introduction 59
3.2 Biofilm formation 60
3.3 Presence of biofilms on the produce surface 66
3.4 Antimicrobial resistance of biofilms versus planktonic cells 68
3.5 Perspective 71
References 71

4 Resistance and sublethal damage 77
Pascal Delaquis and Susan Bach
4.1 Introduction 77
4.2 Basic concepts 78
4.2.1 Definitions 78
4.2.2 Chemical interventions used in the produce industry 78
4.2.3 Physical interventions used in the produce industry 79
4.2.4 Mode of action of biocides, food antimicrobials, and physical treatments 79
4.3 Stress and resistance to biocides and antimicrobial physical treatments 81
4.4 Implications of stress, resistance, and sublethal damage in fresh produce decontamination 83
References 84

SECTION II DECONTAMINANTS 87

5 Produce washers 89
Steven Pao, Wilbert Long III, Chyer Kim, and D. Frank Kelsey
5.1 Basic concepts 89
5.2 Types of washers 91
5.2.1 Immersion washers 92
5.2.2 Non-immersion washers 95
5.3 Factors influencing the efficacy of washing 97
5.3.1 Time of contamination 98
5.3.2 Sanitation practices 98
5.3.3 Water quality 99
5.3.4 Surfactants and antimicrobials 99
5.3.5 Pathogen internalization 100
5.4 Conclusion 100
Acknowledgment 101
References 101
Contents

6 Minimal processing 105
 Maria I. Gil and Ana Allende
 6.1 Introduction 105
 6.2 Effect of minimal processing on pathogenic bacteria 106
 6.3 Effect of minimal processing on spoilage bacteria 108
 6.4 Effect of minimal processing on vegetable physiology 110
 6.5 Effect of minimal processing on quality and shelf life 113
 6.6 Effect of minimal processing on nutritional and phytochemical composition 114
 6.7 Conclusion 115
 References 116

7 Chlorine 121
 Cristóbal Chaidez, Nohelia Castro-del Campo, J. Basilio Heredia, Laura Contreras-Angulo, Gustavo González–Aguilar, and J. Fernando Ayala–Zavala
 7.1 Definition 121
 7.2 Inactivation mechanism 122
 7.3 Effect of chlorine on pathogenic microorganisms 123
 7.4 Effect of chlorine on spoilage microorganisms and shelf life 125
 7.5 Effect of chlorine on vegetable physiology 125
 7.6 Effect of chlorine on sensory quality 127
 7.7 Effect of chlorine on nutritional and phytochemical composition 127
 7.8 Chlorine residues and formation of toxic by-products 128
 7.9 Regulatory status 129
 References 131

8 Electrolyzed oxidizing water 135
 Muhammad Imran Al-Haq and Vicente M. Gómez-López
 8.1 Definition 135
 8.2 Generation devices 138
 8.3 Inactivation mechanism and factors affecting EO efficacy 142
 8.4 Effect of EO water on pathogenic microorganisms 153
 8.5 Effect of EO water on spoilage microorganisms and shelf life 153
 8.6 Effects of EO water on vegetable physiology 154
 8.7 Effect of EO water on sensory quality 155
 8.8 Effect of EO water on nutritional and phytochemical composition 156
 8.9 Residues and formation of toxic by-products 156
 8.10 Regulatory status 157
 References 157
9 Chlorine dioxide 165
Vicente M. Gómez-López
9.1 Definition and generalities 165
9.2 Inactivation mechanism 166
9.3 Effect of chlorine dioxide on pathogenic microorganisms 167
9.4 Spoilage and shelf life 169
9.5 Sensory quality 170
9.6 Effect of chlorine dioxide on vegetable physiology 171
9.7 Effect of chlorine dioxide on nutritional and phytochemical composition 171
9.8 Residues and toxic by-products 171
9.9 Legal framework 172
References 172

10 Ozone 177
Hülya Ölmez
10.1 Definition 177
10.2 Generation devices 178
10.3 Inactivation mechanism 179
10.4 Effect of ozone on pathogenic microorganisms 181
10.5 Effect of ozone on spoilage microorganisms and shelf life 185
10.6 Effect of ozone on vegetable physiology 185
10.7 Effect of ozone on sensory quality 187
10.8 Effect of ozone on nutritional and phytochemical composition 188
10.9 Ozone residues and formation of toxic by-products 188
10.10 Regulatory status 191
References 191

11 Hydrogen peroxide 197
Dike O. Ukuku, Latiful Bari, and Shinichi Kawamoto
11.1 Introduction 197
11.2 Definition of hydrogen peroxide 198
11.3 Inactivation mechanism 198
11.4 Effect of hydrogen peroxide on pathogenic microorganisms 201
11.5 Effect of hydrogen peroxide on spoilage microorganisms and shelf life 203
11.6 Effect of hydrogen peroxide on vegetable physiology 206
11.7 Effect of hydrogen peroxide on sensory quality 207
11.8 Effect of hydrogen peroxide on nutritional and phytochemical composition 209
11.9 Effect of hydrogen peroxide on residues and formation of toxic by-products 211
References 212
12 Peroxyacetic acid

12.1 Definition 215
12.2 Inactivation mechanism 216
12.3 Effect of PAA on pathogenic microorganisms 217
12.4 Effect of PAA on spoilage microorganisms and shelf life 218
12.5 Effect of PAA on vegetable physiology 219
12.6 Effect of PAA on sensory quality 219
12.7 Effect of PAA on nutritional and phytochemical composition 220
12.8 PAA residues and formation of toxic by-products 220
12.9 Regulatory status 221

References 221

13 Essential oils for the treatment of fruit and vegetables
Catherine Barry-Ryan and Paula Bourke

13.1 Introduction to essential oils 225
13.1.1 Decontamination in the fruit and vegetable industry 225
13.1.2 Definition of essential oils 226
13.2 Inactivation mechanism of essential oils 226
13.2.1 The mechanisms of action of essential oils 226
13.2.2 Effect of essential oil profile on mechanism of action 228
13.2.3 Other factors that affect the mechanism of action of essential oils 229
13.3 Effect of essential oils on microorganisms 230
13.3.1 Effect of essential oils on pathogenic microorganisms 230
13.3.2 Effect of essential oils on spoilage microorganisms 231
13.3.3 Effect of essential oils on Gram-positive versus Gram-negative microorganisms 232
13.3.4 Effect of specific essential oils on microorganisms 233
13.4 Effect of essential oils on fruit and vegetable physiology 235
13.5 Effect of essential oils on sensory quality 235
13.6 Effect of essential oils on nutritional and phytochemical composition 237
13.7 Toxicity of essential oils 238
13.8 Regulatory status of essential oils 239

References 239

14 Edible films and coatings
María Alejandra Rojas-Graü, Laura Salvia-Trujillo, Robert Soliva-Fortunya, and Olga Martín-Belloso

14.1 Definition 247
14.2 Composition and application of edible films and coatings 248
14.3 Edible films and coatings as antimicrobials 251
14.3.1 Edible films and coatings with antimicrobial properties 251
14.3.2 Antimicrobial agents incorporated into edible films and coatings 252
14.3.3 Methods to evaluate effectiveness of antimicrobial films and coatings 258
14.3.4 Effect of edible coatings on pathogenic microorganisms 259
14.3.5 Effect of edible coatings on microbial spoilage and shelf life 260
14.4 Effect of edible coatings on vegetable physiology 263
14.5 Effect of edible coatings on sensory quality 265
14.6 Effect of edible coatings on nutritional aspects 266
14.7 Toxicity 266
14.8 Regulatory status 267
References 267

15 Miscellaneous decontaminants 277
Vicente M. Gómez-López
15.1 Introduction 277
15.2 Acidified sodium chlorite 278
15.3 Lactic acid 279
15.4 Calcinated calcium 280
15.5 Levulinic acid 280
15.6 Benzalkonium chloride 280
References 281

SECTION III BIOLOGICAL DECONTAMINATION STRATEGIES 283

16 Bacteriophages 285
Manan Sharma and Govind C. Sharma
16.1 Introduction 285
16.2 Inactivation mechanism 286
16.3 Effect of bacteriophages on pathogenic microorganisms 288
16.3.1 Lytic bacteriophages and leafy greens 289
16.3.2 Lytic bacteriophages and tomatoes 290
16.3.3 Lytic bacteriophages and sprouts 290
16.3.4 Lytic bacteriophages and melons 291
16.3.5 Lytic bacteriophages and apples 291
16.3.6 Lytic bacteriophages and hard surfaces 292
16.4 Risks to human health 293
16.5 Regulatory status 293
16.6 Conclusions 294
References 294

17 Protective cultures 297
Antonio Gálvez, Rubén Pérez Pulido, Hikmate Abriouel, Nabil Ben Omar, and María José Grande Burgos
17.1 Basic concepts 297
17.2 Effect of protective cultures on pathogenic microorganisms 298
17.3 Effect of protective cultures on spoilage microorganisms and shelf life 305
17.4 Effect of protective cultures on sensory quality and nutritional and phytochemical composition 309
17.5 Risks to health 310
17.6 Regulatory status 311
References 312

18 Bacteriocins 317
Antonio Gálvez, Rosario Lucas, Hikmate Abriouel,
María José Grande Burgos, and Rubén Pérez Pulido
18.1 Definition 317
18.2 Inactivation mechanism 318
18.3 Effect of bacteriocins on pathogenic microorganisms 319
18.4 Effect of bacteriocins on spoilage microorganisms and shelf life 323
18.5 Effect of bacteriocins on sensory quality and nutritional and phytochemical composition 324
18.6 Toxicity 325
18.7 Regulatory status 327
References 328

19 Quorum sensing 333
María S. Medina-Martínez and María Angélica Santana
19.1 Introduction 333
19.2 Quorum sensing: basic concepts 334
19.3 Quorum sensing and vegetable spoilage 336
19.4 Quorum sensing and biofilm formation 337
19.5 Quorum sensing interference and food industry 338
References 341

SECTION IV PHYSICAL METHODS 345

20 The use of mild heat treatment for fruit and vegetable processing 347
Catherine Barry-Ryan
20.1 Introduction to the use of mild heat treatment for fruit and vegetable processing 347
20.2 Definition of heat treatment 348
20.3 Mechanism of action of heat treatment 349
20.4 Effect of mild heat treatment on microorganisms 349
20.5 Effect of mild heat treatment on fruit and vegetable physiology 350
20.5.1 The responses of plant tissue to heat treatment 350
20.5.2 Effect of mild heat treatment on respiration and ethylene production 351
20.5.3 Effect of mild heat treatment on quality 352
20.5.4 Effect of mild heat treatment on weight loss 353
20.6 Effect of mild heat treatment on fruit and vegetable sensory quality 353
20.6.1 Effect of mild heat treatment on texture 353
20.6.2 Effect of mild heat treatment on color 354
20.6.3 Effect of mild heat treatment on other sensory characteristics 356
20.7 Effect of mild heat treatment on nutritional and phytochemical composition of fruit and vegetables 357
20.8 Safety and implications of heat treatment 357
References 358

21 Continuous UV-C light 365
Vicente M. Gómez-López

21.1 Definition 365
21.2 Inactivation mechanism 366
21.3 Effect of continuous UV light on pathogenic microorganisms 367
21.4 Effect of continuous UV light on spoilage microorganisms and shelf life 368
21.5 Effect of continuous UV light on vegetable physiology 369
21.6 Effect of continuous UV light on sensory quality 370
21.7 Effect of continuous UV-C light on nutritional and phytochemical composition 372
21.8 Toxicity 374
21.9 Regulatory status 375
References 375

22 Ionizing radiation 379
Xuetong Fan

22.1 Definition 379
22.2 Inactivation mechanism 380
22.3 Effect of ionizing radiation on pathogenic microorganisms 381
22.4 Effect of ionizing radiation on spoilage microorganisms and shelf life 385
22.5 Effect of ionizing radiation on physiology 386
22.5.1 Ethylene production and respiration 386
22.5.2 Enzymes involved in tissue browning 388
22.5.3 Enzymes involved in tissue softening 389
22.5.4 Other enzymes 389
22.6 Effects of ionizing radiation on sensory quality 390
22.6.1 Reduction of losses in quality 392
22.7 Effect of ionizing radiation on nutritional and phytochemical composition 392
22.7.1 Vitamin C 395
22.8 Toxicity 396
22.9 Regulatory status 397
Disclaimer 398
References 398

23 Miscellaneous physical methods 407
Vicente M. Gómez-López

23.1 Introduction 407
23.2 Pulsed light 407
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.3 Photosensitization</td>
<td>409</td>
</tr>
<tr>
<td>23.4 Low-temperature plasma</td>
<td>409</td>
</tr>
<tr>
<td>23.5 Steamer jet injection</td>
<td>411</td>
</tr>
<tr>
<td>23.6 Radio-frequency heating</td>
<td>412</td>
</tr>
<tr>
<td>23.7 Vacuum–steam–vacuum</td>
<td>412</td>
</tr>
<tr>
<td>23.8 Power ultrasound</td>
<td>413</td>
</tr>
<tr>
<td>References</td>
<td>414</td>
</tr>
<tr>
<td>23.3 Photosensitization</td>
<td>409</td>
</tr>
<tr>
<td>23.4 Low-temperature plasma</td>
<td>409</td>
</tr>
<tr>
<td>23.5 Steamer jet injection</td>
<td>411</td>
</tr>
<tr>
<td>23.6 Radio-frequency heating</td>
<td>412</td>
</tr>
<tr>
<td>23.7 Vacuum–steam–vacuum</td>
<td>412</td>
</tr>
<tr>
<td>23.8 Power ultrasound</td>
<td>413</td>
</tr>
<tr>
<td>References</td>
<td>414</td>
</tr>
<tr>
<td>24 Hurdle technology principles applied in decontamination of whole</td>
<td>417</td>
</tr>
<tr>
<td>and fresh-cut produce</td>
<td></td>
</tr>
<tr>
<td>María S. Tapia and Jorge Welti-Chanes</td>
<td></td>
</tr>
<tr>
<td>24.1 Introduction</td>
<td>417</td>
</tr>
<tr>
<td>24.2 Mild technologies: whole and fresh-cut hurdles:</td>
<td></td>
</tr>
<tr>
<td>Summing up steps for decontamination</td>
<td>419</td>
</tr>
<tr>
<td>24.3 “All that washing”: Washing and sanitizing treatments for the</td>
<td></td>
</tr>
<tr>
<td>produce industry</td>
<td>420</td>
</tr>
<tr>
<td>24.4 To kill or not to kill: Safety without having a true kill step</td>
<td>434</td>
</tr>
<tr>
<td>24.5 Combination of whole and fresh-cut hurdles</td>
<td>439</td>
</tr>
<tr>
<td>24.6 Final remarks</td>
<td>442</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>443</td>
</tr>
<tr>
<td>References</td>
<td>443</td>
</tr>
<tr>
<td>SECTION V STORAGE STRATEGIES</td>
<td>451</td>
</tr>
<tr>
<td>25 Modified atmosphere packaging</td>
<td>453</td>
</tr>
<tr>
<td>Matteo Alessandro Del Nobile, Amalia Conte, Marianna Mastromatteo,</td>
<td></td>
</tr>
<tr>
<td>and Marcella Mastromatteo</td>
<td></td>
</tr>
<tr>
<td>25.1 Basic concepts</td>
<td>453</td>
</tr>
<tr>
<td>25.2 Relevant case studies of passive and active MAP</td>
<td>457</td>
</tr>
<tr>
<td>25.2.1 Vegetables</td>
<td>457</td>
</tr>
<tr>
<td>25.2.2 Fruit</td>
<td>459</td>
</tr>
<tr>
<td>25.3 Mathematical models to optimize headspace conditions</td>
<td></td>
</tr>
<tr>
<td>for packaging minimally processed food</td>
<td>460</td>
</tr>
<tr>
<td>25.3.1 Steady-state conditions</td>
<td>461</td>
</tr>
<tr>
<td>25.3.2 Transient conditions</td>
<td>462</td>
</tr>
<tr>
<td>References</td>
<td>463</td>
</tr>
<tr>
<td>26 Cold chain</td>
<td>469</td>
</tr>
<tr>
<td>Pramod V. Mahajan and Jesus Frías</td>
<td></td>
</tr>
<tr>
<td>26.1 Introduction</td>
<td>469</td>
</tr>
<tr>
<td>26.2 Cold chain</td>
<td>470</td>
</tr>
<tr>
<td>26.3 Sustainability of the cold chain</td>
<td>470</td>
</tr>
<tr>
<td>26.4 Cold chain and safety</td>
<td>471</td>
</tr>
<tr>
<td>26.5 Cold chain framework</td>
<td>472</td>
</tr>
<tr>
<td>26.6 Cold chain and quality</td>
<td>473</td>
</tr>
<tr>
<td>26.7 The cold chain and fresh produce distribution</td>
<td>474</td>
</tr>
</tbody>
</table>
26.7.1 Precooling 475
26.7.2 Convective-air and evaporative cooling 475
26.7.3 Contact or package icing 476
26.7.4 Hydrocooling 476
26.7.5 Forced-air cooling 476
26.7.6 Vacuum cooling 476
26.7.7 Cryogenic cooling 477
26.7.8 Freeze chilling 477
26.8 Transportation 477
26.9 Retail display 477
26.10 Compliance in the cold chain 478
26.11 Monitoring the cold chain 479
 26.11.1 The use of sensors in cold chain assessment 479
26.12 Cold chain assessment 481
Acknowledgment 482
References 482

SECTION VI MODELING TOOLS 485

27 Modeling microbial responses during decontamination processes 487
Eva Van Derlinden, Astrid M. Cappuyns, Laurence Mertens, Jan F. Van Impe, and Vasilis P. Valdramidis
27.1 Introduction 487
27.2 Experiment design 488
 27.2.1 Design of experiments (DOE) 489
 27.2.2 Optimal experiment design for parameter estimation (OED/PE) 491
 27.2.3 Implementations of OED/PE for microbial inactivation modeling 493
27.3 Model structure (selection) 494
 27.3.1 Kinetic modeling 495
 27.3.2 Probabilistic modeling 507
 27.3.3 Dose–response modeling 509
 27.3.4 Parameter estimation 513
27.4 Model validation 514
 27.4.1 Model validation data 515
 27.4.2 Graphical model structure and performance evaluation 515
 27.4.3 Quantitative model structure and performance evaluation 516
27.5 Conclusions 519
References 519

28 Modeling microbial growth 529
Milena Sinigaglia, Maria Rosaria Corbo, and Antonio Bevilacqua
28.1 Introduction 529
28.2 Logistic model 532
28.3 Gompertz equation 532
28.4 Baranyi equation 533
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.5 Shelf life evaluation: the classical approach</td>
<td>535</td>
</tr>
<tr>
<td>28.6 The stability time</td>
<td>536</td>
</tr>
<tr>
<td>28.7 The risk time</td>
<td>537</td>
</tr>
<tr>
<td>28.8 Mathematical modeling: some key limitations</td>
<td>537</td>
</tr>
<tr>
<td>References</td>
<td>538</td>
</tr>
<tr>
<td>Index</td>
<td>541</td>
</tr>
</tbody>
</table>
This text has the goal of being the first book providing a systematic view of the different types of decontaminants for fresh and minimally processed produce, and describing the different effects of decontamination treatments well beyond food safety.

There are a growing number of valuable books on emerging technologies. There are also high-quality texts on minimal processing; however, there is a lack of books that cover extensively and in detail the different aspects of the use of decontaminants, and especially detailing their effects on spoilage microflora, sensory quality, nutrient and phytochemical content, and toxicological and legal concerns.

This book is organized into six sections. In Section I, the preharvest and harvest contamination of produce is described in detail. This is followed by three chapters about factors impairing decontamination efficacy such as attachment and surface topography, biofilms, resistance, and sublethal damage.

Sections II, III, and IV cover different decontamination strategies based on six transversal axes:

1. Inactivation of human pathogens present in produce in order to reduce the risk of foodborne infections and intoxications.
2. Inactivation of indigenous microflora and microbial contaminants acquired during processing, together with controlling survival and growth during storage, in order to decrease microbial spoilage.
3. Preservation of sensory quality, immediately after processing and during storage.
5. Potential presence of toxic residues or formation of unacceptable levels of toxic by-products.
6. Regulatory status.

More specifically, Section II starts with a chapter describing produce washers, followed by others explaining the special characteristics of minimally processed fruits and vegetables. The chapter then describes, based on the six transversal axes, different decontaminants: chlorine, electrolyzed oxidizing water, chlorine dioxide, ozone, hydrogen peroxide, peroxyacetic acid, essential oils, edible films and coatings, and miscellaneous.

Section III is devoted to biological decontamination strategies such as viruses, protective cultures, bacteriocins, and quorum sensing. Section IV addresses physical methods such as mild heat, continuous UV light, ionizing radiation, and miscellaneous, and finishes with a discussion of a combination of decontamination methods in the frame of the hurdle technology concept.

Section V refers to preservation strategies after decontamination, where the principles of modified atmosphere packaging and cold chain are revised and discussed. Section VI covers modeling tools, which are not widely used in decontamination experiments, and should serve as a way to promote their use. These chapters focus on two perspectives: from
the point of view of microbial inactivation and from the point of view of microbial growth during shelf life.

I am very grateful to each of the contributors for their commitment to this book. Since the start of this project, I was sure that this book’s success would rely on the strong team of authors that assured from the beginning its top quality. I also want to thank the editorial staff of Wiley-Blackwell, especially Mark Barrett, Susan Engelken, Carys Williams, David McDade, and Samantha Thompson for their guidance in all the aspects that made possible the publication of this book.

Finally, I would like to thank my parents, my wife M. Stella, and my children Vicente and Juan Manuel for their patience in allowing me to use our family time to write chapters and edit this book.

Vicente M. Gómez-López
List of Contributors

Hikmate Abriouel
Departamento de Ciencias de la Salud
Facultad Ciencias Experimentales
Universidad de Jaén
Jaén, Spain

Muhammad Imran Al-Haq
Graduate School of Agricultural & Life
Sciences
University of Tokyo
Tokyo, Japan
and
CEO, Ibreez Inc.
Mississauga, Ontario, Canada

Ana Allende
Research Group on Quality, Safety
and Bioactivity of Plant Foods
Food Science and Technology Department
CEBAS-CSIC
Murcia, Spain

J. Fernando Ayala-Zavala
Centro de Investigación en Alimentación
y Desarrollo
Hermosillo, Sonora, Mexico

Susan Bach
Agriculture and Agri-Food Canada
Pacific Agri-Food Research Centre
Summerland, British Columbia, Canada

Latiful Bari
Center for Advanced Research in Sciences
University of Dhaka
Dhaka, Bangladesh

Catherine Barry-Ryan
School of Food Science and
Environmental Health
Dublin Institute of Technology
Dublin, Ireland

Nabil Ben Omar
Departamento de Ciencias de la Salud
Facultad Ciencias Experimentales
Universidad de Jaén
Jaén, Spain

Antonio Bevilacqua
Department of Food Science
Faculty of Agricultural Science
University of Foggia
Foggia, Italy

Paula Bourke
School of Food Science and
Environmental Health
Dublin Institute of Technology
Dublin, Ireland

Astrid M. Cappuyns
BioTeC – Chemical and Biochemical
Process Technology and Control
Department of Chemical Engineering
Katholieke Universiteit Leuven
Leuven, Belgium

Nohelia Castro-del Campo
Centro de Investigación en Alimentación
y Desarrollo
Culiacán, Sinaloa, México

Cristóbal Chaidez Quiroz
Centro de Investigación en Alimentación
y Desarrollo
Culiacán, Sinaloa, México

Amalia Conte
Department of Food Science
Faculty of Agricultural Science
University of Foggia
Foggia, Italy
List of Contributors

Laura Contreras-Angulo
Centro de Investigación en Alimentación y Desarrollo
Culiacán, Sinaloa, México

Maria Rosaria Corbo
Department of Food Science
Faculty of Agricultural Science
University of Foggia
Foggia, Italy

Pascal Delaquis
Agriculture and Agri-Food Canada
Pacific Agri-Food Research Centre
Summerland, British Columbia, Canada

Matteo Alessandro Del Nobile
Department of Food Science
Faculty of Agricultural Science
University of Foggia
Foggia, Italy

Marilyn C. Erickson
Center for Food Safety
University of Georgia
Griffin, Georgia, USA

Xuetong Fan
Eastern Regional Research Center
Agricultural Research Service
US Department of Agriculture
Wyndmoor, Pennsylvania, USA

Hao Feng
Department of Food Science and Human Nutrition
College of Agricultural, Consumer and Environmental Sciences
University of Illinois–Urbana
Urbana, Illinois, USA

Jesús Frías
Department of Food Science
School of Food Science and Environmental Health
Dublin Institute of Technology
Dublin, Ireland

Antonio Gálvez
Departamento de Ciencias de la Salud
Facultad Ciencias Experimentales
Universidad de Jaén
Jaén, Spain

Maria I. Gil
Research Group on Quality, Safety and Bioactivity of Plant Foods
Food Science and Technology Department
CEBAS-CSIC
Murcia, Spain

Vicente M. Gómez-López
Research Group on Quality, Safety and Bioactivity of Plant Foods
Food Science and Technology Department
CEBAS-CSIC
Murcia, Spain
and
Universidad Central de Venezuela,
Caracas, Venezuela

Gustavo González-Aguilar
Centro de Investigación en Alimentación y Desarrollo
Hermosillo, Sonora, Mexico

María José Grande Burgos
Departamento de Ciencias de la Salud
Facultad Ciencias Experimentales
Universidad de Jaén
Jaén, Spain

J. Basilio Heredia
Centro de Investigación en Alimentación y Desarrollo
Culiacán, Sinaloa, México

Shinishi Kawamoto
National Food Research Institute
Tsukuba, Ibaraki, Japan

D. Frank Kelsey
Highland Fresh Technologies
Mulberry, Florida,
USA
Chyer Kim
Agricultural Research Station
Virginia State University
Petersburg, Virginia, USA

Shin-Hee Kim
Virginia-Maryland Regional College of Veterinary Medicine
University of Maryland
College Park, Maryland, USA

Wilbert Long III
Agricultural Research Station
Virginia State University
Petersburg, Virginia, USA

Rosario Lucas
Departamento de Ciencias de la Salud
Facultad Ciencias Experimentales
Universidad de Jaén
Jaén, Spain

Pramod Mahajan
Department of Process and Chemical Engineering
University College Cork
Cork, Ireland

Olga Martín-Belloso
Department of Food Technology
University of Lleida
Lleida, Spain

Marcella Mastromatteo
Food Quality and Health Research Center
University of Foggia
Foggia, Italy

Marianna Mastromatteo
Food Quality and Health Research Center
University of Foggia
Foggia, Italy

María S. Medina-Martínez
Research Group on Quality, Safety and Bioactivity of Plant Foods
Food Science and Technology Department
CEBAS-CSIC
Murcia, Spain

Laurence Mertens
BioTeC – Chemical and Biochemical Process Technology and Control
Department of Chemical Engineering
Katholieke Universiteit Leuven
Leuven, Belgium

Hülya Ölmez
Food Institute
TÜBİTAK Marmara Research Center
Gebze, Kocaeli, Turkey

Steven Pao
Agricultural Research Station
Virginia State University
Petersburg, Virginia, USA

Rubén Pérez Pulido
Departamento de Ciencias de la Salud
Facultad Ciencias Experimentales
Universidad de Jaén
Jaén, Spain

M. Alejandra Rojas-Graü
Department of Food Technology
University of Lleida
Lleida, Spain

Laura Salvia-Trujillo
Department of Food Technology
University of Lleida
Lleida, Spain

María Angélica Santana
Departamento de Biología Celular
División de Ciencias Biológicas
Universidad Simón Bolívar
Caracas, Venezuela

Govind C. Sharma
Department of Natural Resources and Environmental Sciences
Alabama Agricultural and Mechanical University
Normal, Alabama, USA
List of Contributors

Manan Sharma
Environmental Microbial and Food Safety Laboratory
Animal and Natural Resources Institute
Henry A. Wallace Beltsville Agricultural Research Center
Agricultural Research Service
US Department of Agriculture
Beltsville, Maryland, USA

Milena Sinigaglia
Department of Food Science
Faculty of Agricultural Science
University of Foggia
Foggia, Italy

Robert Soliva-Fortuny
Department of Food Technology
University of Lleida
Lleida, Spain

María S. Tapia
Instituto de Ciencia y Tecnología de Alimentos (ICTA)
Facultad de Ciencias
Universidad Central de Venezuela
Caracas, Venezuela

Dike O. Ukuku
Food Safety and Intervention Technologies Research Unit
Eastern Regional Research Center
Agricultural Research Service
US Department of Agriculture
Wyndmoor, Pennsylvania, USA

Vasilis P. Valdramidis
Department of Food Studies and Environmental Health University of Malta
Masida, Malta

Eva Van Derlinden
BioTeC – Chemical and Biochemical Process Technology and Control
Department of Chemical Engineering
Katholieke Universiteit Leuven
Leuven, Belgium

Jan F. Van Impe
BioTeC – Chemical and Biochemical Process Technology and Control
Department of Chemical Engineering
Katholieke Universiteit Leuven
Leuven, Belgium

Hua Wang
Center for Food Safety and Applied Nutrition
US Food and Drug Administration
College Park,
Maryland, USA

Cheng-i Wei
College of Agriculture and Natural Resources
University of Maryland
College Park, Maryland, USA

Jorge Welti-Chanes
Escuela de Biotecnología y Alimentos
Instituto Tecnológico y de Estudios Superiores de Monterrey
Monterrey, Nuevo León, México

Bin Zhou
College of Agricultural, Consumer and Environmental Sciences
University of Illinois–Urbana
Urbana, Illinois, USA
Section I

Produce Contamination
1 Microbial ecology

Marilyn C. Erickson

Abstract: Outbreaks associated with fresh produce have been traced to farms in several cases. Potential sources of contamination in preharvest environments have been identified, and minimizing their input is needed. In addition, understanding the fate of enteric pathogens introduced to soil and plant systems is essential to providing safe guidelines on when crops may be planted and harvested. Moisture availability and temperature are key abiotic factors affecting pathogen survival. Indigenous soil and epiphytic bacteria, however, also appear to play an important role in a pathogen’s fate and thus future survival studies should routinely monitor the types and levels present. Internalization of enteric pathogens through lateral root junctions or through leaf stomata has been documented but generally requires high exposure concentrations. Plant defenses, whether basal or activated by the invading enteric pathogen, appear to inactivate internalized populations as persistence has not been observed, but this subject deserves further investigation.

Keywords: *Escherichia coli* O157:H7, *Salmonella*, internalization, rhizosphere, phyllosphere, competitive bacteria, plant defenses, moisture, preharvest, produce

1.1 Introduction

Fresh and fresh-cut produce is a recognized rich source of many nutrients and leads to numerous health benefits. Based on these acknowledged merits, consumers have been advised to increase their consumption. Assisting consumers in meeting that goal is the year-round availability of many produce items through a global production and distribution system. One drawback that has accompanied this increased demand and consumption, however, has been that the proportion of outbreaks attributed to this commodity group has increased (Lynch *et al.*, 2009). For example, in the 1970s, produce-associated outbreaks accounted for 0.7% of total outbreaks in the United States, but by the 1990s this had increased to 6% (Sivapalasingam *et al.*, 2004). Furthermore, between 1990 and 2005, produce outbreaks in the United States accounted for 13% of foodborne illness outbreaks (DeWaal and Bhuiya, 2007). In Australia, by contrast, only 4% of all foodborne outbreaks...
reported from 2001 to 2005 were attributed to fresh produce (Kirk et al., 2008). In Canada between 1976 and 2005, 3.7% of 5745 outbreaks with a known vehicle of transmission were attributed to produce (Ravel et al., 2009).

Produce items most commonly associated with outbreaks in the United States between 2000 and 2007 were leafy greens or greens-based salads, tomatoes, cantaloupes, carrots, strawberries, and watermelon (Table 1.1). For many of these produce types, norovirus was the dominant etiological agent. The most common bacterial etiological agent, on the other hand, was Salmonella spp., followed by Escherichia coli O157:H7. Less commonly identified pathogens were Campylobacter jejuni, Shigella spp., hepatitis A, and the protozoan parasites Cryptosporidium parvum, Giardia spp., and Cyclospora cayetanesis.

Over the past 10 years, an extensive number of outbreaks associated with fresh produce have been described in reports, and these are compiled in Table 1.2. A point worth noting is that many of these outbreaks are multi-national in scope, which infers that food safety within many countries is also dependent on the production and processing practices of those countries from which food is imported. Disparities in food safety exist between industrialized countries and developing countries as evidenced by the higher prevalence of Salmonella spp. in produce collected and sampled in many developing countries compared to industrialized countries (Table 1.3). In addition, raw and minimally processed produce within many of these developing countries is characterized by the presence of helminth and protozoan parasites (Table 1.4), pathogens that are rarely present in domestic products from industrialized countries. These disparities in pathogen prevalence have been attributed to a number of factors and include the use in developing countries of fecal-contaminated irrigation water for fruit and vegetable production, the use of human excrement as a soil amendment, a lack of basic infrastructures to treat wastewater, and longstanding cultural attitudes of using sustainable agricultural practices that are insanitary (Erickson and Doyle, 2008). In Section 1.2, these and other sources of pathogen ingress to produce fields will be discussed in further detail. In subsequent sections, the fate of those introduced pathogens in both soil and plant systems will be explored. In particular, the impact of chemical, physical, and indigenous micro- and macrobiological organisms on the pathogen’s persistence in the system will be discussed. The ability of both plant and pathogen to exhibit molecular and biochemical responses to each other’s presence will then be briefly discussed relative to the pathogen’s survival. The chapter will conclude with an examination of harvesting practices that lead to cross-contamination of produce.

1.2 Sources of preharvest contamination

Based on the low prevalence of pathogen contamination in retail produce reported in many surveys, information regarding potential sources of preharvest contamination is based mainly on initial hypotheses that have been tested with experimental studies. These include (1) soil amendments (raw animal manure and other waste products of domesticated animals), (2) water (irrigation and run-off), (3) wildlife and insects (deposing waste products or serving as pathogen carriers), (4) plant stock (seeds and seedlings), (5) humans, (6) fomites (harvesting equipment and storage bins), and (7) bioaerosols (dispersed particles carrying pathogens from adjacent animal production or human waste sites). In consideration of these sources, it should be kept in mind that they have different frequencies at which they are contaminated and thus entail different inherent risks for the introduction of pathogens into agricultural fields. For example, the prevalence rates of E. coli O157 in cattle feces ranged
<table>
<thead>
<tr>
<th>Produce item</th>
<th>Bacterial agents</th>
<th>Viral agents</th>
<th>Other agents</th>
<th>Protozoan parasites*</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Salmonella spp.</td>
<td>Escherichia coli O157:H7</td>
<td>Shigella spp.</td>
<td>Campylobacter jejuni</td>
<td>Other</td>
</tr>
<tr>
<td>Cabbage</td>
<td>1 (8)</td>
<td>1 (41)</td>
<td>1 (2)</td>
<td>3 (78)</td>
<td>1 (16)</td>
</tr>
<tr>
<td>Lettuce</td>
<td>6 (254)</td>
<td>10 (242)</td>
<td>1 (4)</td>
<td>2 (110)</td>
<td>33 (895)</td>
</tr>
<tr>
<td>Spinach</td>
<td>1 (210)</td>
<td>1 (25)</td>
<td>3 (9)</td>
<td>2 (9)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Sprouts</td>
<td>7 (120)</td>
<td>3 (25)</td>
<td>1 (2)</td>
<td>6 (30)</td>
<td>2 (25)</td>
</tr>
<tr>
<td>Herbs</td>
<td>3 (70)</td>
<td>1 (20)</td>
<td>1 (29)</td>
<td>6 (191)</td>
<td>1 (20)</td>
</tr>
<tr>
<td>Leafy green salads</td>
<td>20 (931)</td>
<td>13 (281)</td>
<td>7 (190)</td>
<td>7 (42)</td>
<td>9 (143)</td>
</tr>
<tr>
<td>Coleslaw</td>
<td>1 (26)</td>
<td>4 (22)</td>
<td>19 (592)</td>
<td>1 (8)</td>
<td>3 (20)</td>
</tr>
<tr>
<td>Broccoli</td>
<td>1 (9)</td>
<td>4 (77)</td>
<td>1 (1)</td>
<td>1 (11)</td>
<td></td>
</tr>
<tr>
<td>Celery</td>
<td>6 (191)</td>
<td>1 (20)</td>
<td>1 (20)</td>
<td>1 (20)</td>
<td>1 (20)</td>
</tr>
<tr>
<td>Cucumbers</td>
<td>1 (300)</td>
<td>1 (10)</td>
<td>4 (123)</td>
<td>1 (10)</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Mushrooms</td>
<td>1 (93)</td>
<td>1 (28)</td>
<td>2 (6)</td>
<td>1 (2)</td>
<td>2 (6)</td>
</tr>
<tr>
<td>Peppers</td>
<td>1 (93)</td>
<td>1 (28)</td>
<td>2 (6)</td>
<td>1 (2)</td>
<td>2 (6)</td>
</tr>
<tr>
<td>Squash/zucchini</td>
<td>1 (93)</td>
<td>1 (28)</td>
<td>2 (6)</td>
<td>1 (2)</td>
<td>2 (6)</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>23 (1837)</td>
<td>1 (886)</td>
<td>1 (13)</td>
<td>1 (2)</td>
<td>14 (395)</td>
</tr>
<tr>
<td>Carrots</td>
<td>1 (8)</td>
<td>1 (7)</td>
<td>2 (8)</td>
<td>11 (325)</td>
<td>5 (67)</td>
</tr>
<tr>
<td>Green onions</td>
<td>3 (184)</td>
<td>1 (28)</td>
<td>1 (4)</td>
<td>3 (90)</td>
<td>5 (967)</td>
</tr>
<tr>
<td>Onions</td>
<td>12 (457)</td>
<td>1 (56)</td>
<td>1 (55)</td>
<td>6 (233)</td>
<td>4 (53)</td>
</tr>
<tr>
<td>Raspberries/ blackberries</td>
<td>1 (13)</td>
<td>1 (5)</td>
<td>6 (274)</td>
<td>2 (11)</td>
<td>4 (153)</td>
</tr>
<tr>
<td>Strawberries</td>
<td>3 (72)</td>
<td>1 (736)</td>
<td>6 (208)</td>
<td>2 (19)</td>
<td></td>
</tr>
<tr>
<td>Watermelon</td>
<td>11 (1143)</td>
<td>11 (126)</td>
<td>327 (11 870)</td>
<td>9 (1017)</td>
<td>8 (746)</td>
</tr>
<tr>
<td>Total</td>
<td>84 (4092)</td>
<td>31 (1840)</td>
<td>239 (352)</td>
<td>327 (11 870)</td>
<td>8 (746)</td>
</tr>
</tbody>
</table>

a Data compiled from the CDC website on outbreak surveillance (http://www.cdc.gov/outbreaknet/surveillance_data.html).

b Outbreaks and illnesses attributed to each pathogen group include both confirmed and suspected.

*Includes other Shiga toxin-producing *Escherichia coli*.

*Includes where multiple bacterial pathogens have been found and cases involving the agents of *Bacillus cereus*, *Clostridium botulinum*, and *Staphylococcus aureus*.

*Includes *Cryptosporidium parvum*, *Cyclospora cayetanensis*, and *Giardia lamblia*.
Table 1.2 Major produce-associated outbreaks caused by foodborne pathogens (2000–2010)

<table>
<thead>
<tr>
<th>Year</th>
<th>Pathogen</th>
<th>Cases (#)</th>
<th>Country of origin</th>
<th>Affected regions</th>
<th>Implicated food</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>S. Senftenberg</td>
<td>51</td>
<td>Israel</td>
<td>United Kingdom, United States, Denmark, Netherlands</td>
<td>Basil</td>
<td>Elviss et al. (2009)</td>
</tr>
<tr>
<td>2007</td>
<td>S. Senftenberg</td>
<td>74</td>
<td>Israel</td>
<td>United Kingdom, Denmark, Netherlands, United States</td>
<td>Basil, fresh</td>
<td>Pezzoli et al. (2008)</td>
</tr>
<tr>
<td>2008</td>
<td>S. Litchfield</td>
<td>51</td>
<td>Honduras</td>
<td>United States, multi-state</td>
<td>Cantaloupe</td>
<td>CDC (2008a)</td>
</tr>
<tr>
<td>2001</td>
<td>S. Poona</td>
<td>50</td>
<td>Mexico</td>
<td>United States, multi-state</td>
<td>Cantaloupe</td>
<td>CDC (2002)</td>
</tr>
<tr>
<td>2002</td>
<td>S. Poona</td>
<td>58</td>
<td>Mexico</td>
<td>United States, Canada</td>
<td>Cantaloupe</td>
<td>CDC (2002)</td>
</tr>
<tr>
<td>2006</td>
<td>S. Saintpaul</td>
<td>36</td>
<td>Domestic</td>
<td>Australia, multi-jurisdiction</td>
<td>Cantaloupe</td>
<td>Munnoch et al. (2009)</td>
</tr>
<tr>
<td>2006</td>
<td>Clostridium botulinum</td>
<td>4</td>
<td>Domestic</td>
<td>United States, GA</td>
<td>Carrot juice</td>
<td>CDC (2006a)</td>
</tr>
<tr>
<td>2004</td>
<td>Shigella sonnei</td>
<td>163</td>
<td>United States, HI, caterer</td>
<td>International</td>
<td>Carrots</td>
<td>Gaynor et al. (2009)</td>
</tr>
<tr>
<td>2003</td>
<td>Yersinia pseudotuberculosis</td>
<td>111</td>
<td>Domestic, traced to farm</td>
<td>Finland</td>
<td>Carrots</td>
<td>Jalava et al. (2006)</td>
</tr>
<tr>
<td>2006</td>
<td>Yersinia pseudotuberculosis</td>
<td>427</td>
<td>Domestic, traced to vegetable distributor</td>
<td>Finland</td>
<td>Carrots, grated</td>
<td>Rimhanen-Finne et al. (2009)</td>
</tr>
<tr>
<td>2002</td>
<td>E. coli O157</td>
<td>21</td>
<td>Belgium</td>
<td>United Kingdom, France</td>
<td>Cucumber</td>
<td>Duffell et al. (2003)</td>
</tr>
<tr>
<td>2003</td>
<td>Hepatitis A</td>
<td>601</td>
<td>Mexico</td>
<td>United States, PA</td>
<td>Green onions</td>
<td>Wheeler et al. (2005)</td>
</tr>
<tr>
<td>2004</td>
<td>S. Newport</td>
<td>807</td>
<td>Not known</td>
<td>England, Scotland, Isle of Man, and Ireland</td>
<td>Lettuce</td>
<td>Irvine et al. (2009)</td>
</tr>
<tr>
<td>2000</td>
<td>S. Typhimurium DT104 (ACSSuSpT)</td>
<td>361</td>
<td>Not known</td>
<td>United Kingdom</td>
<td>Lettuce</td>
<td>Horby et al. (2003)</td>
</tr>
<tr>
<td>2000</td>
<td>S. Typhimurium DT204b (ACGNeKSSuTmNxCp)</td>
<td>392</td>
<td>Imported</td>
<td>Iceland, Netherlands, United Kingdom, Germany</td>
<td>Lettuce</td>
<td>Crook et al. (2003)</td>
</tr>
<tr>
<td>2005</td>
<td>E. coli O157 VT2</td>
<td>120</td>
<td>Domestic</td>
<td>Sweden</td>
<td>Lettuce, iceberg</td>
<td>Soderstrom et al. (2005)</td>
</tr>
<tr>
<td>2005</td>
<td>S. Typhimurium DT104b (ACSSuT)</td>
<td>60</td>
<td>Spain</td>
<td>Finland</td>
<td>Lettuce, iceberg</td>
<td>Takkinen et al. (2005)</td>
</tr>
<tr>
<td>2010</td>
<td>Norovirus and E. coli ETEC</td>
<td>264</td>
<td>France</td>
<td>Denmark, Norway</td>
<td>Lettuce, Lollo</td>
<td>Ethelberg et al. (2010)</td>
</tr>
<tr>
<td>2001</td>
<td>Hepatitis A</td>
<td>54</td>
<td>Imported</td>
<td>Sweden</td>
<td>Lettuce, rocket</td>
<td>Nygard et al. (2001)</td>
</tr>
</tbody>
</table>