DISEASES OF SWINNERSON

10th EDITION

Jeffrey J. Zimmerman, Locke A. Karriker, Alejandro Ramirez, Kent J. Schwartz, and Gregory W. Stevenson EDITORS

DISEASES OF SWINE 10TH EDITION

DISEASES OF SWINE

EDITED BY

Jeffrey J. Zimmerman Locke A. Karriker Alejandro Ramirez Kent J. Schwartz Gregory W. Stevenson

This edition first published 2012 © 2012 by John Wiley & Sons, Inc.

First Edition, 1958; second edition, 1964, third edition, 1970; fourth edition, 1975; fifth edition, 1981; sixth edition, 1986; seventh edition, 1992; eighth edition, 1999 © Iowa State Press Ninth edition, 2006 © Blackwell Publishing

Copyright is not claimed for chapters 16, 30, 36, 40, 45, 49, 50, 51, 58, 60, 62, and 66, which are in the public domain.

Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley's global Scientific, Technical and Medical business with Blackwell Publishing.

Registered office: John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial offices: 2121 State Avenue, Ames, Iowa 50014-8300, USA

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

9600 Garsington Road, Oxford, OX4 2DQ, UK

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell.

Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Blackwell Publishing, provided that the base fee is paid directly to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For those organizations that have been granted a photocopy license by CCC, a separate system of payments has been arranged. The fee codes for users of the Transactional Reporting Service are ISBN-13: 978-0-8138-2267-9/2012.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Diseases of swine / edited by Jeffrey J. Zimmerman ... [et al.]. – 10th ed.

p.; cm.

Includes bibliographical references and index.

ISBN 978-0-8138-2267-9 (hardcover : alk. paper)

I. Zimmerman, Jeffrey J.

[DNLM: 1. Swine Diseases. SF 971]

636.4'0896-dc23

2011042643

A catalogue record for this book is available from the British Library.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Set in 9.5/12 pt ITC Stone Serif by Toppan Best-set Premedia Limited

Disclaimer

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Contents

List of Tables	V111	including quantitative interpretation,	
Contributing Authors	xiii	appropriate uses of genetic sequencing	
Editors' Note	xxiii	8 Analysis and Use of Diagnostic Data	94
		Sources of variation in test results, sensitivity	
SECTION I VETERINARY PRACTICE		and specificity, testing in series or parallel,	
1 Herd Evaluation	5	selecting test cutoff values, selecting	
Records, benchmarks, four-circle approach,		appropriate sample size, detecting a	
diagnostic approaches, prioritizing		difference in prevalence between two groups	
interventions, reporting, blood sample		9 Drug Pharmacology, Therapy, and	
collection, oral fluid collection		Prophylaxis	106
2 Differential Diagnosis of Diseases	18	Antimicrobial drug classes, considerations	
Diarrhea, vomiting, rectal prolapses,		for treatment, residue avoidance,	
respiratory distress, sneezing, skin,		regulatory restrictions on treatment,	
neurologic, lameness, reproductive,		parasiticides, probiotics, hormones,	
congenital, zoonotic		anti-inflammatory drugs	
3 Behavior and Welfare	32	10 Anesthesia and Surgical Procedures	
Definitions of welfare and cruelty,		in Swine	119
scientific approaches to study welfare,		Injectable anesthetic agents, catheterization,	
maternal behaviors, minimizing welfare		epidural injection, surgical procedures	
impact of invasive procedures, feeding		11 Disease Transmission and Biosecurity	141
and drinking behaviors, human interactions,		Routes of transmission, ecology of disease,	
behavior responses due to disease,		pathogen cycles, biological risk management,	
recognizing pain		principles of biosecurity	
4 Longevity in Breeding Animals	50	12 Preharvest Food Safety,	
Assessment of longevity, causes of removal		Zoonotic Diseases, and the	
from the herd, causes of sow death, gilt		Human Health Interface	165
development, boar longerity		Physical, chemical, and biological hazards;	
5 Effect of the Environment on Health	60	drug residues; MRSA; feed safety; certification	
Evaluation of the environment,		programs	
recommended air temperatures, minimum		13 Special Considerations for Show	
ventilation rates, space recommendations,		and Pet Pigs	179
feeder space recommendations		Dynamics of the show pig industry, behavior	
6 Optimizing Diagnostic Value and Sample		and training, ethics, miniature pigs, teeth	
Collection	67	trimming, hoof trimming, obesity	
Developing the diagnostic plan, diagnostic		CECTION III PORVICUETEME	
sample selection, pig necropsy, necropsy		SECTION II BODY SYSTEMS	400
safety, knife sharpening		14 Cardiovascular and Hematopoietic Systems	189
7 Diagnostic Tests, Test Performance, and	77	Anatomy, pathophysiology, mulberry heart	
Considerations for Interpretation	77	disease, anemia, shock	100
Overview of how specific diagnostic tests are		15 Digestive System	199
performed, advantages and disadvantages to		Interactions of flora, nutrition, immune	
each type of test, PCR testing considerations		system, anatomy, pathophysiology, gastric	

vi CONTENTS

	ulcers, hemorrhagic bowel syndrome,		33	Bunyaviruses	490
	prolapses, hernias			Akabane virus, Lumbo virus, Oya virus,	
16	Immune System	227		Tahyna virus	
	Innate and adaptive immunity; cellular,		34	Porcine Caliciviruses	493
	humoral, mucosal, and passive immune			Porcine noroviruses, porcine sapoviruses,	
	mechanisms; stress; nutrition;			St-Valérien virus, vesicular exanthema of	
	immunosuppression; vaccination			swine virus	
17	Integumentary System: Skin, Hoof,		35	Coronaviruses	501
	and Claw	251		Hemagglutinating encephalomyelitis virus,	
	Pathophysiology of skin, infectious			porcine epidemic diarrhea virus, porcine	
	conditions, ear necrosis, porcine dermatopathy			respiratory coronavirus, porcine torovirus,	
	and nephropathy syndrome, pathophysiology			transmissible gastroenteritis virus	
	of foot and claw, traumatic and nutritional		36	Filovirus	525
	contributors to foot and claw lesions			Ebolavirus	
18	Mammary System	270	37	Flaviviruses	528
	Structure and development, physiology of			Japanese encephalitis virus, Murray Valley	
	lactation and colostral transfer,			encephalitis virus, West Nile virus	
	pathophysiology of lactation dysfunction,		38	Pestiviruses	538
	mastitis, dysgalactia and risk factors			Border disease virus, bovine viral diarrhea	
19	Nervous and Locomotor Systems	294		virus, Bungowannah virus, classical swine	
	Pathophysiology of nervous system, muscle,			fever virus	
	bone, joint, and eye; congenital		39	Hepatitis E Virus	554
	abnormalities; splayleg; congenital tremor;			Influenza Virus	557
	myopathy; porcine stress syndrome; arthritis;		41	Paramyxoviruses	572
	metabolic bone disease; rickets;			Menangle virus, Nipah virus, Rubulavirus	
	osteochondrosis			(blue eye paramyxovirus)	
20	Diseases of the Reproductive System	329	42	Picornaviruses	587
	Control of estrus, pregnancy, and parturition;			Encephalomyocarditis virus, foot-and-mouth	
	pregnancy diagnosis; dystocia; prolapse;			disease virus, porcine enteroviruses, porcine	
	discharge; male reproductive function and			kobuvirus, porcine sapelovirus, porcine	
	semen quality; laboratory investigation of			teschovirus, Seneca Valley virus, swine	
	abortion and reproductive failure			vesicular disease virus	
21	Respiratory System	348		Reoviruses (Rotaviruses and Reoviruses)	621
	Anatomy, pathophysiology	0.40		Retroviruses	635
22	Urinary System	363	45	Rhabdoviruses	639
	Anatomy, pathophysiology, porcine			Rabies virus, vesicular stomatitis viruses	
	dermatopathy and nephropathy syndrome			Togaviruses	644
CECT	IONI III - VIDAL DICEACEC			Eastern equine encephalitis virus, Getah	
	ION III VIRAL DISEASES	202		virus, Ross River virus, Sagiyama virus	
23	Overview of Viruses	383	CECT	IONIN DACTERIAL DISEASES	
	Virus taxonomy, characteristics of virus			ION IV BACTERIAL DISEASES	640
24	families, table of viral pathogens of swine Porcine Adenoviruses	392	4/	Overview of Bacteria	649
	African Swine Fever Virus	392		Characteristics of genera, disease mechanisms, table of bacterial diseases	
	Porcine Circoviruses	405	19	Actinobacillosis	653
	Porcine Anelloviruses	418	40	Actinobacillus pleuropneumoniae—	033
21	Torque teno sus virus	410		pleuropneumonia; Actinobacillus suis—	
28	Herpesviruses	421		septicemia, pleuropneumonia;	
20	Malignant catarrhal fever (ovine herpesvirus	121		Actinobacillus equuli—septicemia	
	2), porcine cytomegalovirus, porcine		49	Bordetellosis	670
	lymphotropic herpesviruses, pseudorabies		1)	Bordetella bronchiseptica—nonprogressive	3,0
	(Aujeszky's disease) virus			atrophic rhinitis, bronchopneumonia	
29	Porcine Parvovirus	447	50	Brachyspiral Colitis	680
	Swinepox Virus	456	23	Brachyspira hyodysenteriae—swine dysentery;	-00
	Porcine Reproductive and Respiratory			Brachyspira pilosicoli—intestinal (colonic)	
	Syndrome Virus (Porcine Arterivirus)	461		spirochetosis; Brachyspira "suanatina,"	
32	Porcine Astroviruses	487		intermedia. murdochii—occasional colitis	

51	Brucellosis	697	subsp. equisimilis—arthritis, other	
	Brucella suis—infertility, abortion, perinatal		streptococci—various conditions;	
	mortality		Enterococcus durans and hirae—diarrhea	
52	Clostridiosis	709	63 Tuberculosis	856
	Clostridium perfringens type C—		Mycobacterium avium complex; M. bovis;	
	necrohemorrhagic enteritis; Clostridium		M. tuberculosis—localized alimentary	
	perfringens type A—necrotizing enteritis;		lymphadentitis, rare disseminated	
	Clostridium difficile—necrotizing colitis;		tuberculosis; Mycobacterium kansasii;	
	Clostridium septicum, perfringens type A;		M. zenopi; M. fortuitum; M. avium	
	novyi, chauvoei—cellulitis and gas gangrene;		subsp. paratuberculosis—uncertain	
	Clostridium tetani—tetanus; Clostridium		significance	
	botulinum—botulism		64 Miscellaneous Bacterial Infections	866
53	Colibacillosis	723	Actinobaculum (Eubacterium) suis—cystitis,	
	Neonatal E. coli diarrhea, postweaning E.		pyelonephritis; Arcanobacterium pyogenes—	
	coli diarrhea and edema disease, E. coli		pyogenic sepsis; Bacillus anthracis—anthrax;	
	causing fatal shock, systemic E. coli		Burkholderia pseudomallei—melioidosis;	
	infections, coliform mastitis, nonspecific		Campylobacter spp.—enterocolitis;	
	urinary tract infection		Chlamydia—enteritis, pneumonia, abortion,	
54	Erysipelas	750	etc.; Listeria monocytogenes—septicemia,	
	Erysipelothrix rhusiopathiae, tonsillarum—		encephalitis, abortion; Rhodococcus equi—	
	septicemia, arthritis, endocarditis		granulomatous lymphadenitis; Treponema	
55	Glässer's Disease	760	pedis—ear necrosis, other skin lesions;	
	Haemophilus parasuis—fibrinous		Yersinia spp.—enterocolitis	
	polyserositis and arthritis			
56	Leptospirosis	770	SECTION V PARASITIC DISEASES	
	Leptospira spp. serovars Pomona,		65 External Parasites	885
	Kennewicki, Bratislava, Muenchen,		Mange (Sarcoptes, Demodex), lice, fleas,	
	Tarassovi, Canicola, Grippotyphosa,		mosquitoes, flies (myiasis), ticks	
	Hardjo, others—abortion and stillbirths		66 Coccidia and Other Protozoa	895
57	Mycoplasmosis	779	Coccidia (Isospora, Eimeria), Toxoplasma,	
	Mycoplasma hyopneumoniae—pneumonia;		Sarcocystis, Cryptosporidium, Giardia,	
	Mycoplasma hyorhinis—polyserositis,		microsporidia (Entercytozoon, Encephalitozoon),	
	arthritis; Mycoplasma hyosynoviae—arthritis;		Balantidium coli, Entamoeba	
	Mycoplasma (Eperythrozoon) suis—anemia,		67 Internal Parasites: Helminths	908
	other mycoplasmas—mostly nonpathogenic		Nematodes—Gongylonema, Hyostrongylus,	
58	Pasteurellosis	798	Strongyloides, Ascaris, Trichinella, Trichuris,	
	Pasteurella multocida—progressive atrophic		Oesophagostomum, Metastrongylus,	
	rhinitis, pneumonia, septicemia		Paragonimus, Stephanurus, and others;	
59	Proliferative Enteropathy	811	Cestodes—Echinococcus, Taenia, and others;	
	Lawsonia intracellularis—porcine proliferative		parasiticides	
	enteropathy, proliferative hemorrhagic			
	enteropathy		SECTION VI NONINFECTIOUS DISEASES	
60	Salmonellosis	821	68 Nutrient Deficiencies and Excesses	923
	Salmonella choleraesuis var. kunzendorf—		Factors contributing to nutritional diseases,	
	septicemia, enterocolitis; Salmonella		clinical signs, investigation	020
	typhimurium, heidelberg, typhisuis—		69 Mycotoxins in Grains and Feeds	938
	enterocolitis; Salmonella dublin,		Aflatoxin, ochratoxin, citrinin,	
<i>-</i> 1	enteriditis—meningitis	024	trichothecenes (T-2 toxin, DON),	
61	Staphylococcosis	834	zearalenone, and fumonisins	
	Staphylococcus hyicus—exudative epidermitis;		70 Toxic Minerals, Chemicals, Plants,	0.53
	Staphyloccocus aureus—skin infections,		and Gases	953
	mastitis, others	0.44	Minerals, feed additives, pesticides, toxic	
62	Streptococcosis Streptococcosis	841	plants, nitrite, effects of water quality, toxic	
	Streptococcus suis—septicemia, meningitis,		gases, and ventilation failure	
	others; <i>Streptococcus porcinus</i> —cervical		La don	0.00
	lymphadenitis; Streptococcus dysgalactiae		Index	968

List of Tables

SECTION I	VETERINARY PRACTICE		Table 2.12	Common congenital anomalies	
Chapter 1	Herd Evaluation			in pigs	30
Table 1.1	Recommended space per pig	_	Table 2.13	Pig diseases with zoonotic	
	by phase of production	8		potential	31
Table 1.2	Weights and daily gain by age	_	Chapter 5	Effect of the Environment	
	and relative growth rate	9		on Health	
Table 1.3	Recommended water		Table 5.1	Recommended air temperature	
	requirements, water flow rate,			ranges at animal level for pigs	
	and feeder space per pig by phase			at various sizes and ages	63
	of production	10	Table 5.2	Target minimum ventilation	
Table 1.4	Temperature, respiration, and			rates for pigs at various sizes	64
	heart rate of pigs of different ages	10	Table 5.3	Space recommendations	
Table 1.5	Sow body condition scoring	11		for growing pigs	65
Chapter 2	Differential Diagnosis		Table 5.4	Feeder space recommendations	
	of Diseases			for growing pigs	65
Table 2.1	Approximate age at which certain		Chapter 6	Optimizing Diagnostic Value	
	causes of diarrhea in pigs are			and Sample Collection	
	more common	19	Table 6.1	Suggested necropsy kit	
Table 2.2	Approximate age at which certain			components	69
	causes of vomiting in pigs are		Table 6.2	Porcine septicemia—specimen	
	more common	21		collection	69
Table 2.3	Causes of rectal prolapses in pigs	21	Table 6.3	Porcine respiratory	
Table 2.4	Approximate age at which certain			disorders—specimen collection	70
	causes of pneumonia, respiratory		Table 6.4	Porcine neurological	
	distress, or coughing in pigs are			disorders—specimen collection	70
	more common	22	Table 6.5	Porcine abortion—specimen	
Table 2.5	Certain causes of sneezing			collection	71
	in pigs	23	Table 6.6	Porcine diarrhea (birth to	
Table 2.6	Approximate age at which certain			4 weeks)—specimen collection	71
	skin diseases in pigs are more		Table 6.7	Porcine diarrhea (1 month	
	frequently seen	24		and older)—specimen	
Table 2.7	Diseases affecting the skin of pigs	25		collection	72
Table 2.8	Cause of anemia in pigs	26	Chapter 7	Diagnostic Tests, Test	
Table 2.9	Cause of neurological signs			Performance, and	
	in pigs	27		Considerations for	
Table 2.10	Approximate ages at which			Interpretation	
	diseases causing lameness		Table 7.1	Diagnostic tests for analyte types:	
	are more common	28		infectious agent, antigen,	
Table 2.11	Causes of reproductive losses			antibody, or nucleic acid	
	in pigs	29		detection	79
viii					

Table 7.2	Guidelines for interpretation		Table 14.2	Porcine hematological reference	
	and troubleshooting of positive			intervals	190
	and negative bacterial isolation		Table 14.3	Porcine congenital cardiovascular	
	results	79		anomalies	191
Table 7.3	Effect of strain variation on		Table 14.4	Infectious etiologies of	
	PRRSV IFA results	85		inflammatory heart disease	192
Table 7.4	Recommendations for the use		Table 14.5	Infectious causes of porcine	
	of PRRSV genomic sequencing	91		vasculitis	195
Chapter 8	Analysis and Use of		Table 14.6	Body fluid classifications and	
P	Diagnostic Data			parameters	195
Table 8.1	Sample sizes necessary to detect		Table 14.7	Causes of porcine anemia	196
14610 011	a significant difference in		Chapter 15	Digestive System	1,0
	prevalence or incidence of		Table 15.1	Mechanisms of diarrhea	215
	infection or disease		Table 15.2	Differential diagnosis of some	210
	between two groups (one		14516 10.2	common gastrointestinal	
	with and one without the			conditions of swine	216
	risk factor) with 95%		Table 15.3	Pathology and diagnostic	210
	confidence and 80% power	104	1able 13.3	confirmation of some common	
Chapter 9	Drug Pharmacology, Therapy,	101		gastrointestinal conditions	
Chapter 9	and Prophylaxis			of swine	217
Table 9.1			Chapter 16	Immune System	217
Table 9.1	Considerations in drug use in swine	107	Chapter 16	•	
Table 9.2		107	Table 16.1	Toll-like receptors, their ligands,	
1able 9.2	Antimicrobial selection	107		and the effect on the immune	232
T-1-1- 0.2	considerations (S.P.A.C.E.D.)	107	T-1-1- 1 (0	response	232
Table 9.3	Overview of the major classes and		Table 16.2	Stages in the development of the	
	identities of antimicrobial drugs			mucosal immune response in the	220
	used in swine, their antimicrobial		T 11 16 2	neonatal pig	239
	activities, pharmacokinetic		Table 16.3	Vaccine adjuvants currently	246
	properties, toxic and other		01 . 4	used in licensed vaccines	246
	adverse effects, and major clinical		Chapter 17	Integumentary System: Skin,	
	applications	108		Hoof, and Claw	
Table 9.4	American Association of Swine		Table 17.1	Causes of diseases of the skin	
	Veterinarians (AASV) Basic			in swine	252
	Guidelines of Judicious		Table 17.2	Differential diagnosis of	
	Therapeutic Use of Antimicrobials			skin diseases	253
	in Pork Production	113	Chapter 18	Mammary System	
Table 9.5	Common swine anthelmintics		Table 18.1	Least-square means of piglet	
	and doses	117		weight (kilogram) at different	
Chapter 10	Anesthesia and Surgical			ages from randomly chosen 59	
	Procedures in Swine			litters of different sizes after	
Table 10.1	Injectable anesthetic agents			correction for birth weight	
	for swine	122		(these litters had no mortality	
Chapter 11	Disease Transmission			for the 28-day lactation period)	275
	and Biosecurity		Table 18.2	Variation of sow milk	
Table 11.1	Commonly used measures			composition (mean \pm SD)	
	of disease frequency	143		between the first days (days 1–2)	
Table 11.2	Evolution of the science			and plateau phase (days 10–15)	
	of animal disease management	154		of lactation	277
Table 11.3	Two decades of pig disease;		Table 18.3	The effect of litter size on	
	emergence or reemergence of			characteristics of neonatal	
	pig pathogens (1990–2010)	156		piglets (French observations	
				on 1596 litters from	
SECTION II	BODY SYSTEMS			a single herd)	280
Chapter 14	Cardiovascular and		Table 18.4	Effect of parity (P) on piglets'	
•	Hematopoietic Systems			characteristics at birth (French	
Table 14.1	Porcine clinical and biochemistry			observations on 1596 litters	
	reference intervals	190		from a single herd)	281
				- · · · · · · · · · · · · · · · · · · ·	

X LIST OF TABLES

Chapter 19	Nervous and Locomotor		Table 20.5	Diagnostic results on 1396	
	Systems			porcine abortion cases submitted	
Table 19.1	References for anatomy,			to the Iowa State University	
	physiology, and pathology of			Veterinary Diagnostic Laboratory	
	the neurolocomotory system	295		from 1/2003 to 1/2010	342
Table 19.2	Physeal closure times in bones		Table 20.6	Fetal tissue sampling guidelines	
	of the thoracic and pelvic limbs			in cases of porcine abortion	343
	of the pig	295	Table 20.7	Common agents detected in	
Table 19.3	Descriptive terms and clinical			409 porcine cases classified as	
	signs affecting the nervous			infectious abortions at Iowa	
	system	297		State University Veterinary	
Table 19.4	Observations and lesions of the			Diagnostic Laboratory from	
m 11 40 5	eye	301	m.1.1. 2000	1/2003 to 1/2010	343
Table 19.5	Congenital and newborn		Table 20.8	Infectious and toxic diseases	
	diseases affecting the locomotor	202		causing abortion, stillbirth,	
m 11 40 6	system	303		and mummification	0.45
Table 19.6	Taxonomy and causes of	20.4	01 . 04	in swine	345
m 11 40 5	congenital tremors	304	Chapter 21	Respiratory System	
Table 19.7	Key features and reference for		Table 21.1	Relative weights of lung lobes	
	types of congenital tremors	204		as percentages of total lung	2.40
T 11 100	described	304	T 11 01 0	weight in 90- to 100-kg pigs	349
Table 19.8	Some causes and clinical signs		Table 21.2	Physical, humoral, and cellular	
	of conditions of the nervous	210		defense mechanisms in the	250
T-1-1- 10 0	system	310	T-1-1- 01 0	respiratory tract	350
Table 19.9	Some causes of posterior paresis	212	Table 21.3	Some studies demonstrating	
Table 10 10	and paralysis	313		multiple pathogen infections	252
Table 19.10	Sites of malacia in the CNS	313	Table 21 4	in swine	352
Table 19.11	Diseases and insults that affect	313	Table 21.4	Classification of pneumonias	354
Table 10 12	the joints	313	Table 21.5	based on morphology	334
Table 19.12	Diseases and insults primarily	314	1able 21.3	Respiratory disease entities	
Table 19.13	affecting the muscle	314		and agents associated with sneezing	354
14016 19.13	Diseases primarily affecting the bone	318	Table 21.6	Herd factors with detrimental	334
Table 19.14	Some nutritional contributors	310	1able 21.0	effects on the respiratory	
14010 17.14	to locomotor disease	318		system	358
Table 19.15	Osteodystrophies (metabolic	310	Chapter 22	Urinary System	330
14010 17.13	bone diseases) include rickets,		Table 22.1	Differential diagnosis of some	
	osteomalacia, fibrous		10DIC 22.1	renal diseases based on gross	
	osteodystrophy, and			findings at necropsy	377
	osteoporosis	319		midnigs at necropsy	377
Table 19.16	Historical contributions to the	017	SECTION III	VIRAL DISEASES	
10010 17110	study of osteochrondrosis	321	Chapter 23	Overview of Viruses	
Table 19.17	Classification and gross pathology	021	Table 23.1	Comparison of basic properties	
	(lesions) of osteochondrosis	322		among monocellular	
Chapter 20	Diseases of the Reproductive			microorganisms	384
	System		Table 23.2	Viral taxonomy for orders,	
Table 20.1	Effect of boar contact on gilt			families, and genera containing	
	cyclicity	330		viruses infecting pigs	386
Table 20.2	Effects of oxytocin (OT) after		Table 23.3	Viral families containing	
	delivery of the first pig on			animal and human pathogens	
	farrowing performance	333		and their physicochemical	
Table 20.3	Boar and laboratory			properties	388
	management to minimize		Chapter 26	Porcine Circoviruses	
	semen contamination	338	Table 26.1	Noninfectious risk factors for	
Table 20.4	Minimum requirements for use			PMWS	408
	of fresh boar semen for artificial		Chapter 28	Herpesviruses	
	insemination	338	Table 28.1	Herpesviruses of swine	422

Chapter 29 Table 29.1	Porcine Parvovirus Viremia, transplacental transmission, and death caused by		Chapter 51 Table 51.1	Brucellosis Differential microbiological characteristics of species of	
Chapter 31	distinct porcine parvovirus strains Porcine Reproductive and Respiratory Syndrome Virus	449	Table 51.2	the genus <i>Brucella</i> Differential characteristics of the recognized <i>Brucella</i>	698
	(Porcine Arterivirus)			biovars	698
Table 31.1	Summary of the use of diagnostic		Chapter 52	Clostridiosis	
	assays for the detection of PRRSV	472	Table 52.1	Major clostridia and associated	710
Chamtan 42	infection	473	Table 50.0	syndromes affecting swine	710
Chapter 42 Table 42.1	Picornaviruses that may be		Table 52.2	Production of so-called major toxins by types of <i>Clostridium</i>	
1able 42.1	Picornaviruses that may be isolated from pigs	588		perfringens and associated	
Table 42.2	Year of first and most recent	300		diseases	710
1abic 42.2	report of SVD outbreaks in		Table 52.3	Virulence of <i>Clostridium</i>	710
	the world	602	1abic 32.3	perfringens type A strains for	
Table 42.3	Natural or experimental	002		neonatal pigs	713
14516 12.5	clinical syndromes associated		Chapter 53	Colibacillosis	710
	with porcine enteric		Table 53.1	Important pathotypes, adhesins,	
	picornavirus infection	612	Tuble 00.1	toxins, and serogroups of	
Chapter 43	Reoviruses (Rotavirus	012		pathogenic <i>E. coli</i>	724
omprer 10	and Reoviruses)		Table 53.2	Common serovirotypes of	1
Table 43.1	Serogroup, serotype, and			pathogenic <i>E. coli</i> from pigs	
	genotype designations of			with PWD or ED	725
	selected porcine rotaviruses	623	Table 53.3	Risk factors for development	
Table 43.2	Geographic and temporal			of <i>E. coli</i> diseases	729
	variability in the dominant		Table 53.4	Age periods affected	
	group A rotavirus G and P types			for various clinical diseases	
	in subclinical or diarrheic pigs			due to E. coli	730
	in various countries	624	Table 53.5	Criteria used to identify	
Table 43.3	Prevalence of group A, B, and C			causative <i>E. coli</i> in	
	rotaviruses in diarrheic pigs	625		diarrhea	731
Table 43.4	Rotavirus prevalence in		Table 53.6	Strategies commonly used	
	various countries	626		for the control of enteric	
				E. coli infections	732
SECTION IV	BACTERIAL DISEASES		Chapter 54	Erysipelas	
Chapter 47	Overview of Bacteria		Table 54.1	Application of different	
Table 47.1	Classification of the principal			diagnostic assays for	
	bacterial pathogens of swine	650		identification of	
Table 47.2	Gram-positive bacteria and			Erysipelothrix species	755
	associated swine disease(s) and/or		Chapter 55	Glässer's Disease	
	clinical signs	651	Table 55.1	Clinical and pathological	
Table 47.3	Gram-negative bacteria and			outcome from experimental	
	associated swine diseases			inoculation with strains from	
	and/or clinical signs	651		different serovars of	
Chapter 50	Brachyspiral Colitis			Haemophilus parasuis	761
Table 50.1	Differentiation of six Brachyspira		Chapter 63	Tuberculosis	
	species that infect swine by their		Table 63.1	Prevalence of tuberculosis in	
	hemolyis pattern on Trypticase			swine in the United States as	
	Soy blood agar, biochemical			determined by inspection in	
	reactions, and utilization			abattoirs under federal	
	of sugars	682		supervision	857
Table 50.2	Dosage level, duration of		Table 63.2	Summary of data compiled from	
	administration and side effects			reports in North America on the	
	for the four drugs most			occurrence of tubercle bacilli	
	commonly used for the			in tuberculous lymph nodes	
	treatment of swine dysentery	687		of swine	858

XII LIST OF TABLES

SECTION V	PARASITIC DISEASES		Table 68.5	Signs of mineral excess and	
Chapter 65	External Parasites			estimated tolerance level in	
Table 65.1	Guidelines for chemical			swine	930
	treatment of external		Table 68.6	Signs of excess and estimated	
	parasites of swine	888		tolerance level for other	
Chapter 66	Coccidia and Other			nutrients and dietary	
	Protozoa			components in swine	931
Table 66.1	Species and genotypes of		Table 68.7	A summary of clinical signs	
	Cryptosporidium, Giardia, and			associated with nutrient	
	microsporidia found in swine			deficiencies and excesses	
	and their zoonotic potential	904		in swine	933
Chapter 67	Internal Parasites: Helminths		Table 68.8	Analytical variations	934
Table 67.1	Gastrointestinal helminths		Chapter 69	Mycotoxins in Grains and Feeds	
	of lesser importance	918	Table 69.1	Sources and conditions for	
				selected mycotoxins important	
SECTION VI	NONINFECTIOUS DISEASES			to swine	939
Chapter 68	Nutrient Deficiencies		Table 69.2	Characteristics of common	
	and Excesses			mycotoxicoses in swine	940
Table 68.1	Signs of vitamin deficiencies		Table 69.3	Selected approaches to	
	in swine	925		inactivate mycotoxins	
Table 68.2	Signs of mineral deficiencies			in swine feeds	943
	in swine	926	Table 69.4	Exposure guide to mycotoxin	
Table 68.3	Deficiency signs for other			effects in swine	947
	nutrients and dietary		Chapter 70	Toxic Minerals, Chemicals,	
	components in swine	927		Plants, and Gases	
Table 68.4	Signs of vitamin excess and		Table 70.1	Water quality guidelines	
	estimated tolerance level in swine	929		for livestock	961

Contributing Authors

Caitlyn Abell

Department of Animal Science 109 Kildee Hall Iowa State University Ames, Iowa 50011

Claudio L. Afonso

United States Department of Agriculture Agricultural Research Service Southeast Poultry Research Laboratory Athens, Georgia 30605

Soren Alexandersen

National Centres for Animal Disease NCFAD-Winnipeg and ADRI-Lethbridge Laboratories Canadian Food Inspection Agency 1015 Arlington Street Winnipeg MB R3E 3M4 Canada

Gordon M. Allan

School of Biological Sciences Queen's University Belfast University Road Belfast BT9 7BL, Northern Ireland United Kingdom

Glen W. Almond

Department of Population Health and Pathobiology College of Veterinary Medicine North Carolina State University 1060 William Moore Drive Raleigh, North Carolina 27607

Gary C. Althouse

New Bolton Center 382 West Street Road School of Veterinary Medicine University of Pennsylvania Kennett Square, Pennsylvania 19348

David E. Anderson

Professor and Head, Agricultural Practices Department of Clinical Sciences College of Veterinary Medicine Kansas State University Manhattan, Kansas 66506

Virginia Aragon

Centre de Recerca en Sanitat Animal (CReSA) Institut de Recerca i Tecnologia Agroalimentària (IRTA) Universitat Autònoma de Barcelona 08193 Bellaterra Barcelona Spain

Marisa Arias Neira

Centro de Investigación en Sanidad Animal Instituto Nacional de Investigación Agraria y Alimentaria Ministerio de Ciencia e Innovación Carretera de Algete a El Casar 28130 Valdeolmos Spain

Alison E. Barnhill

Infectious Bacterial Diseases Research Unit National Animal Disease Center Agricultural Research Service United States Department of Agriculture 1920 Dayton Avenue Ames, Iowa 50010

Graham J. Belsham

Technical University of Denmark National Veterinary Institute Lindholm 4771 Kalvehave Denmark

David A. Benfield

Food Animal Health Research Program College of Veterinary Medicine Ohio Agricultural Research and Development Center Ohio State University 1680 Madison Avenue Wooster, Ohio 44691

XIV CONTRIBUTING AUTHORS

losé M. Blasco

Unidad de Sanidad Animal Centro de Investigación y Tecnología Agroalimentaria (CITA)

Gobierno de Aragón. Avda Montañana 930 50059 Zaragoza Spain

Susan L. Brockmeier

Respiratory Diseases of Swine Research Project National Animal Disease Center Agricultural Research Service United States Department of Agriculture 1920 Dayton Avenue Ames, Iowa 50010

lan H. Brown

Virology Department and Animal Health and Veterinary Laboratories Agency—Weybridge New Haw, Addlestone Surrey KT15 3NB United Kingdom

Thomas O. Bunn

Diagnostic Bacteriology Laboratory National Veterinary Services Laboratories Animal and Plant Health Inspection Service United States Department of Agriculture 1920 Dayton Avenue Ames, Iowa 50010

Ranald Cameron

17/8 Sanford Street St. Lucia QLD 4067 Australia

Steven A. Carlson

Department of Biomedical Sciences College of Veterinary Medicine Iowa State University Ames, Iowa 50011

John Carr

Portec Australia 13 Camden Street Belmont, Western Australia 6984 Australia

Teresa Casey-Trott

50 Stone Road East Building #70 Rm 106 Guelph, Ontario N1G 2W1 Canada

Chia-Yi Chang

Animal Health Research Institute National Taiwan University Tansui, New Taipei City 25158 Taiwan

Chih-Cheng Chang

Department of Veterinary Medicine 580 Hsin-Min Road National Chiayi University Chiayi City Taiwan

Kyeong-Ok Chang

Department of Diagnostic Medicine and Pathobiology College of Veterinary Medicine Kansas State University 1800 Denison Avenue Manhattan, Kansas 66506

Christopher C. L. Chase

Department of Veterinary and Biomedical Sciences South Dakota State University Brookings, South Dakota 57007

Jane Christopher-Hennings

Veterinary and Biomedical Sciences Department Animal Disease Research and Diagnostic Laboratory South Dakota State University Brookings, South Dakota 57007

Johann Coetzee

Department of Veterinary Diagnostic and Production Animal Medicine College of Veterinary Medicine Iowa State University Ames, Iowa 50011

Sylvie D'Allaire

Faculté de médecine vétérinaire Université de Montréal C.P. 5000 Saint-Hyacinthe, Quebec, J2S 7C6 Canada

Peter W. Daniels

Commonwealth Scientific and Industrial Research Organization (CSIRO) Australian Animal Health Laboratory PMB 24 Geelong 3220 Australia

Peter Davies

Department of Clinical and Population Sciences College of Veterinary Medicine University of Minnesota St. Paul, Minnesota 55108

Scott A. Dee

Department of Clinical and Population Sciences College of Veterinary Medicine University of Minnesota St. Paul, Minnesota 55108

Marten F. de Iona

Veterinary Specialist in Pig Health Ret. Vet. Animal Health Service Ruitenborghweg 7 NL 7722 PA Dalfsen The Netherlands

Aldo Dekker

Central Veterinary Institute of Wageningen UR PO Box 65 8200 AB Lelystad The Netherlands

Gustavo Delhon

School of Veterinary and Biomedical Sciences University of Nebraska-Lincoln 203 VBS, East Campus Lincoln, Nebraska 68583

Mariano Domingo

Centre de Recerca en Sanitat Animal (CReSA) Departament de Sanitat i Anatomia Animals Facultat de Veterinaria Universitat Autonoma de Barcelona 08193 Bellaterra Barcelona Spain

Stan Done

Animal Health and Veterinary Laboratories Agency (AHVLA) West House Station Road Thirsk, North Yorkshire YO7 1PZ United Kingdom

Richard Drolet

Faculty of Veterinary Medicine University of Montreal PO Box 5000 Saint-Hyacinthe, Quebec J2S 7C6 Canada

Jitender P. Dubey

Animal Parasitic Diseases Laboratory Animal and Natural Resources Institute Agricultural Research Service United States Department of Agriculture Beltsville, Maryland 20705

Lily N. Edwards

Kansas State University Department of Animal Science and Industry Weber 248 Manhattan, Kansas 66506

Bernhard Ehlers

Robert Koch-Institut Fachgebiet 12 "Virale Infektoinen" Nordufer 20 13353 Berlin Germany

William A. Ellis

OIE Leptospira Reference Laboratory Veterinary Sciences Division Agri-food and Biosciences Institute Stoney Road, Stormont Belfast, Northern Ireland United Kingdom

Steve M. Ensley

Department of Veterinary Diagnostic and Production Animal Medicine College of Veterinary Medicine Iowa State University Ames, Iowa 50011

Gene A. Erickson

North Carolina Department of Agriculture Rollins Animal Disease Diagnostic Laboratory North Carolina Veterinary Diagnostic Laboratory System Raleigh, North Carolina 27607

John M. Fairbrother

Reference laboratory for E. coli 3200 rue Sicotte Saint-Hyacinthe, Québec J2S 2M2 Canada

Chantal Farmer

AAFC, Dairy and Swine R&D Centre 2000 College Street Sherbrooke, Québec J1M 0C8 Canada

Ronald Fayer

Environmental Microbial and Food Safety Laboratory Animal and Natural Resources Institute Agricultural Research Service, United States Department of Agriculture Beltsville, Maryland 20705

Deborah Finlaison

Virology Laboratory Elizabeth Macarthur Agriculture Institute New South Wales Department of Primary Industries Woodbridge Road, Menangle New South Wales Australia 2568

Robert M. Friendship

Department of Population Medicine University of Guelph Guelph, Ontario N1G 2W1 Canada

Timothy S. Frana

Department of Veterinary Diagnostic and Production Animal Medicine College of Veterinary Medicine Iowa State University Ames, Iowa 50011

XVİ CONTRIBUTING AUTHORS

Iulie Funk

Large Animal Clinical Sciences B51A Food Safety and Toxicology Building Michigan State University East Lansing, Michigan 48824

Bruno Garin-Bastuji

Agence Nationale de Sécurité Sanitaire (ANSèS) Lerpaz Unité Zoonoses Bactériennes 23 ave du Général de Gaulle 94706 Masons-Alfort France

Ian A. Gardner

Department of Health Management Atlantic Veterinary College University of Prince Edward Island 550 University Avenue Charlottetown, Prince Edward Island CA1 4P3 Canada

Connie J. Gebhart

Department of Pathobiology College of Veterinary Medicine University of Minnesota St. Paul, Minnesota 55108

Thomas W. Geisbert

Department of Microbiology and Immunology University of Texas Medical Branch 301 University Boulevard Galveston, Texas 77555

Marcelo Gottschalk

Faculté de Médecine Vétérinarire Université de Montréal Saint-Hyacinthe, Québec J2S 7C6 Canada

John H. Greve

College of Veterinary Medicine Iowa State University Ames, Iowa 50011

Ronald W. Griffith

Department of Veterinary Microbiology and Preventive Medicine College of Veterinary Medicine Iowa State University Ames, Iowa 50011

Carlton L. Gyles

Department of Pathobiology University of Guelph Guelph, Ontario N1G 2W1 Canada

Patrick G. Halbur

Department of Veterinary Diagnostic and Production Animal Medicine College of Veterinary Medicine Iowa State University Ames, Iowa 50011

David J. Hampson

Animal Research Institute School of Veterinary and Biomedical Sciences Murdoch University South Street Murdoch, Western Australia 6150 Australia

Richard A. Hesse

Department of Diagnostic Medicine and Pathobiology College of Veterinary Medicine 1800 Denison Avenue Kansas State University Manhattan, Kansas 66506

Chin-Cheng Huang

Animal Health Research Institute Council of Agriculture Executive Yuan 376 Chung-Cheng Road Tansui, New Taipei City 25158 Taiwan

Anna K. Johnson

Department of Animal Science College of Agriculture Iowa State University Ames, Iowa 50011

Kwonil Jung

Food Animal Health Research Program Ohio Agricultural Research and Development Center Department of Veterinary Preventive Medicine The Ohio State University Wooster, Ohio 44691

Locke A. Karriker

Department of Veterinary Diagnostic and Production Animal Medicine College of Veterinary Medicine Iowa State University Ames, Iowa 50011

Tuija Kekarainen

Centre de Recerca en Sanitat Animal (CReSA) Institut de Recerca i Tecnologia Agroalimentària Universitat Autònoma de Barcelona Campus de la Universitat Autònoma de Barcelona 08193 Bellaterra Barcelona Spain

Yunjeong Kim

Department of Diagnostic Medicine and Pathobiology College of Veterinary Medicine Kansas State University 1800 Denison Avenue Manhattan, Kansas 66506

Peter D. Kirkland

Virology Laboratory Elizabeth Macarthur Agriculture Institute New South Wales Department of Primary Industries Woodbridge Road, Menangle New South Wales 2568 Australia

Roy N. Kirkwood

School of Animal and Veterinary Sciences The University of Adelaide 5005 Australia

Nick J. Knowles

Molecular Characterisation & Diagnostics Group Institute for Animal Health Pirbright Laboratory, Ash Road Pirbright, Woking, Surrey GU24 0NF United Kingdom

Frank Koenen

Veterinary and Agrochemical Research Centre Groeselenberg 99 B-1180 Ukkel Belgium

Marie-Frédérique Le Potier

Agence Nationale de Sécurité Sanitaire (ANSèS) Laboratoire d'études et de recherches avicoles et porcines UR Virologié Immunologie Porcines Zoopôle Beaucemaine-Les Croix, BP 53 22440 Ploufragan France

David S. Lindsay

Department of Biomedical Sciences and Pathobiology Virginia-Maryland Regional College of Veterinary Medicine 1410 Prices Fork Road Blacksburg, Virginia 24061

Crystal L. Loving

Respiratory Diseases of Swine Research Unit National Animal Disease Center Agricultural Research Service United States Department of Agriculture 1920 Dayton Avenue Ames, Iowa 50010

Alan T. Loynachan

Veterinary Diagnostic Laboratory University of Kentucky 1490 Bull Lea Road Lexington, Kentucky 40512

Joan K. Lunney

Animal Parasitic Diseases Laboratory ANRI, ARS, USDA Building 1040, Room 103, BARC-East Beltsville, Maryland 20705

Iohn S. Mackenzie

Faculty of Health Sciences Curtin University GPO Box U1987 Perth, Western Australia 6845 Australia

Guy-Pierre Martineau

Department of Animal Production École Nationale Vétérinaire de Toulouse 23 Chemin des Capelles BP 87614 Toulouse Cedex 3, 31076 France

Steven McOrist

School of Veterinary Medicine and Science Room C20 Veterinary Academic Building Sutton Bonington Loughborough, Nottinghamshire LE12 5RD United Kingdom

Daniel G. Mead

Southeastern Cooperative Wildlife Disease Study 589 D.W. Brooks Drive College of Veterinary Medicine The University of Georgia Athens, Georgia 30602

Xiang-Jin Meng

Department of Biomedical Sciences and Pathobiology College of Veterinary Medicine Virginia Polytechnic Institute and State University CRC-Integrated Life Science Building 1981 Kraft Drive, Room 2036 Blacksburg, Virginia 24061

Thomas C. Mettenleiter

Friedrich-Loeffler-Institut Bundesforschungsinstitut für Tiergesundheit Federal Research Institute for Animal Health Südufer 10 17493 Greifswald-Insel Riems Germany

Phillip S. Miller

University of Nebraska Lincoln, Nebraska 68583

F. Christopher Minion

Department of Veterinary Microbiology and Preventive Medicine College of Veterinary Medicine Iowa State University Ames, Iowa 50011

XVIII CONTRIBUTING AUTHORS

Thomas Müller

Institute for Epidemiology Friedrich-Loeffler-Institut Federal Research Institute for Animal Health Seestrasse 55 D-16868 Wusterhausen Germany

Michael P. Murtaugh

Department of Veterinary and Biomedical Sciences College of Veterinary Medicine University of Minnesota St. Paul, Minnesota 55108

Eric A. Nelson

Veterinary and Biomedical Sciences Department Animal Disease Research and Diagnostic Laboratory South Dakota State University Brookings, South Dakota 57007

Eric J. Neumann

Senior Lecturer in Pig Medicine and Epidemiology Massey University Private Bag 11 222 Tennent Drive Palmerston North 4442 New Zealand

Tracy L. Nicholson

Virus and Prion Research Unit National Animal Disease Center Agricultural Research Service United States Department of Agriculture 1920 Dayton Avenue Ames, Iowa 50010

Ana M. Nicola

Laboratorio de Referecia de la OIE para Brucelosis Coordinación General Laboratorio Animal DILAB–SENASA Ave. Fleming 1653 CP 1640, Martínez, Buenos Aires Argentina

Sherrie R. Niekamp

National Pork Board 1776 NW 114th St Clive, Iowa 50325

Simone Oliveira

University of Minnesota Veterinary Diagnostic Laboratory 1333 Gortner Avenue #244 St. Paul, Minnesota 55108

Christopher W. Olsen

Department of Pathobiological Sciences and Office of Academic Affairs School of Veterinary Medicine University of Wisconsin-Madison 2015 Linden Drive Madison, Wisconsin 53706

Steven C. Olsen

Infectious Bacterial Diseases of Livestock Research Unit National Animal Disease Center Agricultural Research Service United States Department of Agriculture 1920 Dayton Avenue Ames, Iowa 50010

Tanja Opriessnig

Department of Veterinary Diagnostic and Production Animal Medicine College of Veterinary Medicine Iowa State University Ames, Iowa 50011

Gary D. Osweiler

Department of Veterinary Diagnostic and Production Animal Medicine College of Veterinary Medicine Iowa State University Ames, Iowa 50011

Olli Peltoniemi

Department of Production Animal Medicine Faculty of Veterinary Medicine University of Helsinki Paroninkuja 20, 04920 Saarentaus Finland

Maurice B. Pensaert

Laboratory of Veterinary Virology Faculty of Veterinary Medicine Ghent University Salisburylaan 133 9820 Merelbeke Belgium

Christina E. Phillips

Department of Animal Science University of Minnesota 335f An Sci/Vet Med 1988 Fitch Avenue St. Paul, Minnesota 55108

Carlos Pijoan (deceased)

Department of Clinical and Population Sciences College of Veterinary Medicine University of Minnesota St. Paul, Minnesota 55108

Karen W. Post

North Carolina Veterinary Diagnostic Laboratory System Rollins Animal Disease Diagnostic Laboratory 1031 Mail Service Center Raleigh, North Carolina 27699

John F. Prescott

Department of Pathobiology Ontario Veterinary College, University of Guelph 50 Stone Road Guelph, Ontario N1G 2W1 Canada

Aleiandro Ramirez

Department of Veterinary Diagnostic and Production Animal Medicine College of Veterinary Medicine Iowa State University Ames, Iowa 50011

Duane E. Reese

Animal Science University of Nebraska-Lincoln Lincoln, Nebraska 68583

Karen B. Register

Virus and Prion Research Unit National Animal Disease Center Agricultural Research Service United States Department of Agriculture 1920 Dayton Avenue Ames, Iowa 50010

Gábor Reuter

Regional Laboratory of Virology National Reference Laboratory of Gastroenteric Viruses ÁNTSZ Regional Institute of State Public Health Service H-7623 Szabadság u. 7. Pécs Hungary

Daniel L. Rock

Department of Pathobiology College of Veterinary Medicine University of Illinois at Urbana-Champaign 2522 Vet. Med. Basic Sciences Building, MC-002 2001 S. Lincoln Avenue Urbana, Illinois 61802

Jessica M. Rowland

Foreign Animal Disease Diagnostic Laboratory National Veterinary Services Laboratories Animal and Plant Health Inspection Services United States Department of Agriculture Plum Island Animal Disease Center Greenport, New York 11944

Raymond R. R. Rowland

Department of Diagnostic Medicine and Pathobiology College of Veterinary Medicine 1800 Denison Avenue Kansas State University Manhattan, Kansas 66506

Linda J. Saif

Food Animal Health Research Program Ohio Agricultural Research and Development Center Department of Veterinary Preventive Medicine The Ohio State University Wooster, Ohio 44691

Luis Samartino

Instituto de Patobiología Centro de Investigaciones en Ciencias Veterinarias y Agronómicas Instituto Nacional de Tecnologia Agropecuaria (INTA) Buenos Aires Argentina

José Manuel Sánchez-Vizcaíno

Universidad Complutense de Madrid Facultad de Veterinaria Avenida Puerta de Hierro s/n 28040 Madrid Spain

Mónica Santín-Durán

Environmental Microbial and Food Safety Laboratory Animal and Natural Resources Institute Agricultural Research Service, United States Department of Agriculture Beltsville, Maryland 20705

Linda Scobie

Department of Biological and Biomedical Sciences School of Health and Life Sciences Glasgow Caledonian University Glasgow, Scotland G4 0BA United Kingdom

Joaquim Segalés

Centre de Recerca en Sanitat Animal (CReSA) Departament de Sanitat i Anatomia Animals Facultat de Veterinària Universitat Autonòma de Barcelona 08193 Bellaterra Barcelona Spain

Karol Sestak

Tulane National Primate Research Center Tulane University School of Medicine 18703 Three Rivers Road Covington, Louisiana 70433

J. Glenn Songer

Department of Veterinary Microbiology and Preventive Medicine College of Veterinary Medicine Iowa State University Ames, Iowa 50011

Tomasz Stadejek

National Veterinary Research Institute Department of Swine Diseases Partyzantow Ave. 57 24-10 Pulawy Poland

XX CONTRIBUTING AUTHORS

Kenneth Stalder

109 Kildee Hall Department of Animal Science Iowa State University Ames, Iowa 50011

Alberto Stephano

Stephano Consultores, S.C. Villa de Guadalupe 234 Villas del Campestre Leon, Guanajuato, C.P. 37129 Mexico

Gregory W. Stevenson

Department of Veterinary Diagnostic and Production Animal Medicine College of Veterinary Medicine Iowa State University Ames, Iowa 50011

Guy St. Jean

Associate Dean for Academic Affairs and Professor of Surgery School of Veterinary Medicine Ross University St. Kitts West Indies

André Felipe Streck

Institute for Animal Hygiene and Veterinary Public Health University of Leipzig An den Tierkliniken 1 04103 Leipzig Germany

Ben W. Strugnell

Animal Health and Veterinary Laboratories Agency (AHVLA) West House Station Road Thirsk, North Yorkshire YO7 1PZ United Kingdom

Mhairi A. Sutherland

AgResearch Ltd. Ruakura Research Centre East St, Private Bag 1323 Hamilton 3240 New Zealand

Sabrina L. Swenson

Diagnostic Virology Laboratory National Veterinary Services Laboratories Animal and Plant Health Inspection Service United States Department of Agriculture 1920 Dayton Avenue Ames, Iowa 50010

David J. Taylor

Emeritus Professor of Veterinary Bacteriology and Public Health, University of Glasgow 31, North Birbiston Road Lennoxtown Glasgow G66 7LZ United Kingdom

Iens Peter Teifke

Friedrich-Loeffler-Institut Federal Research Institute for Animal Health Südufer 10 17493 Greifswald-Insel Riems Germany

Eileen L. Thacker

National Program Leader, Animal Production and Protection USDA—Agricultural Research Service 5601 Sunnyside Avenue Beltsville, Maryland 20705

Charles O. Thoen

Department of Veterinary Microbiology and Preventive Medicine College of Veterinary Medicine Iowa State University Ames, Iowa 50011

Iill R. Thomson

Scottish Agricultural College Veterinary Services Bush Estate, Peniculk Midlothian, Scotland EH26OQE United Kingdom

Montserrat Torremorell

Department of Clinical and Population Sciences College of Veterinary Medicine University of Minnesota St. Paul, Minnesota 55108

Stephanie Torrey

Department of Animal and Poultry Science 50 Stone Road East Bldg #70 Rm 246 Guelph, Ontario N1G 2W1 Canada

Jerry L. Torrison

Veterinary Population Medicine University of Minnesota St. Paul, Minnesota 55108

Uwe Truyen

Institute for Animal Hygiene and Veterinary Public Health University of Leipzig An den Tierkliniken 1 04103 Leipzig Germany

Anita L. Tucker

University of Guelph Department of Animal and Poultry Science Guelph, Ontario N1G 2W1 Canada

A. W. (Dan) Tucker

University of Cambridge Department of Veterinary Medicine Madingley Road Cambridge CB3 0ES United Kingdom

Edan R. Tulman

Department of Pathobiology and Veterinary Science Center of Excellence for Vaccine Research University of Connecticut 61 North Eagleville Road, U-3089 Storrs, Connecticut 06269

Valarie V. Tynes

Premier Veterinary Behavior Consulting PO Box 1413 Sweetwater, Texas 79556

William G. Van Alstine

Veterinary Pathologist Professor of Comparative Pathobiology Purdue University West Lafayette, Indiana 47907

Kristien Van Reeth

Laboratory of Virology Faculty of Veterinary Medicine Ghent University Salisburylaan 133 B-9820 Merelbeke Belgium

Phillipe Vannier

Agence Nationale de Sécurité Sanitaire (ANSèS) Director of Animal Health and Welfare Zoopôle Beaucemaine-Les Croix, BP 53 22440 Ploufragan France

Elizabeth Wagstrom

National Pork Producers Council 123 C Street NW Washington, DC 20001

Fun-In Wang

School of Veterinary Medicine National Taiwan University 1 Sec 4 Roosevelt Road Taipei 10617 Taiwan

Hana M. Weingartl

Special Pathogens Unit National Centre for Foreign Animal Disease Canadian Food Inspection Agency 1015 Arlington Street Winnipeg, Mannitoba R3E 3M4 Canada

Tina Widowski

Department of Animal & Poultry Science 246 ANNU University of Guelph Guelph, Ontario N1G 2W1 Canada

David T. Williams

School of Biomedical Sciences Curtin University Perth, Western Australia 6845 Australia and Division of Microbiology and Infectious Diseases PathWest Laboratory Medicine Perth, Western Australia 6009 Australia

Susanna M. Williamson

Animal Health and Veterinary Laboratories Agency (AHVLA) Rougham Hill Bury St. Edmunds Suffolk IP33 2RZ United Kingdom

Richard L. Wood

1823 Northcrest Court Ames, Iowa 50010-0605

Amy L. Woods

Advanced Veterinary Services Wolcott, Indiana 47995

Michael J. Yaeger

Department of Veterinary Pathology College of Veterinary Medicine Iowa State University Ames, Iowa 50011

Sang-Geon Yeo

College of Veterinary Medicine Kyungpook National University Daegu Republic of Korea

Kyoung-Jin Yoon

Department of Veterinary Diagnostic and Production Animal Medicine College of Veterinary Medicine Iowa State University Ames, Iowa 50011

XXII CONTRIBUTING AUTHORS

Zhidong Zhang

National Centre for Foreign Animal Disease Canadian Food Inspection Agency 1015 Arlington Street Winnipeg, Manitoba R3E 3M4 Canada

Jeffrey J. Zimmerman

Department of Veterinary Diagnostic and Production Animal Medicine College of Veterinary Medicine Iowa State University Ames, Iowa 50011

Joseph M. Zulovich

Extension Agricultural Engineer
Commercial Agriculture Program, University of Missouri
Extension
Division of Food Systems and Bioengineering
University of Missouri
231 Agricultural Engineering Building
Columbia, Missouri 65211

Editors' Note

Howard Dunn envisioned *Diseases of Swine* to be a "complete and up-to-date reference on swine" when he and Iowa State University Press released the first edition in 1958. The eight subsequent editions followed the course set by Dunn and provided the definitive resource on swine health for generations of veterinarians and animal health professionals. Our hope is to continue this tradition in the 10th edition of *Diseases of Swine*.

Our mission has been to provide a comprehensive yet concise reference on infectious and noninfectious diseases of swine for use by our colleagues—the veterinarians, veterinary students, swine health researchers, and other health specialists engaged in improving swine health. We have sought to fulfill this mission by bringing together recognized scientific authorities from around the world to provide expert knowledge on the many "-ologies" that converge on the complex topic of swine health and disease. In an era characterized by the exponential growth of data, our challenge has been to

distill an overabundance of information into a concise and useful body of knowledge that fits into one volume. Our conscious choice has been to exclude generalist information that is readily accessible on the Internet or other formats, for example, animal husbandry, nutrition, postharvest food safety, and others. To help the reader navigate the plethora of information in the book, the contents have been extensively indexed, the Table of Contents has been expanded, and the topics organized consistently within each section.

We hope the 10th edition of *Diseases of Swine* continues in the spirit of excellence and relevance Howard Dunn originally envisioned.

Jeffrey J. Zimmerman Locke A. Karriker Alejandro Ramirez Kent J. Schwartz Gregory W. Stevenson

Acknowledgment

We wish to thank Ms. Christine Meraz for her contributions and help in seeing this project through to its conclusion.

DISEASES OF SWINE 10TH EDITION

Veterinary Practice

- 1 Herd Evaluation
- 2 Differential Diagnosis of Diseases
- 3 Behavior and Welfare
- 4 Longevity in Breeding Animals
- 5 Effect of the Environment on Health
- 6 Optimizing Diagnostic Value and Sample Collection
- 7 Diagnostic Tests, Test Performance, and Considerations for Interpretation
- 8 Analysis and Use of Diagnostic Data
- 9 Drug Pharmacology, Therapy, and Prophylaxis
- 10 Anesthesia and Surgical Procedures in Swine
- 11 Disease Transmission and Biosecurity
- 12 Preharvest Food Safety, Zoonotic Diseases, and the Human Health Interface
- 13 Special Considerations for Show and Pet Pigs