INTEGRATED BIOMATERIALS IN TISSUE ENGINEERING

EDITED BY

MURUGAN RAMALINGAM
ZIYAD HAIDAR
SEERAM RAMAKRISHNA
HISATOSHI KOBAYASHI
YOUSSEF HAIKEL

WILEY
Integrated Biomaterials in Tissue Engineering
Contents

Preface xiii
List of Contributors xv

1. Protocols for Biomaterial Scaffold Fabrication 1
 Azadeh Seidi and Murugan Ramalingam 1
 1.1 Introduction 1
 1.2 Scaffolding Materials 4
 1.2.1 Naturally Derived Materials 4
 1.2.2 Scaffolds Based on Synthetic Polymers 7
 1.3 Techniques for Biomaterial Scaffolds Fabrication 7
 1.3.1 Solvent Casting 8
 1.3.2 Salt-leaching 8
 1.3.3 Gas Foaming 11
 1.3.4 Phase Separation 12
 1.3.5 Electrospinning 13
 1.3.6 Self-assembly 15
 1.3.7 Rapid Prototyping 16
 1.3.8 Membrane Lamination 18
 1.3.9 Freeze Drying 18
 1.4 Summary 19
 Acknowledgements 20
 References 20

2. Ceramic Scaffolds, Current Issues and Future Trends 25
 Seyed-Iman Roohani-Esfahani S.I and Hala Zreiqat H 25
 2.1 Introduction 25
 2.2 Essential Properties and Current Problems of Ceramic Scaffolds 27
 2.3 Approaches to Overcome Ceramic Scaffolds Issues for the Next Generation of Scaffolds 30
 2.4 Silk – a Bioactive Material 35
 2.5 Conclusions and Future Trends 35
CONTENTS

Acknowledgements 36
References 36

3. Preparation of Porous Scaffolds from Ice Particulate Templates for Tissue Engineering 47
Guoping Chen and Naoki Kawazoe

3.1 Introduction 48
3.2 Preparation of Porous Scaffolds Using Ice Particulates as Porogens 48
3.3 Preparation of Funnel-like Porous Scaffolds Using Embossed Ice Particulate Templates 51
 3.3.1 Overview of Protocol 51
 3.3.2 Preparation of Funnel-like Collagen Sponges 51
 3.3.3 Preparation of Funnel-like Chitosan Sponges 54
 3.3.4 Preparation of Funnel-like Hyaluronic Acid Sponges 55
 3.3.5 Preparation of Funnel-like Collagen-glycosaminoglycan Sponges 55
3.4 Application of Funnel-like Porous Scaffolds in Three-dimensional Cell Culture 56
3.5 Application of Funnel-like Collagen Sponges in Cartilage Tissue Engineering 57
3.6 Summary 60
References 60

4. Fabrication of Tissue Engineering Scaffolds Using the Emulsion Freezing/Freeze-drying Technique and Characteristics of the Scaffolds 63
Naznin Sultana and Min Wang

4.1 Introduction 64
4.2 Materials for Tissue Engineering Scaffolds 65
4.3 Fabrication Techniques for Tissue Engineering Scaffolds 68
4.4 Fabrication of Pure Polymer Scaffolds via Emulsion Freezing/Freeze-drying and Characteristics of the Scaffolds 70
4.5 Fabrication of Polymer Blend Scaffolds via Emulsion Freezing/Freeze-drying and Characteristics of the Scaffolds 78
4.6 Fabrication of Nanocomposite Scaffolds via Emulsion Freezing/Freeze-drying and Characteristics of the Scaffolds 80
4.7 Surface Modification for PHBV-based Scaffolds 85
4.8 Concluding Remarks 87
Acknowledgements 87
References 88

5. Electrospun Nanofiber and Stem Cells in Tissue Engineering 91
Susan Liao, Seeram Ramakrishna and Murugan Ramalingam
5.1 Introduction 92
5.2 Biodegradable Materials for Tissue Engineering 93
5.3 Nanofibrous Scaffolds 97
 5.3.1 Technologies to Fabricate Nanofibers 98
 5.3.2 In Vitro and In Vivo Studies of Nanofibrous Scaffold 103
5.4 Stem Cells: A Potential Tool for Tissue Engineering 108
 5.4.1 Stem Cells in Tissue Engineering and Regeneration 108
 5.4.2 Effect of Stem Cells on Electrospun Nanofibrous Scaffolds 111
5.5 Prospects 113
Acknowledgement 115
References 115

6. Materials at the Interface Tissue-Implant 119
Antonio Peramo
6.1 Introduction 120
6.2 Description of the Tissue-Implant Interface 121
6.3 Expected Function of the Materials at the Interface and their Evaluation and Selection 123
 6.3.1 General Purpose Non-biological Materials 127
 6.3.2 General Purpose Natural Materials and Biopolymers 128
 6.3.3 Other Regenerative Biomaterials and Techniques 129
 6.3.4 Future Approaches 129
6.4 Experimental Techniques for the Tissue-Implant Interface 130
6.5 Conclusion 133
References 133
7. Mesenchymal Stem Cells in Tissue Regeneration

Kalpana S. Katti, Avinash A. Ambre, and Dinesh R. Katti

7.1 Introduction

7.2 Mesenchymal stem cells (MSCs)

7.2.1 Self-renewal of MSCs

7.2.2 Heterogeneity of MSCs

7.2.3 MSCs from Different Types of Tissues

7.2.4 MSCs, Progenitor Cells and Precursor Cells

7.2.5 Differentiation Potential of MSCs

7.2.6 Dedifferentiation and Transdifferentiation of hMSCs

7.3 Understanding the Mesenchymal Stem Cells (MSCs)

7.3.1 Integrins and Their Role in Mesenchymal Stem Cells (MSCs)

7.3.2 Mesenchymal Stem Cell (MSC) Niche

7.3.3 Immunomodulatory Effect of MSCs

7.4 Mesenchymal Stem Cell (MSC) Culture

7.4.1 Mesenchymal Stem Cell (MSC) Isolation

7.4.2 Mesenchymal Stem Cell (MSC) Expansion

7.4.3 Media for Inducing Osteogenic Differentiation in MSCs

7.5 Characterization of MSCs

7.5.1 Microscopy Techniques

7.5.2 Differentiation and Cell Proliferation Assays for MSCs

7.6 MSCs in Bone Remodeling, Fracture Repair and Their Use in Bone Tissue Engineering Applications

7.7 Influence of External Stimuli on MSC Behavior

7.7.1 Role of Mechanical Stimulus on hMSCs

7.7.2 Role of Electrical Stimulus on MSCs

7.8 Perspectives on Future of hMSCs in Tissue Engineering

References

8. Endochondral Bone Tissue Engineering

Sanne K. Both, Fang Yang, and John A. Jansen

8.1 Introduction

8.2 Tissue Engineering and Stem Cells
8.2.1 Tissue Engineering 169
8.2.2 Stem Cells 170
8.2.3 Bone Tissue Engineering 171
8.2.4 Bone Tissue Engineering via the Endochondral Pathway 172
8.3 Scaffolds 173
8.3.1 General Requirements of Scaffolds 173
8.3.2 Scaffolds for Endochondral Tissue Engineering 175
8.3.2.1 Hydrogels 176
8.3.2.2 Synthetic Polymer Woven Structure 177
8.3.2.3 Calcium Phosphate (CaP) Ceramics 178
8.4 Summary 179
References 180

Mona K. Marei, Mohamed A. Alkhodary, Rania M. Elbackly, Samer H. Zaky, Ahmed M. Eweida, Muhammad A. Gad, Naglaa Abdel-Wahed and Yasser M. Kadah
9.1 Introduction 184
9.1.1 Anatomy and Physiology of Craniofacial Bone 185
9.1.2 Functional Characteristics of Craniofacial Tissues 190
9.1.2.1 Bone Strength 190
9.1.2.2 Effect of Forces 191
9.1.2.3 Angiogenesis in Bone Physiology 192
9.1.3 Prevalence of Craniofacial Congenital Anomalies and Acquired Defects 192
9.1.3.1 Congenital Anomalies 192
9.1.3.2 Acquired Defects 193
9.2 Road Map for the Application of Tissue Engineering and Regenerative Medicine for Craniofacial Bone Regeneration 195
9.2.1 Vascularization and Its Strategies 197
9.3 Stem Cell-based Craniofacial Bone Engineering 199
9.3.1 The Stem Cell Concept: Recreating the Local Tissue Microenvironment 200
9.3.2 Applied Stem Cell-based Craniofacial Bone Engineering 201
9.3.3 Additional Viable Stem Cell Sources for Craniofacial Bone Engineering 204

9.4 Biomaterial-based Therapy in Craniofacial Bone Engineering 206
9.4.1 Surface Biomimetism 210

9.5 Principles of Imaging in Craniofacial Bone Regeneration 212
9.5.1 Modeling of, Preparation for, and Planning Tissue Engineering 212
9.5.2 Image Guided Design 215
9.5.3 Follow-up and Assessment 216
9.5.4 Medical Imaging Techniques for Craniofacial Bone Engineering 218
 9.5.4.1 Plain X-rays 218
 9.5.4.2 Computed Tomography (CT)-based Methods 218
 9.5.4.3 Magnetic Resonance Imaging 219
 9.5.4.4 Future Methods: High Frequency Ultrasound Imaging 220

9.6 Current Clinical Application and Future Direction in the Field of Craniofacial Bone Engineering 220
9.6.1 Current Treatments of Bone Defects 220
9.6.2 Modern Treatment of Bone Defects 221
9.6.3 Some Examples of Tissue Engineering Materials and Clinical Trials 223

9.7 Future Prospects 225
9.8 Economics and Marketing 225
9.9 Conclusions 226
References 226

Vinoy Thomas and Yogesh K. Vohra

10.1 Introduction 236
10.2 Approaches in Vascular Tissue Engineering 237
10.3 Nanostructured Scaffolds for Vascular Tissue Engineering 239
 10.3.1 Electrospinning for Producing ECM-like Fibers 241
10.3.2 Biomimetic Electrospun Vascular Scaffolds 244
10.4 Functionally-Graded Tubular Scaffolds 247
10.4.1 Graded-Tissue Design in Native Vessels 247
10.4.1.1 Biomimetic Multi-layered Tubular Scaffolds 249
10.4.1.2 Mechanical Properties of Trilayered Tubular Grafts 251
10.4.2 Biodegradation Characteristics of Trilayered Grafts 255
10.4.3 In Vitro Cell Interactions and In Vivo Performance 260
10.5 Summary and Future Outlook 266
Acknowledgements 267
List of Abbreviations Used 268
References 269

Ekaterina S. Lifirsu, Murugan Ramalingam, and Ziyad S. Haidar
11.1 Introduction 276
11.2 VEGF and Angiogenesis 276
11.3 VEGF Family 277
11.4 VEGF Therapy 279
11.5 VEGF Delivery Systems 280
11.6 Soft versus Hard Tissues 282
11.7 Concluding Remarks 287
References 290

Index 295
Preface

The last three decades have seen tremendous advances in the research and development of biomaterials suitable for engineering cells and tissues due to the advances in materials technology and cellular techniques. This book, *Integrated Biomaterials in Tissue Engineering*, attempts to convey the key aspects and recent development of biomaterials in the field of cell and tissue engineering. It consists of 11 chapters written by experts in biomaterials and tissue engineering fields around the world.

Chapter 1 deals with different protocols required for the fabrication of scaffolds for use in cell and tissue engineering. Chapter 2 discusses the recent developments and some of the key issues on using ceramic scaffolds for engineering cells and tissues. Chapter 3 focuses on the fabrication of porous scaffolds, particularly from ice particulate templates, suitable for tissue engineering applications. Chapter 4 describes the preparation and characterization of tissue engineering scaffolds by the emulsion freezing/freeze-drying technique. Chapter 5 deals with the interaction of electrospun nanofibers and stem cells and their effectiveness for use in tissue repair and regeneration. Chapter 6 focuses on the use of implant biomaterials and various aspects of how to improve the integration of the implants with host tissues in order to reduce implant failure. Chapter 7 provides an overview of fundamental developments in understanding human mesenchymal stem cell's differentiation and growth towards tissue repair and regeneration. Chapter 8 describes concepts and advances of endochondral bone tissue engineering in the context of biomaterials and stem cells, in particular endochondral ossification. Chapter 9 highlights the principle and technological advancement of craniofacial bone therapy. Chapter 10 reviews various aspects of small-diameter vascular graft regeneration with a special emphasis on tubular scaffolds and vascular cellular responses *in vitro* and *in vivo*. Chapter 11 discusses the role
and promise of vascular endothelial growth factor in soft and hard tissue engineering applications, particularly focusing on therapeutic angiogenesis.

All of these chapters make this book a self-contained source that updates the recent developments of biomaterials toward tissue engineering applications. The book is intended for a wide audience including students, researchers, professors, and industrial experts working in the fascinating field of biomaterials and tissue engineering.

Murugan Ramalingam
Ziyad Haidar
Seeram Ramakrishna
Hisatoshi Kobayashi
Youssef Haikel

January, 2012
List of Contributors

Mohamed A. Alkhodary is a lecturer of Prosthodontics and a Researcher at the Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Egypt. He is also a visiting graduate fellow at the Department of Aerospace and Mechanical Engineering, School of Engineering and Applied science, Princeton University, USA. In 2010, he obtained his PhD from Alexandria University in joint supervision with Princeton University where he designed, manufactured and characterized dental titanium implants with a laser micro-grooved surface and a tripeptide (RGD) coat that were ultimately used in human clinical trials.

Avinash H. Ambre received his bachelor’s degree in chemical engineering from University of Pune, India in 2002. He also received a Master’s degree in Polymer Engineering and Technology from Institute of Chemical Technology, Mumbai, India in 2006. At present, he is pursuing a doctoral degree in materials and nanotechnology at North Dakota State University, Fargo, United States. His doctoral research work is in the area of bone tissue engineering.

Sanne Both obtained her PhD from the University of Twente, the Netherlands in 2008. She is currently at the Department of Biomaterials in Radboud University Nijmegen Medical Centre where she researches endochondral bone formation using mesenchymal stem cells.

Guoping Chen is principal investigator and unit director of Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Japan. He received his PhD at Kyoto University in 1997 majoring in Biomaterials and did postdoctoral research until 2000. He has authored more than 180 publications with more than 2410 citations and an h-index of 28. He has documented 22 patents and given more
than 60 invited and plenary presentations. He has received several awards such as the Tsukuba Award of Chemical and Bio-Technology from Tsukuba Foundation for Chemical and Bio-Technology in 2005 and the Best Research and Collaboration Award from Science Academy of Tsukuba in 2010.

Rania M. Elbackly is currently a PhD student at the Laboratory of Regenerative Medicine, Department of Experimental Medicine, University of Genoa, Italy. She has been a member of the tissue engineering research team at the tissue engineering laboratories, Alexandria University, Egypt, since 1999 and gained her Masters in conservative dentistry in 2006.

Ahmad M. Eweida gained his Master degree of Surgery from the University of Alexandria, Egypt in 2008. He is an assistant lecturer of Head and Neck Surgery, Faculty of Medicine, University of Alexandria as well as a research fellow and a Doctorate degree student in the Department of Plastic, Reconstructive and Hand surgery, University of Erlangen-Nürnberg, Germany.

Muhammad Ahmed Gad received his PhD in Prosthodontics in 1981. He is now a full professor and Head of Prosthodontics Department, Faculty of Dentistry Alexandria University, Egypt.

Youssef Haikel is the Dean of Faculty of Dental Surgery, University of Strasbourg, France. He is also affiliated with the Beijing Faculty of Stomatolgy as a Honorary Professor. He is a co-founder of INSERM UMR977 and a nominated member of the National University Council, France. He also serves as a member of many national and international scientific and medical organizations, including INSERM, ADF, AFSSAPS and IDF. He has published more than 150 peer-reviewed journal articles and several book chapters.

Ziyad S Haidar is a Research Assistant Professor at the Departments of BioEngineering and Pharmaceutics & Pharmaceutical Chemistry, School of Medicine, University of Utah, Salt Lake City, Utah, USA. He is also an Adjunct Professor at the Inha University Hospital, College of Medicine, Incheon, South Korea and currently serving as the Scientific Director/Associate Deputy Director of the Utah-Inha Drug Delivery Systems and Advanced Therapeutics Research Center, a joint venture between the Universities of Utah (US) and Inha (KR), located in Songdo-Dong, Yonsu-Gu, Incheon,
South Korea. His current research interests are focused on patient-oriented application of bionanotechnology (craniofacial/orthopaedic structure restoration): Tissue Engineering, Drug/Protein Delivery and Biocompatibility of Polymeric/Osteoinductive Biomaterials, to name a few.

John Jansen is a full professor in biomaterials, experimental implantology, and experimental periodontology and acts as Head of Dentistry in the Department of Biomaterials, Radboud University Nijmegen Medical Centre, the Netherlands. He is also a professor for the Dental Implant and Osseointegration Research Chair at King Saud University, Riyadh, Saudi Arabia. In 2004, the Society for Biomaterials awarded him the Clemson Award for Outstanding Contributions to the literature, and he was elected as Fellow of Biomaterials Science and Engineering (FBSE). Jansen has contributed to over 500 publications, is the originator of six patents, and is an editorial board member of several international scientific journals.

Yasser M. Kadah received his PhD in Biomedical Engineering from the University of Minnesota in 1997. He is currently a professor of Biomedical Engineering at Cairo University. He has received several awards and recognitions including the Islamic Development Bank Merit Scholarship (1993–1996), the National Science Prize from the Academy of Scientific Research and Technology of Egypt in 2006, the Award for Best Professor in Biomedical Engineering from the Cairo University Faculty Club in 2007, and the 2008 Scientific Distinction Award from Cairo University. His research interests include medical imaging and in particular MRI and ultrasound imaging, and multi-dimensional signal processing for biomedical applications.

Dinesh Katti received his MS degree in geotechnical engineering from the Indian Institute of Technology, Bombay, India and PhD in civil engineering from University of Arizona, Tucson in 1991. He is now a full professor at North Dakota State University in the Department of Civil Engineering where he served as Chairman from 2004 to 2009. Prof. Katti’s research expertise is in the area of multiscale modeling of materials such as swelling clays, nacre, bone, polymer clay nanocomposites, as well as bone tissue engineering and oil shales. He has authored or coauthored more than 140 papers, 3 books and 5 book chapters. He also holds 3 provisional
Kalpana Katti is a University Distinguished Professor at North Dakota State University in the Department of Civil Engineering. At NDSU she has established a state-of-the-art materials characterization laboratory that houses advanced nanomechanical and infrared spectroscopic equipment, as well as a Tissue Engineering Laboratory in the Civil Engineering Department. Her primary area of research is in tissue engineering, and biomimetics. Her research has won several awards from professional societies such as Microscopy Society of America and Federation of Societies for Coatings Technology, and she has published over 125 publications in journals, conference proceedings and book chapters in the field. She has received the most cited award from the journal Colloids and Interfaces for the 2004–2007 years.

Naoki Kawazoe has been a MANA scientist at Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science in Japan since 2006. He received his PhD from the Department of Material Chemistry at Kyoto University in March 1999. In April 2000 he moved to the Nara Institute of Science and Technology as a teaching associate and stayed there for two and half years. He worked as a postdoctoral researcher at National Institute of Advanced Industrial Science and Technology and at Toray Industries.

Hisatoshi Kobayashi is a group leader of WPI Research center MANA, National Institute for Materials Science, Tsukuba Japan. Currently, he is President of the International Association of Advanced Materials(IAAM). He has published more than 150 publications, books, and patents in the field of biomaterial science and technology. His current research interest is cell-nano-materials interaction and the design and development of highly functionalized biodegradable scaffolds for tissue engineering and nano-composites for medical devices.

Susan Liao obtained her PhD in Biomaterials from Department of Materials Science and Engineering, Tsinghua University, Beijing, China. After that, she moved to Hokkaido University as JSPS Fellow and National University of Singapore as LKY Fellow. Now she is working at the School of Materials Science and Engineering,
Nanyang Technological University, Singapore. Her research interests focus on tissue engineering, biomimetic nanomaterials, biomineralization and cell-biomimetic matrix reactions. She has more than 120 publications including original research papers, invited review paper/book chapters, conferences and patents.

Mona K. Marei is a Professor of Prosthetic Dentistry and Founder and the Head of Tissue Engineering Science and Technology Laboratories at the Alexandria University, Egypt. In Dec. 2011 she was elected to be the President of the African Materials Research Society. She holds or has held numerous positions in African and emerging countries' societies, organizations and programs and is an invited plenary speaker at many international conferences. Prof. Mona K. Marei currently serves on the executive editorial board of *Tissue Engineering Journals* Parts A, B and C as well as being and associate editor of the *Annals of Biomedical Engineering*.

Ekaterina S. Lifirsu, is a research assistant at Utah-Inha Drug Delivery System Advanced Therapeutics Research, Incheon, South Korea working with growth factors delivery systems with a focus on VEGF and PDGF.

Antonio Peramo is Research Faculty at the Department of Oral and Maxillofacial Surgery of the University of Michigan. Dr. Peramo completed his doctorate in applied physics at the University of South Florida working in polymer physics and glycosaminoglycan biology applied to cancer.

Seeram Ramakrishna is the Director of HEM Labs at the National University of Singapore. He pioneered translucent biomaterials and devices, which are now manufactured and marketed globally by Biomers International. He specialises in design, processing and validation of biomimetic scaffolds for regeneration of various tissues. He is acknowledged as number one in the field of materials of electrospinning. He has authored five books and more than four hundred international journal papers, which have attracted more than 14,000 citations with H-index of 58 and G-index of 102.

Murugan Ramalingam is an Associate Professor of Biomaterials and Tissue Engineering at the Institut National de la Santé et de la Recherche Médicale U977, Faculté de Chirurgie Dentaire, Université de Strasbourg (UdS), France. Concurrently he holds an
Adjunct Associate Professorship at the Tohoku University (Japan). He received his PhD (Biomaterials) from the University of Madras. He has also undergone training in "Ethical and Policy issues on Stem Cells" from the Harvard University, and in "Operations Management" from the University of Illinois-Chicago. His current research interests are focused on the development of multiphase biomaterials, through conventional to nanotechnology to biomimetic approaches, cell patterning, stem cell differentiation and tissue engineering. He has authored more than 125 publications including peer-reviewed journal papers, conference proceedings book chapters, authored books, edited books, and patents relevant to biomaterials and tissue engineering. He is Editor-in-Chief of Journal of Bionanoscience and Journal of Biomaterials and Tissue Engineering. He is also a recipient of CSIR fellowship (India), SMF fellowship (Singapore), NRC Fellowship (USA), National Professeur des Universités (France) and Fellow of Royal Society of Chemistry (UK).

Seyed-Iman Roohani-Esfahani obtained his MSc in 2006 in Materials Science from Isfahan University of Technology, Iran. At present, he is a PhD student/researcher at Biomaterials and Tissue Engineering Unit, University of Sydney, Australia. He has published 14 papers in international refereed journals, one book chapter, and one patent.

Azadeh Seidi is a biochemist at Okinawa Institute of Science and Technology, Japan. Since earning her PhD from Tokyo Institute of Technology in 2007, she has focused her activities on biomedical researches on biochemical and engineering levels.

Naznin Sultana is currently a Senior Lecturer at Universiti Teknologi Malaysia, Johor Bahru, Malaysia. She was awarded her PhD from the University of Hong Kong for research that focused on the fabrication and characterization of bone tissue engineering scaffolds using natural biodegradable polymers and their nanocomposites. She was the winner of the Best Student Paper Award at the 5th Asian-Australian Conference on Composite Materials in 2006.

Vinoy Thomas is a Research Scientist at the Center for Nanoscale Materials and Biointegration at the University of Alabama at Birmingham (UAB). His primary focus is research and development
of nanobiomaterials/scaffolds for tissue engineering and therapeutic drug/protein delivery applications. Dr. Thomas has co-authored more than 50 publications in the areas of polymers, biomaterials, tissue engineering and nanoscience.

Yogesh Vohra is a Professor University Scholar in the Department of Physics and an Associate Dean for Interdisciplinary and Creative Innovation in the College of Arts and Sciences at the University of Alabama at Birmingham, United States. He also directs the UAB Center for Nanoscale Materials and Biointegration. Dr. Vohra has co-authored more than 270 publications and has been awarded six US patents.

Naglaa Abdel Wahed received her PhD degree from the Faculty of Oral and Dental Medicine, Cairo University in 2003. Her field of specialty is digital radiography and its applications in oral radiology and her present post is Associate Professor at the Faculty of Dentistry, October University for Modern Science and Arts in Cairo, Egypt.

Min Wang is currently a professor at The University of Hong Kong. He earned his PhD in materials science and engineering at the University of London, UK. He has numerous publications in peer-reviewed journals and conference proceedings, as well as chapters on biomaterials and tissue engineering in more than 10 books. He is a fellow of FIMMM, FIMechE, FHKIE, FBSE and AIMBE, and is an Editor of Materials Letters.

Fang Yang gained her MSc in Materials Science and Engineering from Beihang University, China. She received her PhD from the National University of Singapore and is now assistant professor in the Department of Biomaterials of Radboud University Nijmegen Medical Centre, the Netherlands. Her research interests cover biomaterials for dental tissue regeneration, electrospinning technique and adult stem cells.

Samer H. Zaky is currently a postdoctoral scholar at the Center for Craniofacial Regeneration, University of Pittsburgh, USA. Samer earned his PhD in Tissue Engineering and Regenerative Medicine in 2009 the University of Genoa, Italy. The focus of his research is optimization of culture conditions for bone marrow-derived osteoprogenitor/stem cells for proliferation and differentiation, in addition to characterization of osteoconductive scaffolds to regenerate a
critical-size bone defect together with the reestablishment of the stem cell niche.

Hala Zreiqat is a National Health and Medical Research Fellow and Head of the Tissue Engineering and Biomaterials Research Unit in the Faculty of Engineering, University of Sydney. She specializes in developing engineered novel new biomaterials and scaffolds for skeletal tissue applications, and in investigating their effect on *in vitro* and *in vivo* osteogenesis. She is the president of the Australian and New Zealand Orthopaedic Research Society (2010–2012).
Protocols for Biomaterial Scaffold Fabrication

Azadeh Seidi¹ and Murugan Ramalingam²³

¹Technology Center, Okinawa Institute of Science and Technology Promotion Corporation, Onna-son, Okinawa, Japan
²WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
³Institut National de la Santé et de la Recherche Médicale Faculty of Medicine, University of Strasbourg, Strasbourg, France

Abstract
Scaffolds play a critical role in tissue engineering (TE), in particular scaffold-based TE, and they are designed to be biocompatible, with a suitable degree of porosity and surface chemistry to allow attachment, migration, proliferation, differentiation, and infiltration of the cells. Other important characteristics of scaffolds include having adequate mechanical properties, controlled biodegradability, and the ability to mimic in part the structure and biological function of the extracellular matrix. Keeping these key points in mind, this chapter focuses on the protocols for the preparation and characterization of conventional and novel scaffold biomaterials for the application of TE utilizing several synthetic and natural polymers.

Keywords: Scaffold, solvent casting, salt leaching, gas foaming, phase separation, electrospinning, self-assembly, rapid prototyping, membrane lamination, freeze drying

1.1 Introduction
Millions of people are suffering from tissue or organ failure and are waiting for some kind of tissue or organ transplantation.
Traditionally, tissue loss resulting from traumatic or nontraumatic destruction has been treated by methods such as autografting and allografting [1]. Although autogenic tissue transplantation is clinically considered as a gold standard, it has the limitation of donor site shortage. On the other hand, allogenic transplantations are more prone to immunogenicity as well as inducing other transmissible diseases. Because of these clinical limitations, the concept of tissue engineering was introduced nearly two decades ago [2], considerably saving numerous lives and improving the quality of life of patients. Tissue engineering involves the use of synthetic functional components (scaffolding material), culturing them with appropriate cells that are harvested from patient or donor, and then reimplanting the engineered constructs in the patient’s body where the tissue regeneration is required [3, 4]. There are four key factors to be considered for the success of any tissue development: (i) the cells that create tissue, (ii) the scaffold that gives structural support to cells, (iii) the bioactive signaling molecules that regulate the cellular processes, and (iv) cell-matrix (scaffold) interactions that direct the tissue development and remodeling. Therefore, to achieve the goal of generating functional tissues \textit{in vitro}, the specific cells, in particular anchorage dependent cells, should be combined with the right scaffolding material under appropriate conditions, meaning that the cells must be subjected to conditions highly mimicking the native microenvironments that lead to tissue formation (see Figure 1.1).

\textbf{Figure 1.1} Key factors constituting the concept of tissue engineering.
Significant attention has been paid to scaffolds for tissue engineering since they provide a biomimetic environment for cellular growth and tissue in-growth. Those scaffolds may be used in vitro or in vivo as supportive prosthetic materials and cell adhesive substratum to regenerate tissue. In addition to providing a physical support, scaffolds can be modified with bioactive molecules to have an active role in tissue regeneration. The interaction between the scaffolds and cells can be improved by functionalizing the surface of the scaffold to promote cell attachment [5]. Furthermore, signaling molecules such as growth factors can be incorporated in the scaffolds to enhance cell growth and morphogenesis, resulting in the regeneration of functionally organized tissues [6].

The critical structural and chemical requirements of scaffolding materials include: biocompatibility to the host tissue, having a three-dimensional architecture with a suitable degree of porosity and mechanical strength, possibility of surface modification with bioactive molecules, and controlled biodegradability. Such a scaffold allows maximal cellular attachment, growth, migration, differentiation and infiltration of cells, and facilitates proper transfer of nutrients and oxygen, while maintaining adequate mechanical properties. Safe implantation in the patient’s body without provoking immune response, and controlled biodegradability of those scaffolding materials are other important factors, which determine the successful integration of the tissue construct after implantation.

Scaffolds for tissue engineering have been developed through a variety of techniques, and have been fabricated from natural and synthetic materials. While scaffolds from naturally derived materials provide various biological functions, scaffolds from synthetic materials offer certain advantages due to their easy processability, controlled degradation, and susceptibility to modification [7].

This chapter focuses on providing an overview of synthetic and naturally derived scaffolding materials for tissue engineering, as well as various fabrication techniques including solvent casting, salt-leaching, gas foaming, phase separation, electrospinning, self assembly, rapid prototyping, membrane lamination, and freeze drying. The chapter concludes with future challenges and perspectives in the fabrication of novel scaffolds for successful engineering of tissue constructs.
1.2 Scaffolding Materials

Tissue engineering scaffolds have been fabricated using a variety of natural and synthetic materials, which include polymers, ceramics, and their composites. Owing to their high mechanical properties, ceramics and polymer-ceramic composites are mainly utilized to reconstruct hard tissues. Polymers on the other hand, are used for the reconstruction of soft tissues. Polymers provide unique functional properties and design flexibilities, which make them attractive candidates for fabricating tissue engineering scaffolds. Due to their wide range of application, in this section polymers applied for tissue engineering scaffolds are discussed in more details. Polymers used in scaffold engineering can be of natural and synthetic origins (Table 1.1). Novel hybrid polymeric scaffolds have also recently been developed by combining natural and synthetic polymers to mimic the extracellular matrix of a natural tissue.

1.2.1 Naturally Derived Materials

The most widely used natural polymers to fabricate tissue engineering scaffolds include fibrin, collagen, gelatin, chitosan, alginate, and hyaluronic acid [8-13]. Fibrin is a non-globular fibrous protein, and plays a critical role in blood clotting by polymerizing into a mesh over a wound site. It forms a tight complex with thrombin and has been used in mixtures with thrombin to produce an in situ forming gel [8]. Type I collagen, which is the most abundant collagen of the human body, is found in tendons, skin, artery walls, and fibrocartilage, and can be extracted from animal tissues. Collagen and gelatin, which is a denatured form of collagen, can form porous gel matrices, are also used to functionalize the surface of synthetic polymers to enable cellular attachment [9]. Chitosan is a cationic polysaccharide with hydrophilic properties, which is used as a scaffolding material to support cell adhesion and differentiation, and owing to its osteoconductive nature, it is particularly applied for bone tissue engineering [10, 11]. Alginate is an anionic polysaccharide, which is widely derived from cell walls of brown algae. In the presence of divalent cations such as Ca\(^{2+}\) it is capable of forming gels with a high swelling degree [12]. Hyaluronic acid is an anionic nonsulfated glycosaminoglycan, which is mainly found in connective, epithelial, and neural tissues. It forms crosslinkable hydrogels with various modifications and is highly cell repellent [13].
<table>
<thead>
<tr>
<th>Material</th>
<th>Origin</th>
<th>Structure</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrin</td>
<td>Natural</td>
<td>Mesh of polymerized fibrillar proteins</td>
<td>• Cell adhesive
• osteoconductive
• Tunable mechanical properties</td>
</tr>
<tr>
<td>Collagen type I</td>
<td>Natural</td>
<td>Elongated protein made of tough fibril bundles</td>
<td>• Non-immunogenic
• Cell adhesive
• Chemotactic
• Low mechanical properties</td>
</tr>
<tr>
<td>Chitosan</td>
<td>Natural</td>
<td>Cationic polysaccharide made of D-glucosamine and N-acetyl-D-glucosamine</td>
<td>• Hemostatic
• Good osteoconductivity and mechanical properties when combined with hydroxyapatite</td>
</tr>
<tr>
<td>Alginate</td>
<td>Natural</td>
<td>Anionic polysaccharide made of blocks of β-D-mannuronate and α-L-guluronate</td>
<td>• Hydrophilic
• Low mechanical properties</td>
</tr>
<tr>
<td>Hyaluronic acid</td>
<td>Natural</td>
<td>Anionic polymer of non-sulfated glycosaminoglycans</td>
<td>• Minimal immunogenicity
• Cell repellant
• Low mechanical properties
• ECM mimicking viscoelasticity</td>
</tr>
</tbody>
</table>

(Continued)
Table 1.1 (cont.) The commonly used polymers for the fabrication tissue engineering scaffolds.

<table>
<thead>
<tr>
<th>Material</th>
<th>Origin</th>
<th>Structure</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly (α-hydroxyesters)</td>
<td>Synthetic</td>
<td>Aliphatic polyester by polycondensation or ring-opening polymerization</td>
<td>• Biodegradable</td>
</tr>
<tr>
<td>(e.g. PLA, PGA)</td>
<td></td>
<td></td>
<td>• Tunable mechanical properties</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Degradation into acidic compounds</td>
</tr>
<tr>
<td>Poly (ε-caprolactone)</td>
<td>Synthetic</td>
<td>Aliphatic polyester prepared by ring opening polymerization of ε-caprolactone</td>
<td>• Biodegradable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Slow degrading</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Degradation products incorporated in the tricarboxylic acid cycle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• High mechanical properties</td>
</tr>
<tr>
<td>Poly (propylene fumarates)</td>
<td>Synthetic</td>
<td>Unsaturated polyester consisting of alternating propylene glycol and fumaric acids</td>
<td>• Degradable into fumaric acid and propylene glycol</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Satisfactory biological results</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Tunabale mechanical properties</td>
</tr>
</tbody>
</table>