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Transition metals open up new opportunities for synthesis, because their means of bonding and their reaction
mechanisms differ from those of the elements of the s and p blocks. In the last two decades the subject has
mushroomed – established reactions are seeing both technical improvements and increasing numbers of
applications, and new reactions are being developed. 

Organic Synthesis Using Transition Metals, Second Edition considers the ways in which transition metals, as
catalysts and reagents, can be used in organic synthesis. It concentrates on the bond-forming reactions that set
transition metal chemistry apart from "classical" organic chemistry.  

For this second edition the text has been extensively revised and expanded to reflect the significant improvements
and advances in the field since the first edition, as well as the large number of new transition metal-catalysed
processes that have come to prominence in the last 10 years – for example the extraordinary progress in coupling
reactions using “designer” ligands, catalysis using gold complexes, new opportunities arising from metathesis
chemistry, and C-H activation. Each chapter is extensively referenced and provides a convenient point of entry to
the research literature.

Organic Synthesis Using Transition Metals, Second Edition will find a place on the bookshelves of advanced
undergraduates and postgraduates working in organic synthesis, catalysis, medicinal chemistry and drug discovery.
It is also be useful for practising researchers who want to refresh and enhance their knowledge of the field. 
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Preface

The gradual realization that complexes of transition metals have a place in organic synthesis has caused a
quiet revolution. Organic chemists have used certain transition metal substances, such as palladium on carbon
and OsO4, for many years. These kinds of reactions are not the subject of this book, as they appear in every
standard text. The aim of this book is to provide an outline of the principle reactions of transition metal
complexes that are used in organic synthesis, both catalytic and stoichiometric, with examples to show how
they can be applied, and sufficient mechanistic information to allow them to be understood. The examples
of syntheses are intended to place them in the context of the entire synthesis where space permits, so a
great deal of non-transition metal chemistry can also be found in these pages. The molecular targets include
natural products, novel structures and molecules of industrial, especially pharmaceutical, interest. The scale
of the reaction for some of these molecules is indicated to show that these reactions are of more than just
academic interest.

Tremendous progress has been made since the first edition of this work. The introduction of new ligands
(“designer ligands”) has hugely expanded the scope of coupling reactions and is starting to impact other
areas, while the introduction of NHC ligands has opened new possibilities in reactions of many types, from
coupling to metathesis. Ten years ago, this field of chemistry was dominated by palladium; now other metals,
once neglected, have become firmly established. In particular, the organic chemistry of gold has become a
major area. Metathesis chemistry has gone from strength to strength. An old but also once neglected area,
the activation of C-H bonds by transition metals, has achieved huge prominence and has earned itself its own
chapter. Two more general trends have emerged. One is that the emphasis on catalytic reactions, rather than
stoichiometric reactions has increased. While it is undeniable that catalytic reactions are the ones that will be
used in industry, the stoichiometric chemistry of transition metal complexes can still provide transformations
that are both elegant and interesting and, hence, retain their place. The other is the much greater acceptance of
transition metal mediated reactions in the mainstream of organic synthesis. In the first edition, most syntheses
might feature a single such transformation; it is now increasingly common for syntheses to include multiple,
different transition metal mediated reactions. The different aspects of such syntheses can be found in various
chapters of this text.

Roderick Bates
January 2012
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1
Introduction

At irregular intervals, it is announced that organic synthesis is dead, that it is a completed science, that
all possible molecules can be made by the application of existing methodology, and that there are no new
reactions or methods to discover – everything worth doing has been done. And yet new molecular structures
come up to challenge the imagination, most often from nature, and new challenges arise from the demands of
society and industry, usually to be more selective, to be more efficient and to be more green. The tremendous
progress that has been made in the last few decades, including the hectic period since the first edition of this
work appeared, is more than ample to prove the prophecies of doom to be wrong. The art and science of
organic synthesis continues to make progress as the new challenges are met. While much of the limelight
has been taken up by the expansion of the once small and neglected field of asymmetric organocatalysis,
huge progress has also been made in the use of transition metals. The academic and practical significance
of this area can be seen by a glance at the list of Nobel prizes for chemistry (even if not all of the laureates
had intended to contribute to organic synthesis): Sabatier, shared with Grignard (1912), Ziegler1 and Natta2

(1963), Wilkinson3 and Fischer4 (1973), Sharpless,5 Noyori6 and Knowles7 (2001), Grubbs, Schrock8 and
Chauvin9 (2005) and, most recently, Heck, Negishi10 and Suzuki11 (2010).

Advances in the area have not been uniform. With the challenge of greenness, atom economy and sus-
tainability, the most progress has been made in the area of catalysis.12 Progress in the use of stoichiometric
transition-metal reagents and with transition-metal complex intermediates has lagged, while progress in catal-
ysis has surged ahead. Four areas of transition-metal chemistry have been at the forefront of recent progress.
One is the tremendous advances and applications made in the area of alkene metathesis chemistry and its
spin-off fields. What was once a mainstay of the petrochemical industry, but a curiosity to synthetic organic
chemistry has become a standard method for carbon–carbon bond formation. New metathesis catalysts con-
tinue to open up new possibilities. The second, not unrelated, area is the development of new ligands. At one
time, except for asymmetric catalysis, triphenylphosphine was the option as a ligand, with a small number of
variants available. Driven by the demand for greater efficiency and wider substrate scope, a myriad of complex
ligands is now available. While their initial impact was upon coupling reactions, their influence is spreading to
other areas. The emergence of the N-heterocyclic carbene ligands has provided a second stimulus in this area
and opened up further opportunities. In addition to more ligands, a greater number of the transition metals
are finding applications in organic synthesis. While palladium probably remains the most widely used metal,
its “market share” has shrunk, with the increasing use other metals. Most notable is the glittering rise of gold
and gold catalysis. The final area had been present in the literature for decades but only took off recently.

Organic Synthesis Using Transition Metals, Second Edition. Roderick Bates.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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2 Organic Synthesis Using Transition Metals

This is the area of C–H activation, based upon the realization that C–H bonds are not passive spectators, but,
with the ability of transition metals to insert into them under mild conditions, are potent functional groups.

This is an area of science that is very much alive and moving forwards. Transition-metal chemistry is not
only used for academic purposes, but also in the fine chemicals industry. The reader will find references to
these real-life applications in the appropriate chapters.

1.1 The Basics

Why? What is special about the transition metals and the chemistry that we can do using them? What makes
metals such as palladium, iron and nickel different from metals such as sodium, magnesium and lithium?
The answer lies in the availability of d-orbitals, filled or empty, that have energy suitable for interaction with
a wide variety of functional groups of organic compounds. In an important example, transition metals can
interact with alkenes. In ordinary organic chemistry, simple alkenes are relatively unreactive, being ignored
by almost all bases and nucleophiles, requiring a reactive radical or a strong electrophile or oxidizing agent,
such as bromine, ozone or osmium tetroxide (watch out – osmium is a transition metal!). But they coordinate
to transition metals and their reactivity changes. An important molecule that has almost no “ordinary” organic
chemistry is CO. It is ignored by metal ions such as Na+ and Mg2+, but forms complexes with almost all
transition metals and is ubiquitous in transition-metal chemistry. The reactions of CO, catalysed by transition
metals, has made it a fundamental C1 building block for both complex molecules and bulk chemicals.

Organometallic chemistry begins with the work of Frankland in the 1840s who made the first organozinc
compounds. Grignard’s work with organomagnesium compounds rapidly became part of the standard reper-
toire of organic chemists, and remains there today. The pathway for transition metals was not so smooth
and took much longer. Indeed, it followed two tracks. One track was in industry, where the understandable
objective is a profitable process even if there is no understanding of what is happening in the mechanistic
“black box”. This track produced alkene metathesis and hydroformylation. The other track was in academia,
restrained by the need to understand. Alongside the isolation of then unexplainable complexes, such as an
ethylene complex of platinum by Danish apothecary Zeise,13 one of the starting points is with Ludwig Mond
in the late nineteenth century.14 He serendipitously discovered Ni(CO)4 – an amazing compound in that it is
a gas under normal conditions, yet is made from so-solid metallic nickel. In terms of using transition metals
for synthetic chemistry, a great advance was by Sabatier at the end of the nineteenth century who showed
that finely divided metals such as nickel, palladium or platinum could catalyse the hydrogenation of alkenes.
This discovery rapidly led to the manufacture of margarine, for instance. A real turning point was with the
determination of the structure of ferrocene by Wilkinson – many decades after Mond. This gave chemists a
stable organometallic compound to study and understand. Aided by advances in instrumentation, it was in
this period that chemists were able to study organotransition-metal complexes thoroughly and understand the
ground rules of their reactivity.

Thus, the use of transition metals enables the organic chemist to do reactions that are difficult or, more often,
impossible otherwise, opening up new synthetic pathways and selectivities. Transition-metal organometallics
do this through a different set of rules. To understand what is done and what can be done, it is important to
be familiar with these rules.

1.2 The Basic Structural Types

While some of the structures found look similar to those formed by s-block and p-block metals, many do not.
Many organometallic complexes are classified by the number of contiguous atoms, usually carbon atoms, but
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M R M M M M R

O

η1-alkyl η1-vinyl η1-alkynyl η1-aryl η1-acyl

M M •M

carbene carbyne vinylidene

Figure 1.1 η1-Complexes.

M M

Figure 1.2 η2-Alkene complex.

not always, bound to the metal. This number is known as the hapticity or hapto number. As this is symbolized
as a superscript with the Greek letter “eta”, �, it is sometimes called the eta number.

�1-Complexes contain a metal–carbon single bond (Figure 1.1). The organic group may be alkyl, vinyl,
alkynyl, aryl or acyl. With the exception of the acyl complexes, there are analogous compounds of more
familiar metals, such as magnesium and zinc. It is also possible to have complexes with metal–carbon double
and triple bonds; these are known as carbenes and carbines. Cumulenes are also known, such as in vinylidene
complexes.

�2-Complexes do not have analogues amongst the main group metals. They are formed by the interaction
of the metal with the �-orbitals of alkenes and alkynes (Figure 1.2). They may also be drawn as their
metallacyclopropane resonance structures, although this representation is less frequently used. The first such
complex, isolated in the early nineteenth century, is the platinum-ethylene complex known as Ziese’s salt
(Figure 1.3).15

The reason for the ability of transition metals to bind to alkenes (and alkynes) lies in the fact that electrons
can be donated in both directions, resulting in a synergistic effect (Figure 1.4). The �*-orbital of the alkene
can accept electrons from filled d-orbitals on the metal, while the filled �-orbital of the alkene can donate
back to empty metal orbitals. This is known as the Chatt—Dewar—Duncanson model.16

�3-Allyl complexes, also known as �-allyl complexes, have three atoms bonded to the metal (Figure 1.5).
They are frequently in equilibrium with the corresponding �1-allyl complex.

Pt

Cl

Cl

Cl

C(2)

CI(1)

CI(3)H(3)

P1

H(4)

H(2)

H(1)

C(1)

CI(2)

Figure 1.3 Zeise’s salt. Reprinted with permission from Love, R. A.; Koetzle, T. F. et al. Inorg. Chem. 1975, 14,
2653. c© 1975 American Chemical Society.
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4 Organic Synthesis Using Transition Metals

M
M

electron donation from 
filled metal d-orbital to 
alkene π* orbital

electron donation from 
alkene π orbital metal 
empty metal orbital

Figure 1.4 The Chatt–Dewar–Duncanson model.

M
M

Figure 1.5 The η3–η1 equilibrium in allyl complexes.

η4-diene η5-dienyl η5-cyclopentadienyl (Cp) η6-arene
MMM M

Fe

ferrocene, Cp2Fe

Figure 1.6 η4, η5 and η6-complexes.

�4-diene, �5-dienyl and �6-arene complexes have four, five or six atoms bonded to the metal (Figure 1.6).
The chemistry of these complexes is explored in Chapter 10. Amongst the �5-dienyl complexes, the best
known is the �5-cyclopentadienyl ligand. Such is its ubiquity, that it has its own symbol: Cp. The best known
of the cyclopentadienyl compounds is ferrocene (Cp2Fe) with two Cp rings, the original sandwich compound.
The permethyl derivative, pentamethylcyclopentadienyl, is known as Cp*. The most important class of �6-
complexes by far is the �6-arene complexes in which a metal is coordinated to the face of a benzene derivative
through the �-system. �7-Complexes are unusual in synthesis: an example may be found in Chapter 11. In
all of these complexes, the carbon atoms are coplanar, with the metal occupying one face.

A ligand of special importance is carbon monoxide. The reactivity of CO is a key difference between
transition-metal chemistry and classical organic chemistry. Several of the transition metals, such as Mond’s
nickel, can even form complexes with only CO. The HOMO of CO is its �*-orbital, concentrated on the
carbon atom, hence CO is most commonly bonded to the metal via its carbon atom. Backbonding then occurs
with electron donation from metal d-orbitals into the LUMO of carbon monoxide which is the �*-orbital
(Figure 1.7). This is the case for the simple metal carbonyls including Ni(CO)4, Fe(CO)5 and Cr(CO)6.

C OMM

electron donation from 
filled metal d-orbital to 
CO π* orbital

electron donation from 
CO σ* orbital metal 
empty metal orbital

C O

C
Co

C
Co

O

O

OC CO
OC

OC

CO

CO

Figure 1.7 Carbonyl complexes.
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Carbon monoxide may also be a bridging ligand between two metal atoms. Some of the CO ligands in the
complexes Fe2(CO)9, Co2(CO)8 and Fe3(CO)12 can behave in this way.

Heteroatoms may also be ligands. These include oxygen, nitrogen, sulfur and halogen atoms. Some of
these, such as oxygen, may form double bonds to the metal, as in OsO4. A variety of nitrogen species may
complex to the metal including the rather special case of the nitrosyl ligand, NO+, which can replace CO.

1.2.1 Phosphines

The most widely employed heteroatom ligands are the phosphines. Although they are largely spectators and
do not participate directly in bond formation (and when they do, the result is often highly undesirable), they
are not innocent bystanders. The size and electronic nature of the three groups attached to phosphorus have
a profound effect on the course of the reaction and may make the difference between success and failure. An
example is with the Grubbs catalyst (Chapter 8). The bis(triphenylphosphine) complex is of little use. The
bis(tricyclohexylphosphine) complex is Nobel-prize winning.

Triphenylphosphine 1.1 has always been the most commonly used ligand, due to cost, availability, ease of
handling and habit. While triphenylphosphine 1.1 remains commonly used, it no longer has its old ubiquity.
An entire field of research, which might be termed “ligand engineering”, has grown up, centred on the design
of new ligands with tailor-made electronic and steric properties (Figure 1.8). In a great many of the early
applications of transition metals to organic synthesis, triphenylphosphine was used almost exclusively. An
early exception is the use of a modified version, tri-o-tolylphosphine 1.2, in Heck reactions.17 This was done
to suppress quaternization of the phosphine by adding steric hindrance, though its success may actually be due
to formation of Herrmann’s catalyst in situ.18 Addition of one or more sulfonate groups to the phenyl rings
gives water-soluble analogues, such as 1.3. Triphenylphosphine has also been modified by changing the donor
atom. Both triphenylarsine 1.4 and triphenylstibine 1.5 have been employed. Changing the phenyl groups
to furyl groups giving the more electron-rich tri-(2-furyl)phosphine 1.6 can also be beneficial. Alternatively,
adding fluorine atoms gives an electron-poor ligand in tris(pentafluorophenyl)phosphine 1.7. One or more of

P
Ph

Ph

Ph

PAs
Ph

Ph

Ph
Sb

Ph

Ph

Ph

P
n-Bu

n-Bu

n-Bu
P

t-Bu

t-Bu

t-Bu
P

t-Bu

Me

t-Bu

P

P O

O

O

Me Me

Me

P
C6F5

C6F5

C6F5

P SO3
-  Na+

P
t-But-Bu

Me

Me
Me

Pt-Bu2

1.1 1.2 1.3

1.4 1.5 1.6 1.7 1.8

1.9 1.10 1.11 1.12 1.13

Figure 1.8 Phosphine ligands.
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the aryl groups attached to phosphorus may be changed to alkyl groups. Tri(cyclohexyl)phosphine 1.8 has
found considerable application from being both more electron rich and more bulky than its aromatic analogue,
triphenylphosphine. The related tricyclopentylphosphine is also known. Acyclic alkyl groups have also been
used. Tri-n-butylphosphine 1.9 is readily available and used in organic procedures, such as Staudinger
reactions and Wittig reactions, but is relatively uncommon as a ligand. In contrast, tri-t-butylphosphine 1.10,
has proved to be valuable. Its bulk promotes ligand dissociation and, hence, catalytic reactivity. As you
can have too much of a good thing, the less-hindered di(t-butyl)methylphosphine 1.11 is also available. The
neopentyl group and binaphthyl groups has also been used to replace one of the t-butyl groups. The binaphthyl
modification 1.13 is known as Trixiephos. A disadvantage of using alkyl phosphines is their air sensitivity.
All phosphines can be oxidized to the corresponding phosphine oxides, but this tendency is more pronounced
with alkyl phosphines. A solution is to store and handle them as a salt, such as the tetrafluoroborate salt.19

If a small amount of a base is added to the reaction mixture, and many reaction mixtures already contain a
base, then the phosphine is liberated in situ.

The focus of development of more sophisticated ligands has mainly been concerned with replacing one of
the groups on phosphorus with a biphenyl group (Figure 1.9). Johnphos 1.14 and its dicyclohexyl analogue
1.15 contain the unadorned biphenyl moiety. Addition of ortho-substituents to the second phenyl group
changes the steric and electronic properties, as in Sphos 1.16 and the closely related Ruphos 1.17, both with
alkoxy substituents. Mephos 1.18 and Xphos 1.19 have different alkyl substituents. Davephos 1.20 and its
t-butyl analogue 1.21 possess a potentially chelating amino group. More highly substituted ligands, such
as Brettphos 1.22 and Jackiephos 1.23, have also been developed. Qphos 1.24, with a highly substituted
ferrocene moiety, can also be considered in this class of ligands.

The popularity of the biphenyl moiety in many ligands is not a mere result of adding bulk. The second aryl
ring, twisted at an angle to its partner, may affect the metal directly by coordination, as in the cationic gold
complex (Figure 1.10).20 The X-ray structure (anionic counter ion not shown) clearly shows the proximity of
the second ring to the metal atom.

Ph
Fe

Pt-Bu2

PhPh
Ph Ph

i-Pr
PAr 2

i -Pr

OMe

MeO

1.22 Brettphos: Ar = Cy
1.23 Jackiephos: Ar = (m-CF3)2C6H3

Oi -Pr
PCy2

i -PrO

i-Pr
PCy2

i -Pr

OMe
PCy2

MeO
1.17 Ruphos

1.19 Xphos

1.16 Sphos

PCy2

1.15 Cy-Johnphos

PCy2

1.18 Mephos

H3C

PCy2

1.20 Davephos

Me2N

Pt-Bu2

1.21 t-Bu Davephos

Me2N

Pt-Bu2

1.14 Johnphos

1.24 Qphos

Figure 1.9 Phosphine ligands with a biphenyl motif.
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P Au
t-Bu

t-Bu

N C Me

C4 C3

C5
C6 C1

C2

C7
C12 C11

C10

C9C8

P1

Au1 N1 C1A C2A

2b

1.25

Figure 1.10 A gold(I) biphenylphosphine complex. Reprinted with permission from Herrero-Gómez, E.; Nieto-
Oberhuber, C. et al. Angew. Chem., Int. Ed. 2006, 45, 5455. c© 2006 Wiley-VCH Verlag GmbH & Co. KGaA.

Bidentate phosphines have been used for many years (Figure 1.11). They provide the complex with greater
stability because, for complete ligand dissociation, two metal–phosphine bonds must be broken, rather than
one. Simple bidentate ligands consist of two diphenylphosphino units linked by an alkyl chain or group
(1.26–1.30). More complex ligands use more elaborate linkers. Bis(diphenylphosphino)ferrocene, with a
ferrocenyl linker, has proved to be a useful ligand. Most other linkers are based upon aromatic motifs. BINAP
1.33, most often employed as a chiral ligand for asymmetric catalysis, has sometimes been used. Xantphos
1.34 and DPEphos 1.35 form a special subset of bidentate ligands. In square planar complexes, such as
complexes with palladium(II), due to the geometrical demands of the linker, the two phosphines are capable
of being trans.21 The other bidentate ligands tend to be cis.

Ph2P
PPh2Ph2P PPh2

Ph2P
PPh2Ph2P PPh2 Me2P

PMe2

Fe

PPh2

PPh2

PPh2

PPh2

1.32 dppf1.31 dppbz

O

Ph2P PPh2

1.34 Xantphos

O

Ph2P PPh2

1.35 DPEphos

PPh2

PPh2

1.33 BINAP

1.30 dppb 1.29 dppp

 1.27 dppe
(diphos)

1.26 dppm 1.28 dmpe

Figure 1.11 Bidentate phosphines.
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Ph2P

Ph2P

1.39 H8-BINAP
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Ph Ph
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1.43 DIPAMP

P

P

Me

Me
Me
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Figure 1.12 Chiral phosphine ligands.

The list given above is just a small selection of the ligands reported, and a tiny selection of the ligands that
are possible.

The use of chiral phosphines has been the principle way to achieve asymmetric reactions in organometal-
lic chemistry. A small selection of the huge number of chiral phosphines reported so far is presented in
Figure 1.12. While chiral monodentate species have been used, most of the ligands are bidentate. Their
designs can be divided into three groups. One group has the chirality present in the chain that links the two
phosphorus atoms. Many of these are axially chiral. The two enantiomers of BINAP, 1.36/1.37, are the first in
this group, and many derivatives and modifications of BINAP have been reported. Others, such as chiraphos
1.40 and skewphos 1.41 have stereogenic carbon atoms in the chain. A second group, represented here by
Me-DUPHOS 1.42 has the chirality in the phosphorus substituents, rather than the chain. A third and rarer
group exploits the chirality of the phosphorus atom. DIPAMP 1.43, the first effective ligand for asymmetric
hydrogenation, is in this group. Applications of asymmetric catalysis are included in several chapters. For a
deeper discussion, the reader is referred to more specialized textbooks.22

1.2.2 Phosphites

Phosphites are closely related to phosphines, but have P–O bonds in place of P–C bonds (Figure 1.13). While
they have been found to be useful ligands in certain reactions (see Section 4.4 and Sections 11.1.1 and 11.2.2),
they have not been subject to the same widespread use or development as phosphines.

P
OEtEtO

OEt
P

Oi -Pri-PrO

O -Pri
P

OPhPhO

OPh

1.44
triethylphosphite

1.45
tri-iso-propylphosphite

1.46
triphenylphosphite

Figure 1.13 Phosphites.
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1.2.3 N-Heterocyclic Carbenes

Carbene complexes have been known since the 1960s. Their chemistry revolves around the reactions of the
carbene moiety (Chapter 8). The isolation of the first stable carbene by Arduengo,23 and the realization
that such carbenes could function as useful ligands for transition metals, in a similar way to phosphines,
opened up a new chapter in organometallic chemistry.24,25 Arduengo’s first stable carbenes were formed by
the deprotonation of imidazolium salts (Schemes 1.1 and 1.2). The carbene carbon is built into a stabilizing
nitrogen heterocycle. The stabilization is principally electronic, by the two nitrogen atoms. The N-substituents
provide steric stabilization that is not, however, essential.26 They are, therefore, referred to as N-heterocyclic
carbenes or NHCs. The many NHC ligands that have followed have largely been variations on Arduengo’s
original (Figure 1.14). The N-mesityl, rather than N-admantyl, has been commonly used, although families of
N-alkyl carbenes have been produced. The double bond in the N-heterocycle may be absent, as in the Grubbs
second-generation catalyst (Chapter 8). The heterocycle may also be varied, as in TPT 1.50. Numerous more
complex carbenes, including chelating bis-carbenes, have also been synthesized.
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Figure 1.14 N-heterocyclic carbene (NHC) ligands.
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Table 1.1 Cone angles

R

Ligand Cone angle, θ

PH3  87° 

P(OEt)3  109° 

PPhMe2  122° 

Pn-Bu3  132° 

PPh3  145° 

PCy3  170° 

Pt-Bu3  182° 

R

R

Mθ

P(mesityl)3  212° 

1.2.4 Other Ligands

Many other species have been employed as ligands, including amines and nitrogen heterocycles, sulfides and
sulfoxides, halides, alkoxides and nitriles. Dienes, such as 1,5-cyclooctadiene, are commonly used as ligands.

1.2.5 Quantifying Ligand Effects

The two principle effects of the ligand are electronic and steric.27 The concept of cone angle is used to describe
the size of a ligand (Table 1.1). It is the angle of a cone that has its point at the metal and just contains the
phosphine ligand. As this angle will vary depending on the metal–ligand bond length, the standard is taken
as the nickel tricarbonyl derivative, (OC)3NiL.

Is cone angle still adequate to describe the increasingly complex phosphine ligands, and the new NHC
ligands that are far from cone shaped? New quantifiers are being proposed.28

1.2.6 Heterogeneous Catalysis

The vast majority of the transition-metal catalysed reactions in this book use transition-metal species that
are soluble in the reaction medium. These are often well-defined and characterized complexes. It does not
have to be this way. Sources of transition metals that are insoluble in the reaction medium, especially
heterogeneous sources of palladium, can be very effective. Palladium on inert supports, such as carbon, has
been employed for many decades for hydrogenation reactions. They can also be employed for carbon–carbon
bond-forming reactions.29 Other heterogeneous sources, such as perovskites, which are better known as
components of car exhaust systems, have also been used. Catalysts of this type may act as sources of palladium,
releasing palladium as complexes or nanoparticles into the reaction medium, then reclaiming it.30 Often, these
systems leave less residual metal contamination in the final product and, therefore, are particularly useful
industrially.

1.3 Just How Many Ligands Can Fit around a Metal Atom?

This is a fairly easy question to answer. If we think about elements such as carbon, nitrogen and
oxygen, we know that their valency can be explained by the importance of filling the outer valence



P1: JYS

JWST164-c01 JWST164-Bates February 16, 2012 4:42 Printer: Yet to come

Introduction 11

shell with eight electrons and obtaining an inert-gas configuration. As they have to fill up an s or-
bital and three p orbitals, this means acquiring eight electrons, including the electrons that they already
possess.

Transition metals have to fill an s orbital, three p orbitals and five d orbitals. This requires eighteen electrons.
This is the eighteen-electron rule. These electrons must either belong to the metal atom already or must be
supplied by the ligand. We must also adjust for the charge.

There are two methods for adding up electrons, both are based on counting the electrons contributed to the
complex from the metal and the ligands. The methods have been referred to as the “covalent” and “ionic”
methods as they differ in the notional origin of the electrons.31 It has to be clearly understood that this is the
notional origin, not the actual origin. A hydride ligand is assigned as bringing 1 or 2 electrons to the complex
respectively, whether its actual origin was from LiAlH4, H2 or HCl. The same answer is obtained whichever
method is used. The important thing is to not get the two methods mixed up! Examples of both methods are
given in Figures 1.15–1.18.

1.3.1 Method 1: Covalent

Electrons from the metal: This is equal to its group number. Just count from the far left-hand column
(group 1) of the periodic table (Table 1.2).

Electrons from the ligands: this depends, naturally on the ligands. For hydrocarbon ligands, the number
is equal to the hapto number. Single-bonded ligands (hydride, halide etc) count as 1 (although a bridging
halide counts as 2 – a lone-pair donor), while carbenes and carbynes count as 2 and 3, respectively. Lone-pair
donors, such as phosphines and CO, count as 2.

Charge: electrons have a negative charge. A positive charge on your complex means a missing electron,
so subtract one. A negative charge means an extra electron, so add one.

1.3.2 Method 2: Ionic

Electrons from the metal: first, the oxidation state of the metal must be assigned. Oxidation state is a
formalism, but a useful formalism. The assignment can be done by the notional stripping off of ligands
to reveal a notional metal ion. Ligands that are donors of pairs of electrons, or multiple pairs of electrons
are removed with their pair(s) of electrons and do not effect the charge of the metal. Examples include
alkenes, dienes and arenes (all of which have an even hapto number), CO, phosphines and carbenes. Ligands
with a sigma bond are stripped off as anions even if this makes no chemical sense. Examples are alkyl,
allyl, dienyl and even acyl ligands (all of which have an odd hapto number), hydride, halide and carbynes.
The number of electrons contributed by the metal is then its group number (count from the far left-hand
column (group 1) of the periodic table) minus the oxidation state. This is also the number of d electrons,
dx. This number is useful for comparing metals with different oxidation states across groups of the periodic
table.

Table 1.2 Transition metals and numbers of electrons

3 4 5 6 7 8 9 10 11

Sc Ti V Cr Mn Fe Co Ni Cu
Y Zr Nb Mo Tc Ru Rh Pd Ag
La Hf Ta W Re Os Ir Pt Au
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Electrons from the ligands: The number of electrons supplied by a ligand is related to how the ligand was
notionally stripped off above. Hydrocarbon ligands with even hapto numbers were stripped off as neutral
molecules, so the number of electrons donated is equal to their hapto number. Hydrocarbon ligands with
odd hapto numbers were stripped off as anions, so the number of electrons donated is equal to their hapto
number plus one. Thus, an allyl group is a donor of four electrons. Lone-pair donors donate two electrons;
sigma-bonded ligands stripped off as anions also donate two electrons.

Charge: The assignment of the oxidation state has already taken the charge into account, so there is no
further adjustment.

1.3.3 Examples

The rule is often broken. d8-Complexes of metals towards the right-hand side of the d-block often form stable
square-planar complexes, such as (Ph3P)2PdCl2. Bulky ligands may prevent a complex reaching 18 electrons:
palladium forms an eighteen-electron complex with triphenylphosphine to give the popular catalyst (Ph3P)4Pd,
but only a fourteen-electron complex with the bulkier tri(t-butyl)phosphine, (t-Bu3P)2Pd. Complexes with
fewer than 18 electrons are not impossible; it is just that they tend to be less stable. What is important to
remember is that stable complexes are unreactive. To get them to participate in chemistry, it is usually first
necessary to get them away from their stable state (meaning, in most cases, 18 electrons) by forcing them to
dissociate a ligand.

Example 1: Cp(Ph3P)CoMe2

Cp
Co

Ph3P
Me
Me Cp  +  Ph3P  +  Co3+   +   2 Me

Oxidation state = +3
Method 2 Method 1 

Ligands: Cp =
            Ph3P =
Me = 2 x 1 = 
Metal: Co =  
Charge = 0 
Total = 

 5 
 2 
 2 
 9 
 0
18

Ligands: Cp– =
          Ph3P =
Me–  = 2 x 2 =
Metal: Co(+3) =  

Total = 

 6 
 2 
 4 
 6 
__
18

Figure 1.15

Ligands: 4 x CO = 4 x 2 =
            ketone lone pair =
η1-aryl =  
Metal: Mn =  
Charge =
Total = 

 8 
 2 
 1 
 7 
 0
18

Ligands: 4 x CO = 4 x 2 =
            ketone lone pair =
η1-aryl =  
Metal: Mn(+1) =  

Total = 

 8 
 2 
 2 
 6 
__
18

Example 2:

Mn(CO)4

O

+   Mn   +   4 CO
Mn(CO)4

O O

Oxidation state = +1 
Method 2 Method 1 

Figure 1.16


