Coffee is one of the most beloved beverages in the world, making it the second most globally traded commodity (just behind crude oil). The conventional notion that drinking coffee might be detrimental to human health derives from studies carried out in the 1950s and 1960s. This research failed to account for cigarette smoking which, as was discovered later, confounded and masked coffee’s benefits. Since then, and especially since the new millennium, research evidence for coffee’s health benefits has mounted significantly. More and more large and long-term studies have demonstrated that coffee offers protection against type 2 diabetes, assorted cancers, and neurodegenerative diseases including Parkinson’s and Alzheimer’s diseases.

Coffee: Emerging Health Effects and Disease Prevention is the first book to present a contemporary and comprehensive summary of the newly-understood bioactive effects of the many compounds in coffee. The breadth and depth of coverage is extensive and balanced, focusing on the following topics: coffee constituents and their bioavailability; pro- and antioxidant properties; the health benefits and disease prevention effects of coffee; and potential negative health impacts. Multiple chapters describe coffee’s positive impacts on health and various diseases, including type 2 diabetes, neurodegenerative diseases, cancer and cardiovascular and liver diseases. Coffee’s positive effects on mood, suicide rate and cognitive performance are addressed, as are the negative health impacts of coffee on pregnancy, insulin sensitivity, dehydration, gastric irritation, anxiety, and withdrawal syndrome issues.

Written by many of the top researchers in the world, this volume is a must-have reference for food professionals in academia, industry, and governmental & regulatory agencies whose work involves coffee.

The Editor
Dr Yi-Fang Chu was Head of the Global Coffee Wellness Research Group at Kraft Foods Global Inc., Glensview, Illinois, USA. He is currently with PepsiCo Global Nutrition, Barrington, Illinois.

Also available from IFT Press
Non-digestible Carbohydrates and Digestive Health
Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals
Nutraceuticals, Glycemic Health and Type 2 Diabetes

Cover design: Meaden Creative
Cover images: Silhouette © iStockphoto.com/Philartphace; Coffee cup © iStockphoto.com/halbergman
Coffee
Emerging Health Effects and Disease Prevention
The *IFT Press* series reflects the mission of the Institute of Food Technologists—to advance the science of food contributing to healthier people everywhere. Developed in partnership with Wiley-Blackwell, *IFT Press* books serve as leading-edge handbooks for industrial application and reference and as essential texts for academic programs. Crafted through rigorous peer review and meticulous research, *IFT Press* publications represent the latest, most significant resources available to food scientists and related agriculture professionals worldwide. Founded in 1939, the Institute of Food Technologists is a nonprofit scientific society with 22,000 individual members working in food science, food technology, and related professions in industry, academia, and government. IFT serves as a conduit for multidisciplinary science thought leadership, championing the use of sound science across the food value chain through knowledge sharing, education, and advocacy.

IFT Press Advisory Group

Casimir C. Akoh
Christopher J. Doona
Florence Feeherry
Jung Hoon Han
David McDade
Ruth M. Patrick
Syed S.H. Rizvi
Fereidoon Shahidi
Christopher H. Sommers
Yael Vodovotz
Karen Nachay

IFT Press Editorial Board

Malcolm C. Bourne
Dietrich Knorr
Theodore P. Labuza
Thomas J. Montville
S. Suzanne Nielsen
Martin R. Okos
Michael W. Pariza
Barbara J. Petersen
David S. Reid
Sam Saguy
Herbert Stone
Kenneth R. Swartzel
Titles in the IFT Press series

- *Accelerating New Food Product Design and Development* (Jacqueline H. Beckley, Elizabeth J. Topp, M. Michele Foley, J.C. Huang, and Witoon Prinyawiwatkul)
- *Advances in Dairy Ingredients* (Geoffrey W. Smithers and Mary Ann Augustin)
- *Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals* (Yoshinori Mine, Eunice Li-Chan, and Bo Jiang)
- *Biofilms in the Food Environment* (Hans P. Blaschek, Hua H. Wang, and Meredith E. Agle)
- *Calorimetry in Food Processing: Analysis and Design of Food Systems* (Gönül Kaletunc)
- *Coffee: Emerging Health Effects and Disease Prevention* (YiFang Chu)
- *Food Carbohydrate Chemistry* (Ronald E. Wrolstad)
- *Food Irradiation Research and Technology* (Christopher H. Sommers and Xuetong Fan)
- *High Pressure Processing of Foods* (Christopher J. Doona and Florence E. Feeherry)
- *Hydrocolloids in Food Processing* (Thomas R. Laaman)
- *Improving Import Food Safety* (Wayne C. Ellefson, Lorna Zach, and Darryl Sullivan)
- *Innovative Food Processing Technologies: Advances in Multiphysics Simulation* (Kai Knoerzer, Pablo Juliano, Peter Roupas, and Cornelis Versteeg)
- *Microbial Safety of Fresh Produce* (Xuetong Fan, Brendan A. Niemira, Christopher J. Doona, Florence E. Feeherry, and Robert B. Gravanis)
- *Microbiology and Technology of Fermented Foods* (Robert W. Hutkins)
- *Multivariate and Probabilistic Analyses of Sensory Science Problems* (Jean-François Meullenet, Rui Xiong, and Christopher J. Findlay)
- *Natural Food Flavors and Colorants* (Mathew Attokaran)
- *Nondestructive Testing of Food Quality* (Joseph Irudayaraj and Christoph Reh)
- *Nondigestible Carbohydrates and Digestive Health* (Teresa M. Paeschke and William R. Aimutis)
- *Nonthermal Processing Technologies for Food* (Howard Q. Zhang, Gustavo V. Barbosa-Cánovas, V.M. Balasubramaniam, C. Patrick Dunne, Daniel F. Farkas, and James T.C. Yuan)
- *Nutraceuticals, Glycemic Health and Type 2 Diabetes* (Vijai K. Pasupuleti and James W. Anderson)
- *Organic Meat Production and Processing* (Steven C. Ricke, Michael G. Johnson, and Corliss A. O’Bryan)
- *Packaging for Nonthermal Processing of Food* (Jung H. Han)
- *Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions* (Ross C. Beier, Suresh D. Pillai, and Timothy D. Phillips, Editors; Richard L. Ziprin, Associate Editor)
- *Regulation of Functional Foods and Nutraceuticals: A Global Perspective* (Clare M. Hasler)
- *Sensory and Consumer Research in Food Product Design and Development, second edition* (Howard R. Moskowitz, Jacqueline H. Beckley, and Anna V.A. Resurreccion)
- *Sustainability in the Food Industry* (Cheryl J. Baldwin)
- *Thermal Processing of Foods: Control and Automation* (K.P. Sandeep)
- *Whey Processing, Functionality and Health Benefits* (Charles I. Onwulata and Peter J. Huth)
Preface xvii
List of Contributors xix
List of Abbreviations xxii
Acknowledgement xxv

1 Introduction 1

Thomas Hatzold

1.1 Coffee—a popular beverage 1
1.2 Coffee from a nutritional perspective 1
1.3 Potential beneficial effects of coffee 2
1.4 Limitations to the beneficial effects 3
1.5 History 5
1.6 Coffee production worldwide 5
1.7 Coffee processing: formation and fate of bioactive compounds 5
 1.7.1 Green bean processing, storage, and transport 6
 1.7.2 Blending 8
 1.7.3 Roasting 8
 1.7.4 Grinding 10
 1.7.5 Packaging and storage 10
 1.7.6 Decaffeination 10
 1.7.7 Soluble coffee production 10
1.8 New processes to optimize the health benefits of coffee 10
 1.8.1 Enhancement with mannooligosaccharides 11
 1.8.2 Use of green bean extracts 11
 1.8.3 After-roast blending for enhanced antioxidative properties 11
 1.8.4 Stomach-friendly coffee 12
1.9 Coffee preparation 12
 1.9.1 Boiled coffee 13
 1.9.2 Cafetiére or French press coffee 13
 1.9.3 Filter coffee 13
 1.9.4 Espresso 13
 1.9.5 Moka (mocha) 13
 1.9.6 Percolated coffee 13
 1.9.7 Soluble coffee 13
 1.9.8 Liquid coffee 13
 1.9.9 Single-serve coffee machines 14
1.10 Coffee beverages and specialties 14
1.11 Coffee consumption 14
Contents

1.12 Conclusions 16
Acknowledgments 16
References 17

2 Coffee Constituents 21
Adriana Farah

2.1 Introduction 21

2.2 Production of coffee and coffee-based beverages 22
2.2.1 Green coffee production 22
2.2.2 Decaffeinated coffee production 23
2.2.3 Steam-treated and monsooned coffees 24
2.2.4 Coffee roasting 24
2.2.5 Coffee brewing 25
2.2.6 Instant coffee production 26

2.3 Natural coffee constituents 26
2.3.1 Green coffee chemical composition 27
2.3.1.1 Nonvolatile compounds in green coffee 27
Caffeine 28
Trigonelline 29
Chlorogenic acids 30
Cafestol and kahweol 31
Soluble dietary fiber 32
Water 33
Carbohydrates 33
Protein, peptides, and free amino acids 33
Minerals 33
Lipids 34
2.3.1.2 Volatile compounds in green coffee 34

2.3.2 Changes in coffee chemical composition during roasting 35
2.3.2.1 Nonvolatile components in roasted coffee 35
2.3.2.2 Volatile compounds in roasted coffee 37

2.3.3 Changes in coffee chemical composition during special coffee processing 39
2.3.4 Chemical composition of coffee brew 41

2.4 Incidental coffee constituents 43
2.4.1 Incidental nonvolatile compounds in coffee 43
2.4.1.1 Ochratoxin A 43
2.4.1.2 Biogenic amines 44
2.4.1.3 β-carbolines 45
2.4.1.4 Acrylamide 46
2.4.1.5 Polycyclic aromatic hydrocarbons 47
2.4.1.6 Pesticide residues 48
2.4.2 Incidental volatile constituents in coffee 48

2.5 Concluding remarks 50
Acknowledgments 50
References 50
3 Bioavailability of Coffee Chlorogenic Acids
Angélique Stalmach

3.1 Introduction 59

3.2 Chlorogenic acids: contribution of coffee to dietary levels ingested 59

3.2.1 Dietary intake 59

3.2.2 Levels in coffee beverage 61

3.3 Bioavailability of coffee chlorogenic acids 62

3.3.1 Absorption and metabolic fate 62

3.3.2 Extensive metabolism upon intake 62

3.3.2.1 Identification of chlorogenic acid metabolites 62

3.3.2.2 Metabolic pathways 62

3.3.2.3 Bioavailability of intact chlorogenic acids 68

3.3.3 Urinary and biliary excretion 71

3.3.4 Effects of food matrix and co-ingestion on bioavailability 71

3.4 Conclusions 72

References 73

4 Coffee and Alzheimer’s Disease: Animal and Cellular Evidence
Marshall G. Miller and Barbara Shukitt-Hale

4.1 Introduction 77

4.2 Alzheimer’s disease 77

4.2.1 Prevalence 77

4.2.2 Symptoms 78

4.2.3 Gross pathology 78

4.2.4 Tauopathy 78

4.2.5 Cerebral amyloidosis 78

4.2.6 Other neuropathology 79

4.2.7 Genetic factors 79

4.2.8 Diagnosis 80

4.2.9 Treatments 80

4.2.10 Cellular and animal models of Alzheimer’s disease 80

4.3 Coffee 81

4.3.1 Cellular evidence 81

4.3.2 Animal evidence 82

4.4 Caffeine 82

4.4.1 Cellular evidence 83

4.4.2 Animal evidence 83

4.5 Phenolics 86

4.5.1 Cellular evidence 86

4.5.2 Animal evidence 87

4.5.3 Caffeic acid 88

4.5.4 Dicinnamoylquinides 89

4.6 Other coffee constituents 89

4.6.1 Trigonelline 89

4.6.2 Kahweol and cafestol 90

4.6.3 Pyroglutamate 91
Contents

4.7 Conclusions 91
 References 92

5 Coffee and Alzheimer’s Disease—Epidemiologic Evidence 97
 Joan Lindsay, Pierre-Hugues Carmichael, Edeltraut Kröger, and Danielle Laurin
 5.1 Introduction 97
 5.2 Review of epidemiologic studies of coffee in relation to Alzheimer’s disease, dementia, and selected aspects of cognitive functioning 98
 5.2.1 Case-control/retrospective studies 98
 5.2.2 Cross-sectional studies 99
 5.2.3 Prospective cohort studies 100
 5.3 The strength of the evidence for preventing Alzheimer’s disease 106
 References 108

6 Coffee and Parkinson’s Disease 111
 Jing-Wei Lim and Eng-King Tan
 6.1 Introduction 111
 6.2 Pathogenesis of Parkinson’s disease 111
 6.3 Gene and environmental/lifestyle factors 112
 6.4 Clinical evidence linking coffee consumption and Parkinson’s disease 113
 6.5 Neuroprotection and active components of coffee 115
 6.6 Adenosine receptor antagonism and Parkinson’s disease 116
 6.7 Caffeine rescue of Parkinson’s disease in animal models 116
 6.8 Clinical trials of adenosine receptor antagonists in Parkinson’s disease 117
 6.9 Caffeine-mediated genetic susceptibility of Parkinson’s disease 118
 6.10 Summary 118
 Acknowledgments 119
 References 119

7 Coffee and Liver Health 123
 Pablo Muriel and Jonathan Arauz
 7.1 The liver 123
 7.2 Epidemiologic studies 124
 7.2.1 Coffee and liver enzymes 124
 7.3 Coffee, fibrosis, and cirrhosis 124
 7.3.1 General aspects of fibrosis and cirrhosis 124
 7.3.2 Coffee and cirrhosis 125
 7.4 Coffee and animal models of hepatic fibrosis 126
 7.5 Cytokines and liver fibrosis 127
 7.5.1 Transforming growth factor-β in liver fibrogenesis 128
 7.6 Mechanism of coffee’s protective effect 128
 7.6.1 Oxidative stress, antioxidant-dependent mechanisms 128
 7.6.2 Chemoprotective mechanisms: cafestol and kahweol 130
 7.6.3 Phase I-mediated mechanisms 130
 7.6.4 Inhibition of phase I activating enzyme expression 130
 7.6.5 Inhibition of phase I enzymatic activity 131
7.6.6 Induction of phase II detoxifying enzymes 131
7.6.7 Molecular mechanism of induction: Nrf2/ARE signal pathway 132
7.7 Adenosine A2A receptors and caffeine 132
 7.7.1 Proinflammatory and anti-inflammatory actions of caffeine mediated through the adenosine A2A receptor 132
7.8 Caffeine metabolism and drug interactions 134
7.9 Conclusions 134
References 135

8 Coffee and Type 2 Diabetes Risk 141
Nathan V. Matusheski, Siamak Bidel, and Jaakko Tuomilehto

8.1 Introduction 141
8.2 Observational associations between coffee consumption and type 2 diabetes risk 142
8.3 Coffee preparation 154
 8.3.1 Type of coffee: ground or instant 154
 8.3.2 Addition of milk or sugar 155
 8.3.3 Caffeine and noncaffeine components of coffee 155
 8.3.4 Lifestyle-related factors 156
8.4 Observational associations between coffee consumption and diabetes risk factors 156
8.5 Intervention studies in human subjects 159
 8.5.1 Effects of caffeine on glucose tolerance 159
 8.5.2 Effects of caffeinated coffee on glucose tolerance 160
 8.5.3 Effects of noncaffeine coffee components on glucose tolerance 164
 8.5.4 Effects of coffee consumption on other diabetes risk factors 165
 8.5.5 Limitations of the existing intervention literature on coffee and diabetes 165
8.6 Possible mechanisms of action 166
 8.6.1 Modulation of energy expenditure by caffeine 167
 8.6.2 Modulation of carbohydrate absorption and incretin response 167
 8.6.3 Modulation of hepatic glucose output 167
 8.6.4 Modulation of insulin sensitivity 168
 8.6.4.1 Anti-inflammatory effects 168
 8.6.4.2 Antioxidative effects 169
 8.6.4.3 Estrogen receptor activation 169
 8.6.4.4 Inhibition of 11β-hydroxysteroid dehydrogenase 169
 8.6.4.5 Iron and magnesium status 170
8.7 Summary and conclusions 170
References 171

9 Coffee and Cardiovascular Diseases 181
Siamak Bidel and Jaakko Tuomilehto

9.1 Introduction 181
9.2 Coffee components and CVD 181
 9.2.1 Caffeine 182
 9.2.2 Diterpenes: kahweol & cafestol 182
 9.2.3 Polyphenols 183
Contents

9.3 Early, transient, or acute effects of coffee consumption on CVD 183
 9.3.1 Tolerance or modification 184

9.4 Coffee metabolism and CVD: genetic influences 185

9.5 Long-term habitual coffee consumption and CVD 185
 9.5.1 Coffee and CHD 185
 9.5.1.1 Coffee consumption, blood pressure, and hypertension 186
 9.5.1.2 Coffee intake and risk of type 2 diabetes 187
 9.5.1.3 Coffee and atherosclerosis 188
 9.5.1.4 Coffee consumption and plasma homocysteine 188

9.6 Coffee consumption and heart failure 189

9.7 Coffee consumption and stroke 189

9.8 Summary 190

References 190

10 Coffee and Cancers 197
 André Nkondjock

 10.1 Introduction 197

 10.2 Breast cancer 198

 10.3 Colorectal cancer 198

 10.4 Prostate cancer 199

 10.5 Bladder cancer 199

 10.6 Gastric cancer 200

 10.7 Ovarian cancer 201

 10.8 Pancreatic cancer 201

 10.9 Liver cancer 201

 10.10 Head and neck cancers 202

 10.11 Endometrial cancer 203

 10.12 Kidney cancer 204

 10.13 Brain cancer 204

 10.14 Cancer survival 204

 10.15 Conclusions 205

References 205

11 Coffee Consumption and Mortality Risk 211
 Kemmyo Sugiyama, Shinichii Kuriyama, and Ichiro Tsuji

 11.1 Introduction 211

 11.2 Coffee consumption and all-cause mortality 211

 11.3 Coffee consumption and CVD mortality 221

 11.4 Coffee consumption and cancer mortality 222

 11.5 Possible mechanism of CVD mortality reduction by coffee 223

 11.6 Conclusions 223

References 224

12 Is Coffee the Next Red Wine? Coffee Polyphenol and Cholesterol Efflux 227
 Harumi Kondo, Makoto Ayaori, and Katsunori Ikewaki

 12.1 High-density lipoprotein and cardiovascular disease 227
12.2 Coffee and cardiovascular disease 227
12.3 Coffee polyphenols 228
12.4 Coffee polyphenols and cholesterol efflux 229
References 230

13 Additional Positive Impacts on Health 233
Yi-Fang Chu and Yumin Chen
13.1 Coffee intake and reduced risk of suicide 233
13.2 Enhanced cognitive performance and mood 235
13.3 Coffee bioactive compounds 236
References 238

14 Epidemiological Evidence for Maternal Prenatal Coffee and Caffeine Consumption and Miscarriage Risk 243
Ronna L. Chan
14.1 Introduction 243
14.2 Coffee consumption during pregnancy: a three-decade-old concern 243
14.3 Evidence from the current literature 244
14.4 Methodological concerns and limitations for studies on coffee or caffeine exposure and miscarriage 247
14.4.1 Study design and subject recruitment 247
14.4.2 Exposure assessments 247
14.4.2.1 Quantifying individual caffeine exposure 247
14.4.2.2 Accounting for other sources of caffeine 249
14.4.2.3 Identifying critical timing of exposures 249
14.4.2.4 Maternal, fetal, and placental caffeine metabolism 250
14.4.2.5 Use of self-reporting versus biomarker data 251
14.4.3 Analytical approach: controlling for key confounders 251
14.4.3.1 Confounding by nausea and vomiting in pregnancy 251
14.4.3.2 Confounding by cigarette smoking 252
14.4.4 Determining gestational age, late recognition of fetal demise, and pregnancy outcome assessment 252
14.5 Risk for recurrent miscarriage 253
14.6 Conclusion, public health implications, and recommendations for future studies 254
References 255

15 Acrylamide in Coffee 259
Richard H. Stadler and Viviane Theurillat
15.1 Introduction 259
15.2 Methods of analysis 260
15.3 Occurrence in coffee and exposure estimates 260
15.4 Mechanisms of formation 262
15.5 Mitigation options 264
15.5.1 Agronomical stage (green bean) 264
16 Impact of Coffee on Gastric Acid Secretion 275
Malte J. Rubach and Veronika Somoza

16.1 Introduction 275
16.2 Regulation of gastric acid secretion 276
 16.2.1 Phases of gastric secretion 276
 16.2.2 Gastric H,K-ATPase 277
16.3 Effects of coffee on gastric secretion 279
 16.3.1 Effects of decaffeinated coffee vs. regular coffee 279
 16.3.2 Effects of steam-treated and dewaxed coffee 280
 16.3.3 Ulcerogenic effects of coffee beverages and their chemopreventive potential 281
 16.3.4 Recent approaches to evaluate the gastric irritation potential of coffee beverages 282
16.4 Optimization of coffee bean processing to reduce the gastric acid stimulatory potential of coffee 285
 16.4.1 Extraction 285
 16.4.2 Dewaxing 286
 16.4.3 Roasting 286
16.5 Dietary impact on the gastric acid stimulatory potential of coffee 286
16.6 Conclusions 287
 References 287

17 Potential Mental Risks 293
Emma Childs and Harriet de Wit

17.1 Epidemiology of coffee and other forms of caffeine 293
17.2 Beneficial effects of caffeine 295
17.3 Risks associated with caffeine use 296
 17.3.1 Acute intoxication 296
 17.3.2 Tolerance and physical dependence 297
 17.3.3 Anxiety 298
 17.3.4 Sleep disorders 299
 17.3.5 Psychosis 300
 17.3.6 Other 300
17.4 Summary and conclusions 301
 References 301
Contents

18 Furan in Coffee 307

Helmut Guenther

18.1 Introduction 307
18.2 Physical and chemical properties 307
18.3 Toxicology and risk assessment 307
18.4 Occurrence of furan in coffee 309
 18.4.1 Mechanisms of furan formation 309
 18.4.2 Furan formation during roasting 310
 18.4.2.1 Green coffee types 310
 18.4.2.2 Roasting conditions 310
 18.4.3 Furan levels in coffee from roasting to cup 311
 18.4.3.1 Grinding 311
 18.4.3.2 Consumer handling/kitchen life 312
 18.4.3.3 Brewing 313
 18.4.3.4 Instant coffee 315
 18.4.3.5 Cup of coffee as consumed 315
18.5 Conclusion 316

References 316

Index 319
Coffee is a drink of acuity, of precision, of intellect. To truly understand this drink, one has to go back in time. Coffee was discovered in Ethiopia and brought to the Arab region in the sixteenth century. At that time in history, the Arab civilization was carrying the world forward. For example, they invented zero, which gave to the world elegant solutions to mathematical problems. It is no surprise that the region became fascinated with coffee, a drink that stimulated its penchant for precision and intellect.

Coffee was brought to Western Europe in the seventeenth century. At that time, most of Europe was often mildly drunk. Why? Because if you lived in London or Paris, you could not drink water from various sources without worries about water-borne diseases. Instead of a coffee break at 10 o’clock in the morning, people would have a “beer break.” Paintings and literature from that era depict people’s amusingly besotted behaviors throughout the whole day. Coffee drinking slowly replaced this practice. As the industrial revolution started to take shape in that region, workers simply could not afford to be drunk while operating heavy industrial machines. Coffee was the perfect solution to help fuel the revolution. Work and coffee grew inseparable in the modern age. Perhaps coffee makes the age possible at all. Now as we have moved into the twenty-first century, coffee is the world’s most popular drink after water. It is a daily comfort to millions and a necessity to many more.

In consumers’ minds, coffee is also often considered a guilty pleasure. At the turn of the twenty-first century, scientific tools started to become powerful enough to enable the discovery of what was previously deemed undiscoverable. Surprisingly, consumption of this indulgent drink began to show links to positive health impacts. As scientists continue to dig deeper, reports of good news about coffee constantly outweigh negative or neutral findings. In this book, we summarize the evolving state of the science related to coffee’s health implications.

This book is divided into three main parts: (i) background and chemistry in Chapters 1–3, (ii) potential benefits in Chapters 4–13, and (iii) potential concerns in Chapters 14–18. We aim to be fair, objective, and evidence based. We are blessed with terrific contributions from a diverse group of experts from 12 different coffee-loving countries. Our ultimate goal is to refresh dialogue and intellectual debate about coffee’s impacts on health, hopefully leading to better understanding collectively. On a personal level, we hope that this book can provide some useful information and eventually make you look at your daily cup just a bit differently. Who knows? Maybe, there really is more to coffee than just the ability to keep us awake!

Yi-Fang Chu
List of Contributors

Jonathan Arauz
Departamento de Farmacología
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico
Mexico, DF
Mexico

Makoto Ayaori
Division of Anti-aging
Department of Internal Medicine
National Defense Medical College
Tokorozawa, Saitama
Japan

Siamak Bidel
Hjelt Institute
Faculty of Medicine
University of Helsinki
&
Diabetes Prevention Unit
National Institute for Health and Welfare
Helsinki
Finland

Pierre-Hugues Carmichael
Centre d’excellence sur le vieillissement de Québec
Centre de recherche FRSQ du CH affilié universitaire de Québec
Quebec, QC
Canada

Yumin Chen
Nutrition Research
Kraft Foods, Inc.
Glenview, IL
USA

Emma Childs
Department of Psychiatry and Behavioral Neuroscience
University of Chicago
Chicago, IL
USA

Yi-Fang Chu
Nutrition Research
Kraft Foods, Inc.
Glenview, IL
USA

Harriet de Wit
Department of Psychiatry and Behavioral Neuroscience
University of Chicago
Chicago, IL
USA

Adriana Farah
Instituto de Nutrição and Instituto de Química
Universidade Federal do Rio de Janeiro
Rio de Janeiro
Brazil

Thomas Hatzold
Nutrition Research
Kraft Foods, Inc.
Zweigniederlassung
Munich
Germany

Ronna L. Chan
Department of Epidemiology
Gillings School of Global Public Health
The University of North Carolina at Chapel Hill
Chapel Hill, NC
List of Contributors

Helmut Guenther
Scientific Affairs EU
Kraft Foods, Inc.
Bremen
Germany

Katsunori Ikewaki
Division of Anti-aging
Department of Internal Medicine
National Defense Medical College
Tokorozawa, Saitama
Japan

Harumi Kondo
Division of Anti-aging
Department of Internal Medicine
National Defense Medical College
Tokorozawa, Saitama
Japan

Edeltraut Kröger
Faculty of Pharmacy
Laval University
Quebec, QC
Canada;
Centre d’excellence sur le vieillissement de Québec
Centre de recherché FRSQ du CH affilié universitaire de Québec
Quebec, QC
Canada

Shinichi Kuriyama
Department of Molecular Epidemiology
Environment and Genome Research Center
Tohoku University Graduate School of Medicine
Sendai, Miyagi Prefecture
Japan

Danielle Laurin
Faculty of Pharmacy
Laval University
Quebec, QC
Canada;
Centre d’excellence sur le vieillissement de Québec

Jing-Wei Lim
Department of Neurology
Singapore General Hospital
Singapore;
National Neuroscience Institute
Duke Graduate Medical School
Singapore

Joan Lindsay
Department of Epidemiology and Community Medicine
University of Ottawa
Ottawa, ON
Canada;
Department of Social and Preventive Medicine
Laval University
Quebec, QC
Canada

Nathan V. Matusheski
Nutrition Research
Kraft Foods, Inc.
Glenview, IL
USA

Marshall G. Miller
United States Department of Agriculture – Agricultural Research Service
Human Nutrition Research Center on Aging
Tufts University
Boston, MA
USA

Pablo Muriel
Departamento de Farmacología
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional
Mexico, DF
Mexico
List of Contributors

André Nkondjock
Research Center for Military Health
Yaoundé
Cameroon;
Yaoundé Military Hospital
Yaoundé
Cameroon

Malte J. Rubach
German Research Center for Food Chemistry
Freising
Germany

Barbara Shukitt-Hale
United States Department of Agriculture – Agricultural Research Service
Human Nutrition Research Center on Aging
Tufts University
Boston, MA
USA

Veronika Somoza
Institute of Nutritional and Physiological Chemistry
University of Vienna
Vienna
Austria

Richard H. Stadler
Nestlé Product Technology Centre
Orbe
Switzerland

Angélique Stalmach
Joseph Black Building
College of Medical, Veterinary and Life Sciences
University of Glasgow
Glasgow
UK

Kemmyo Sugiyama
Division of Epidemiology
Department of Public Health and Forensic Medicine
Tohoku University Graduate School of Medicine
Sendai, Miyagi Prefecture
Japan

Eng-King Tan
Department of Neurology
Singapore General Hospital
Singapore;
National Neuroscience Institute
Duke Graduate Medical School
Singapore

Viviane Theurillat
Nestlé Product Technology Centre
Orbe
Switzerland

Ichiro Tsuji
Division of Epidemiology
Department of Public Health and Forensic Medicine
Tohoku University Graduate School of Medicine
Sendai, Miyagi Prefecture
Japan

Jaakko Tuomilehto
Department of Public Health
Hjelt Institute
University of Helsinki
&
Diabetes Prevention Unit
National Institute for Health and Welfare
Helsinki
Finland
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-APA</td>
<td>3-Amino-propionamide</td>
</tr>
<tr>
<td>3MS</td>
<td>Modified Mini-Mental State Examination</td>
</tr>
<tr>
<td>ABCA1</td>
<td>ATP-binding cassette transporter A1</td>
</tr>
<tr>
<td>ACh</td>
<td>Acetylcholine</td>
</tr>
<tr>
<td>AChE</td>
<td>Acetylcholinesterase</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer’s disease</td>
</tr>
<tr>
<td>AFB1</td>
<td>Aflatoxin B1</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine aminotransferase</td>
</tr>
<tr>
<td>APOE</td>
<td>Apolipoprotein E</td>
</tr>
<tr>
<td>APP</td>
<td>Amyloid precursor protein</td>
</tr>
<tr>
<td>ARCADE</td>
<td>Alcohol-Related Cancers and Genetic Susceptibility in Europe</td>
</tr>
<tr>
<td>ARE</td>
<td>Antioxidant response element</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate aminotransferase</td>
</tr>
<tr>
<td>AUB</td>
<td>Area under baseline</td>
</tr>
<tr>
<td>BACE</td>
<td>β-Amyloid precursor cleaving enzyme</td>
</tr>
<tr>
<td>BDA</td>
<td>Butene-1,4-dial</td>
</tr>
<tr>
<td>BMDL</td>
<td>Benchmark dose lower confidence limit</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>CA</td>
<td>Caffeic acid</td>
</tr>
<tr>
<td>CAIDE Study</td>
<td>Cardiovascular Risk Factors, Aging and Dementia Study</td>
</tr>
<tr>
<td>CAMP</td>
<td>Cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CASI</td>
<td>Cognitive Abilities Screening Instrument</td>
</tr>
<tr>
<td>CCl4</td>
<td>Carbon tetrachloride</td>
</tr>
<tr>
<td>CCR</td>
<td>Cytochrome-c-reductase</td>
</tr>
<tr>
<td>CEN</td>
<td>European Committee for Standardization</td>
</tr>
<tr>
<td>CGA</td>
<td>Chlorogenic acid</td>
</tr>
<tr>
<td>CHD</td>
<td>Coronary heart disease</td>
</tr>
<tr>
<td>ChEI</td>
<td>Cholinesterase inhibitor</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>CIAA</td>
<td>Confederation of the European Food and Drink Industry</td>
</tr>
<tr>
<td>Cmax</td>
<td>Peak plasma concentration</td>
</tr>
<tr>
<td>COMT</td>
<td>Catechol-O-methyltransferase</td>
</tr>
<tr>
<td>CPT</td>
<td>Cyclopentyltheophylline</td>
</tr>
<tr>
<td>CQA</td>
<td>Caffeoylquinic acid</td>
</tr>
<tr>
<td>CQLAL</td>
<td>Caffeoylquinic acid lactone</td>
</tr>
<tr>
<td>CREB</td>
<td>cAMP response element-binding protein</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CTGF</td>
<td>Connective tissue growth factor</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CVS</td>
<td>Cardiovascular system</td>
</tr>
<tr>
<td>diCQA</td>
<td>Dicaffeoylquinic acid</td>
</tr>
<tr>
<td>DIFEQ</td>
<td>Derivative 3,4-diferuloyl-1,5-quinolactone</td>
</tr>
<tr>
<td>Disorders and Stroke</td>
<td>Alzheimer’s Disease and Related Disorders Association</td>
</tr>
<tr>
<td>DPCPX</td>
<td>Dipropylxanthine</td>
</tr>
<tr>
<td>DRI</td>
<td>Dietary reference intake</td>
</tr>
<tr>
<td>DSM</td>
<td>Diagnostic and Statistical Manual of Mental Disorders</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
</tr>
<tr>
<td>EFSA</td>
<td>European Food Safety Authority</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epithelial growth factor receptor</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular signal-regulated protein kinase</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FBOs</td>
<td>Food business operators</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FDE</td>
<td>FoodDrinkEurope</td>
</tr>
<tr>
<td>FQA</td>
<td>Feruloylquinic acid</td>
</tr>
<tr>
<td>FINE Study</td>
<td>Finland, Italy and The Netherlands Elderly Study</td>
</tr>
<tr>
<td>GABA</td>
<td>(\gamma)-Aminobutyric acid</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas chromatography-mass spectrometry</td>
</tr>
<tr>
<td>GDNF</td>
<td>Glial-derived neurotrophic factors</td>
</tr>
<tr>
<td>GERD</td>
<td>Gastroesophageal reflux</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GGT</td>
<td>(\gamma)-Glutamyl transferase</td>
</tr>
<tr>
<td>GIP</td>
<td>Insulin-like polypeptide</td>
</tr>
<tr>
<td>GLP-1</td>
<td>Glucagon-like peptide 1</td>
</tr>
<tr>
<td>GPD</td>
<td>Gastric potential difference</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione-S-transferase</td>
</tr>
<tr>
<td>HCC</td>
<td>Hepatocellular carcinoma</td>
</tr>
<tr>
<td>HDLs</td>
<td>High-density lipoproteins</td>
</tr>
<tr>
<td>HPA</td>
<td>Hypothalamic–pituitary–adrenal</td>
</tr>
<tr>
<td>HPLC-MSn</td>
<td>High-performance liquid chromatography mass spectrometry ion scan</td>
</tr>
<tr>
<td>HR</td>
<td>Hazard ratio</td>
</tr>
<tr>
<td>HRT</td>
<td>Hormone replacement therapy</td>
</tr>
<tr>
<td>hsCRP</td>
<td>High-sensitivity C-reactive protein</td>
</tr>
<tr>
<td>HSCs</td>
<td>Hepatic stellate cells</td>
</tr>
<tr>
<td>HT</td>
<td>Hydroxytryptophan</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer</td>
</tr>
<tr>
<td>IC50</td>
<td>Half-maximal inhibitory concentration</td>
</tr>
<tr>
<td>IDC</td>
<td>Instant decaffeinated coffee</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>INF-(\gamma)</td>
<td>Interferon-(\gamma)</td>
</tr>
<tr>
<td>IR</td>
<td>Irritation index</td>
</tr>
<tr>
<td>IRMM</td>
<td>Institute for Reference Materials and Measurements</td>
</tr>
<tr>
<td>IVGTT</td>
<td>Intravenous glucose tolerance test</td>
</tr>
<tr>
<td>JECFA</td>
<td>Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives</td>
</tr>
</tbody>
</table>
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>JNK</td>
<td>c-Jun N-terminal kinase</td>
</tr>
<tr>
<td>LC-MS/MS</td>
<td>Liquid chromatography tandem mass spectrometry</td>
</tr>
<tr>
<td>LDL</td>
<td>Low-density lipoprotein</td>
</tr>
<tr>
<td>LES</td>
<td>Lower esophageal sphincter</td>
</tr>
<tr>
<td>LMP</td>
<td>Last menstrual period</td>
</tr>
<tr>
<td>LXRα</td>
<td>Liver X receptor-α</td>
</tr>
<tr>
<td>MAO</td>
<td>Human monoamine oxidase</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MAPT</td>
<td>Microtubule-associated protein tau</td>
</tr>
<tr>
<td>MMSE</td>
<td>Mini-Mental State Examination</td>
</tr>
<tr>
<td>MOE</td>
<td>Margin of exposure</td>
</tr>
<tr>
<td>MOS</td>
<td>Mannooligosaccharides</td>
</tr>
<tr>
<td>MPTP</td>
<td>1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>MWM</td>
<td>Morris water maze</td>
</tr>
<tr>
<td>NF-kB</td>
<td>Nuclear factor-κB</td>
</tr>
<tr>
<td>NINCDS-ADRDA</td>
<td>National Institute of Neurological and Communicative Disorders and Stroke</td>
</tr>
<tr>
<td>NMDAR</td>
<td>N-Methyl-d-aspartate receptor</td>
</tr>
<tr>
<td>NMP</td>
<td>N-Methylpyridinium</td>
</tr>
<tr>
<td>NOAEL</td>
<td>No observed adverse effect level</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>Nonsteroidal anti-inflammatory drugs</td>
</tr>
<tr>
<td>NTP</td>
<td>National Toxicology Program</td>
</tr>
<tr>
<td>NVP</td>
<td>Nausea and vomiting in pregnancy</td>
</tr>
<tr>
<td>OGTT</td>
<td>Oral glucose tolerance test</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>ORAC</td>
<td>Oxygen radical absorbance capacity</td>
</tr>
<tr>
<td>OTA</td>
<td>Ochratoxin A</td>
</tr>
<tr>
<td>PAH</td>
<td>Polycyclic aromatic hydrocarbon</td>
</tr>
<tr>
<td>PD</td>
<td>Parkinson’s disease</td>
</tr>
<tr>
<td>PGA</td>
<td>Pyroglutamate</td>
</tr>
<tr>
<td>PKA</td>
<td>Protein kinase A</td>
</tr>
<tr>
<td>PS</td>
<td>Presenilin</td>
</tr>
<tr>
<td>RAWM</td>
<td>Radial-arm water maze</td>
</tr>
<tr>
<td>RCT</td>
<td>Reverse cholesterol transport</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RR</td>
<td>Relative risk</td>
</tr>
<tr>
<td>RR</td>
<td>Risk ratio</td>
</tr>
<tr>
<td>SCAA</td>
<td>Specialty Coffee Association of America</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SR-BI</td>
<td>Scavenger receptor class B type I</td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming growth factor</td>
</tr>
<tr>
<td>TICS</td>
<td>Telephone Interview for Cognitive Status</td>
</tr>
<tr>
<td>Tmax</td>
<td>Time reached for peak plasma concentration</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumor necrosis factor alpha</td>
</tr>
<tr>
<td>TRAP</td>
<td>Total radical-trapping antioxidant parameters</td>
</tr>
<tr>
<td>VLDL</td>
<td>Very low-density lipoprotein</td>
</tr>
<tr>
<td>WCRF</td>
<td>World Cancer Research Fund</td>
</tr>
</tbody>
</table>
Acknowledgement

As a student of science, I am deeply honored to serve as Editor for this book. I am also profoundly grateful to the many authors who carved out time from their busy schedules to contribute.

This book would not have been possible without the enthusiasm and support of Richard Black, Chief Nutrition Officer at Kraft Foods. Richard demonstrates how effective a leader can be by believing in his troops, which in turn brings out the best in people. I also want to thank Barbara Lyle for taking a chance on me when I was a new PhD graduate.

A thank you to colleagues, friends, and collaborators who took the time to help with various aspects of the book: Kristin Rubin, Shilpa Kamath-Jha, Albert Hong, Peter Brown, and Doris Tancredi at Kraft Foods; Laura Fountain at IFT; Boxin Ou at Brunswick Laboratories; Baljinder Kaur at Aptara, Inc.; and Mark Barrett, David McDade, Andrew Hallam, and Samantha Thompson at Wiley-Blackwell.

Finally, I am indebted to my parents, Pi-Chi and Li-Chiu, my wife April, and my son Winston. You have kept me centered on who I am, what I stand for, and what is truly important.
1 Introduction
Thomas Hatzold

1.1 Coffee—a Popular Beverage

Billions of cups of coffee are enjoyed every year by consumers around the world. Coffee consumption is common among both younger and older adults, and at all times of the day: early morning upon waking, for breakfast, after a meal, and even in the evening. It is taken at home, at work, and in cafés, bars, and restaurants. The preparation methods range from café ristretto, a special type of espresso containing little water, to large cups of “regular” coffee. It is taken as black coffee or with addition of other food ingredients such as sugar or other sweeteners, milk or nondairy creamer, and in the form of special preparations such as cappuccinos, lattes, or flavored coffees.

Coffee is consumed for its unique aromatic taste and stimulating effects. The pleasant taste originates from the roasting process, where the bitter tasting and the characteristic volatile aroma components are formed [1]. More than 1000 different aroma compounds have been identified in coffee, making it a complex and diverse beverage. Moreover, the effects of coffee can be either stimulating or relaxing, depending on the situation one finds oneself in and how one feels [2].

Consumers may take coffee for emotional reasons because they enjoy it; it may help them relax or improve their mood. Other reasons for drinking coffee may be more rational; it may help one to wake up, be stimulated, have improved concentration, or avoid falling asleep when wakefulness is desired. Coffee is also used for social reasons, which is evident from the 400-year history of coffee houses, where people meet while enjoying their coffee.

Coffee is one of the most popular drinks in Western countries. In many countries, most adults consume this beverage. In the United States, for example, only 22% of adults never drink coffee [3].

1.2 Coffee from a Nutritional Perspective

Coffee is a unique drink and could be regarded as a healthy beverage choice. If taken as black coffee, it is virtually free of saturated fatty acids, sodium, and sugar. Further, it contains an insignificant amount of energy: 2 kcal/178-g serving [4]. However, many consumers add sugar, milk, or cream to their coffee. The amount of calories provided daily by sweetened
coffee has been calculated as 130 kcal/day (consumers of this beverage only), which is less than half of the estimated 321 kcal/day obtained from all sweetened beverages (including sodas/colas), based on intake data from the United States [5]. Consumers who want to control their calorie intake or consumption of nonessential nutrients such as sugar or saturated fat may choose to add noncaloric sweeteners and low-fat milk to their beverage.

Certain so-called gourmet coffee beverages should be consumed in moderation. These include cappuccino and lattes that contain ingredients such as cream, full-fat milk, and sugar. These beverages can contain up to 240-kcal/237-mL serving [6], but beverages with significantly lower energy levels are also available. An intake study of college women indicated that gourmet coffee drinkers consumed an additional 206 kcal/day and 32 g sugar/day compared with nonconsumers [7].

Roast coffee produced by traditional roasting processes can be regarded as a natural food or food ingredient. It is a single ingredient product without additives and thus fulfills the criteria for the term “natural” that was established by the UK government, for example [8]. In certain roast coffee products, the only other substances used are packaging gases such as carbon dioxide, an inert gas that preserves the flavor. In other roast coffee products, other technologies such as vacuum packaging may be used for this purpose.

1.3 POTENTIAL BENEFICIAL EFFECTS OF COFFEE

The health aspects of coffee drinking have been subject to many controversial debates. This history is nicely summarized in Ian Bersten’s book Coffee, Sex & Health, a history of anti-coffee crusaders and sexual hysteria [9]. As the author points out:

... even though coffee, tea and cocoa all contain caffeine, seemingly the root cause of many problems to do with health, coffee seemed to be the only one of the three that had a health image problem.

Even today, a substantial number of articles about coffee are negative. In the United Kingdom, for example, 51% of media publications on coffee, caffeine, and health are negative, 22% are neutral, and 27% positive [10].

Only recently have scientists begun to document the potential health benefits of coffee drinking, whereas research data on the acute/short-term stimulating properties of coffee due to caffeine are well known. Caffeine is naturally found in about 60 different plants including tea leaves, cocoa beans, guaraná, and kola nut. It is also added to many soft drinks including energy drinks and to medicinal products such as analgesics and cough syrups [11,12].

Acute caffeine effects on the central nervous system have been reviewed extensively [13–15]. Although these effects are not the focus of this book, they are briefly summarized here.

At common consumption levels, the most important acute effect of caffeine and its predominant metabolites (paraxanthine and theophylline) is the blockade of adenosine A₁ and A₂A receptors. This leads to activation of a variety of neurotransmitter systems and finally to the well-known effects on improved arousal, vigilance, and attention. There is evidence that caffeine has the potential to improve cognitive functions that are timed such as reaction time, decision-making, or cancellation tasks. Its influence on mood depends on the amount of caffeine consumed, individual differences, and arousal states. In real-life simulations, caffeine appears to improve performance of artificial tasks and simulations of driving and industrial work.