This textbook places a unique focus on pharmaceuticals and pharmaceutical laboratory practices, providing a systematic introduction to the different applications of chemical analysis commonly used in the pharmaceutical industry. It comprehensively covers chemical analysis of drug substances, final pharmaceutical products, and biological fluids like blood and plasma, with a special emphasis on sample preparation and separation techniques.

The text is arranged in three parts:
• The first presents an introduction to the chemical analysis of pharmaceuticals and teaches the basics of analytical chemistry and statistics;
• The second provides descriptions of a variety of analytical techniques widely-used in the pharmaceutical laboratory.
• The third instructs the reader how to use analytical techniques to analyze raw materials for pharmaceutical production, how to analyze finished pharmaceutical products, and how to analyze drug substances in biological fluids like urine and blood.

Introduction to Pharmaceutical Chemical Analysis will be a valuable resource for undergraduates studying pharmaceutical sciences, analytical sciences, chemistry and forensic analysis. It is written by three established authors, all of whom have extensive experience researching and teaching pharmaceutical analysis. The content is presented from a fundamental point of view and includes solvable problems and illustrative examples with up-to-date information that transcends existing textbooks in this field.
Introduction to Pharmaceutical Chemical Analysis
Introduction to Pharmaceutical Chemical Analysis

STEEN HANSEN
STIG PEDERSEN-BJERGAARD
KNUT RASMUSSEN

A John Wiley & Sons, Ltd., Publication
Table of Contents

Preface

1 **Introduction to Pharmaceutical Analysis** 1
 1.1 Applications and Definitions 1
 1.2 The Life of Medicines 4
 1.3 The Quality of Medical Products 8
 1.4 Summary 11

2 **International Pharmacopoeias, Regulations and Guidelines** 13
 2.1 Overview of Legislation 13
 2.2 Legislation and Regulations for Industrial Production 14
 2.3 Life Time of Drugs and Drug Substances 17
 2.4 Pharmacopoeias 18
 2.5 International Harmonization 19
 2.5.1 International Conference on Harmonization 20
 2.5.2 Pharmacopoeial Discussion Group 20
 2.6 Legislation and Regulations for Pharmacy Production 20
 2.7 Summary 21

3 **Fundamental Chemical Properties, Buffers and pH** 23
 3.1 pH and pK_a 23
 3.2 Partition 25
 3.3 Stereochemistry 28
 3.4 Stability Testing 29
 3.5 Summary 30

4 **Fundamentals of Pharmaceutical Analysis** 33
 4.1 What is a Pharmaceutical (Chemical) Analysis? 33
 4.2 How to Specify Quantities and Concentrations? 35
 4.3 Basic Laboratory Equipment 37
 4.3.1 The Analytical Balance 37
 4.3.2 Pipettes 41
 4.3.3 Volumetric Flasks 44
 4.3.4 Burettes 47
4.4 How to Make Solutions and Dilutions 47
4.5 Calibration of Analytical Methods 49
4.6 Errors, Accuracy, and Precision 50
 4.6.1 Systematic and Random Errors 50
 4.6.2 Accuracy and Precision 51
4.7 Statistics 52
 4.7.1 Mean Value and Standard Deviation 52
 4.7.2 Confidence Intervals 54
 4.7.3 Comparison of Means with a t-Test 55
 4.7.4 Q-Test to Reject Outliers 56
 4.7.5 Linear Regression with the Method of Least Squares 57
 4.7.6 How to Present an Analytical Result 58
4.8 Some Words and Concepts 62
 4.8.1 Analysis and Determination 62
 4.8.2 Sample Replicates and Measuring Replicates 62
 4.8.3 Interference 62
 4.8.4 Blind Samples 62

5 Titrimetric Methods 65
 5.1 Introduction 65
 5.2 Acid–Base Titrations 72
 5.3 Acid–Base Titrations in Non-Aqueous Media 75
 5.4 Redox Titrations 78
 5.5 Other Principles of Titration 81
 5.6 Summary 82

6 Introduction to Spectroscopic Methods 83
 6.1 Electromagnetic Radiation 83
 6.2 Molecules and Electromagnetic Radiation 85
 6.3 Atoms and Electromagnetic Radiation 86
 6.4 Summary 88

7 UV Spectrophotometry 89
 7.1 Principle of Quantitative Determination 89
 7.2 Principle of Identification 94
 7.3 Which Substances Have Strong UV Absorbance? 95
 7.4 Instrumentation 95
 7.5 Practical Work and Method Development 99
 7.6 Areas of Usage and Performance 101
 7.7 System Testing 101
 7.8 Summary 102

8 IR Spectrophotometry 103
 8.1 IR Spectrophotometry 103
 8.2 Instrumentation 106
 8.3 Scope 109
8.4 Instrument Calibration 109
8.5 NIR Spectrophotometry 110
8.6 Applications 112
8.7 Summary 114

9 Atomic Spectrometry 115
9.1 Atomic Absorption Spectrometry 115
9.2 Instrumentation 118
9.3 Applications and Performance 121
9.4 Practical Work and Method Development 122
9.5 Atomic Emission Spectrometry 123
9.6 Instrumentation 124
9.7 Summary 124

10 Chromatography 127
10.1 General Principles 127
10.2 Retention 131
10.3 Column Efficiency 133
10.4 Selectivity 135
10.5 Peak Symmetry 136
10.6 Resolution 138
10.7 Chromatographic Techniques 140
10.8 Summary 140

11 Chromatographic Separation Principles 141
11.1 General Introduction 141
11.2 Normal Phase Chromatography 142
 11.2.1 Silica 142
 11.2.2 Interactions 143
 11.2.3 Order of Elution 144
 11.2.4 Other Stationary Phases 145
 11.2.5 Mobile Phases 146
 11.2.6 Summary of Normal Phase Chromatography 147
11.3 Reversed Phase Chromatography 148
 11.3.1 Stationary Phases 148
 11.3.2 Retention Mechanisms 150
 11.3.3 Mobile Phases 152
 11.3.4 Ion-Pair Chromatography 155
 11.3.5 Summary of Reversed Phase Chromatography 155
11.4 Hydrophilic Interaction Chromatography 156
11.5 Chiral Separations 156
11.6 Size Exclusion Chromatography 158
 11.6.1 Principle 158
 11.6.2 Summary of SEC 160
11.7 Ion Exchange Chromatography 160
Table of Contents

12 Thin-Layer Chromatography 163
- 12.1 Introduction 163
- 12.2 Apparatus 164
- 12.3 TLC Plates 166
- 12.4 Stationary Phases 166
- 12.5 Mobile Phases 167
- 12.6 Chromatographic Development 168
- 12.7 Detection 169
- 12.8 Applications of TLC 169
- 12.9 Quantitative Analysis and Instrumentation 170
- 12.10 Summary 171

13 High Performance Liquid Chromatography 173
- 13.1 Introduction 173
- 13.2 The Chromatographic Separation Process 175
- 13.3 The Column 177
- 13.4 Pumps 180
- 13.5 Detectors 182
 - 13.5.1 UV detector 182
 - 13.5.2 Fluorescence Detector 184
 - 13.5.3 Electrochemical Detector 186
 - 13.5.4 Refractive Index, Evaporative Light Scattering and Corona Discharge Detectors 186
 - 13.5.5 Combination of Detectors 187
- 13.6 Injectors 187
- 13.7 Mobile Phases 188
- 13.8 Solvents for Sample Preparation 189
- 13.9 Reporting the Results 189
- 13.10 Summary 190

14 Gas Chromatography 191
- 14.1 Introduction 191
- 14.2 Apparatus 192
- 14.3 Temperature 193
- 14.4 Carrier Gas 195
- 14.5 Stationary Phases 196
- 14.6 Selectivity in GC 197
- 14.7 Columns 198
 - 14.7.1 Capillary Columns 198
 - 14.7.2 Packed Columns 199
- 14.8 Injection Systems 200
 - 14.8.1 Injection Systems for Capillary Columns 200
 - 14.8.2 Injection Systems for Packed Columns 202
- 14.9 Detectors 203
 - 14.9.1 Flame Ionization Detector 203
 - 14.9.2 Nitrogen–Phosphorus Detector 203
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.9.3</td>
<td>Thermal Conductivity Detector</td>
<td>204</td>
</tr>
<tr>
<td>14.9.4</td>
<td>Electron Capture Detector</td>
<td>204</td>
</tr>
<tr>
<td>14.9.5</td>
<td>Mass Spectrometry Detector</td>
<td>206</td>
</tr>
<tr>
<td>14.10</td>
<td>Derivatization</td>
<td>206</td>
</tr>
<tr>
<td>14.10.1</td>
<td>Silylation</td>
<td>206</td>
</tr>
<tr>
<td>14.10.2</td>
<td>Alkylation</td>
<td>207</td>
</tr>
<tr>
<td>14.10.3</td>
<td>Acylation</td>
<td>207</td>
</tr>
<tr>
<td>14.11</td>
<td>The Uses of GC</td>
<td>208</td>
</tr>
<tr>
<td>14.12</td>
<td>More Advanced GC techniques</td>
<td>209</td>
</tr>
<tr>
<td>14.13</td>
<td>Summary</td>
<td>209</td>
</tr>
<tr>
<td>15</td>
<td>Capillary Electrophoresis</td>
<td>211</td>
</tr>
<tr>
<td>15.1</td>
<td>Principle and Theory</td>
<td>211</td>
</tr>
<tr>
<td>15.2</td>
<td>Electroosmotic Flow</td>
<td>213</td>
</tr>
<tr>
<td>15.3</td>
<td>Instrumentation</td>
<td>214</td>
</tr>
<tr>
<td>15.4</td>
<td>The Capillary</td>
<td>217</td>
</tr>
<tr>
<td>15.5</td>
<td>Sample Introduction</td>
<td>218</td>
</tr>
<tr>
<td>15.6</td>
<td>Capillary Zone Electrophoresis; an Example</td>
<td>221</td>
</tr>
<tr>
<td>15.7</td>
<td>Micellar Electrokinetic Chromatography</td>
<td>222</td>
</tr>
<tr>
<td>15.8</td>
<td>Chiral Separations</td>
<td>224</td>
</tr>
<tr>
<td>15.9</td>
<td>Coated Capillaries</td>
<td>225</td>
</tr>
<tr>
<td>15.10</td>
<td>Non-Aqueous CE</td>
<td>229</td>
</tr>
<tr>
<td>15.11</td>
<td>Summary</td>
<td>229</td>
</tr>
<tr>
<td>16</td>
<td>Mass Spectrometry</td>
<td>231</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>231</td>
</tr>
<tr>
<td>16.2</td>
<td>Basic Theory</td>
<td>233</td>
</tr>
<tr>
<td>16.3</td>
<td>Electron Ionization</td>
<td>236</td>
</tr>
<tr>
<td>16.4</td>
<td>Identification using Electron Ionization Spectra</td>
<td>237</td>
</tr>
<tr>
<td>16.5</td>
<td>Characterization of Totally Unknowns using Electron Ionization Spectra</td>
<td>239</td>
</tr>
<tr>
<td>16.6</td>
<td>Chemical Ionization</td>
<td>244</td>
</tr>
<tr>
<td>16.7</td>
<td>Electrospray Ionization</td>
<td>246</td>
</tr>
<tr>
<td>16.8</td>
<td>Atmospheric Pressure Chemical Ionization</td>
<td>247</td>
</tr>
<tr>
<td>16.9</td>
<td>High-Resolution Mass Spectrometry</td>
<td>248</td>
</tr>
<tr>
<td>16.10</td>
<td>Instrumentation</td>
<td>250</td>
</tr>
<tr>
<td>16.11</td>
<td>Chromatography Coupled with Mass Spectrometry</td>
<td>253</td>
</tr>
<tr>
<td>16.12</td>
<td>Quantitative GC-MS and LC-MS</td>
<td>256</td>
</tr>
<tr>
<td>16.13</td>
<td>Areas of Usage and Performance</td>
<td>257</td>
</tr>
<tr>
<td>16.15</td>
<td>Inductively Coupled Plasma Mass Spectrometry</td>
<td>258</td>
</tr>
<tr>
<td>16.16</td>
<td>Summary</td>
<td>259</td>
</tr>
<tr>
<td>17</td>
<td>Miscellaneous Chemical Techniques</td>
<td>261</td>
</tr>
<tr>
<td>17.1</td>
<td>Potentiometric Determination of Ions using Ion-Selective Electrodes</td>
<td>261</td>
</tr>
<tr>
<td>17.2</td>
<td>Paper Chromatography</td>
<td>263</td>
</tr>
</tbody>
</table>
18 Sample Preparation
18.1 Why is Sample Preparation Required?
18.2 Main Strategies
18.3 Recovery and Enrichment
18.4 Protein Precipitation
18.5 Liquid–Liquid Extraction
 18.5.1 Fundamentals
 18.5.2 A Closer Look at the Theory
 18.5.3 Extraction Solvents
 18.5.4 Calculation of Recovery
 18.5.5 Multiple Extractions
 18.5.6 LLE with Back-Extraction
18.6 Solid–Liquid Extraction
18.7 Solid Phase Extraction
 18.7.1 Fundamentals
 18.7.2 The SPE Column
 18.7.3 Conditioning
 18.7.4 Equipment
 18.7.5 Reversed-Phase SPE
 18.7.6 Secondary Interactions
 18.7.7 Ion Exchange SPE
 18.7.8 Mixed-Mode SPE
 18.7.9 Normal-Phase SPE
18.8 Summary

19 Analytical Chemical Characteristics of Selected Drug Substances
19.1 Amitriptyline and Mianserin
19.2 Morphine and Codeine
19.3 Ibuprofen and Naproxen
19.4 Furosemide
19.5 Paracetamol (Acetaminophen)
19.6 Neutral Drugs

20 Quantification and Quality of Analytical Data
20.1 Peak Height and Peak Area
20.2 Calibration Methods
 20.2.1 External Standard Method
 20.2.2 Internal Standard Method
 20.2.3 Standard Addition
 20.2.4 Normalization
20.3 Validation

20.3.1 Analytical Procedure

20.3.2 Accuracy

20.3.3 Precision

20.3.4 Specificity

20.3.5 Detection Limit

20.3.6 Quantification Limit

20.3.7 Linearity and Range

20.3.8 Robustness

20.3.9 Test Methods in the European Pharmacopeia

20.4 System Suitability

20.4.1 Adjustment of Chromatographic Conditions

21 Chemical Analysis of Drug Substances

21.1 What is a Pharmaceutical Raw Material, how is it Produced and why must it be Controlled?

21.2 The Pharmacopoeias – the Basis for Control of Pharmaceutical Raw Materials

21.3 Which Contaminants are Found in Raw Materials, What are the Requirements in a Maximum Content and Why?

21.3.1 Well Defined Chemical Compounds

21.3.2 Mixtures of Organic Compounds

21.4 How to Check the Identity of Pharmaceutical Raw Materials

21.4.1 Overview of the Identification Procedures

21.4.2 Techniques used for the Identification of Well Defined Chemical Compounds

21.4.2.1 Infrared Absorption Spectrophotometry

21.4.2.2 Ultraviolet and Visible Absorption Spectrophotometry

21.4.2.3 Thin-Layer Chromatography

21.4.2.4 Melting Point

21.4.2.5 Polarimetry

21.4.2.6 High Performance Liquid Chromatography

21.4.2.7 Chloride and Sulfate Identification

21.5 How to Test for Impurities in Pharmaceutical Raw Materials

21.5.1 Main Purity Tests for Well Defined Chemical Compounds

21.5.1.1 Appearance of Solution

21.5.1.2 Absorbance

21.5.1.3 Acidity/Alkalinity

21.5.1.4 Optical Rotation

21.5.1.5 Related Substances

21.5.1.6 Solvent Residues

21.5.1.7 Foreign Anions

21.5.1.8 Cationic Impurities

21.5.1.9 Loss on Drying

21.5.1.10 Determination of Water
21.5.2 Purity Tests for Raw Materials of the Type of Mixtures of Organic Compounds

21.5.2.1 Oxidizing Substances
21.5.2.2 Acid Value
21.5.2.3 Hydroxyl Value
21.5.2.4 Iodine Value
21.5.2.5 Peroxide Value
21.5.2.6 Saponification Value
21.5.2.7 Unsaponifiable Matter
21.5.2.8 Other Tests

21.5.3 Identification of the Raw Materials of the Type of Mixtures of Organic Compounds

21.6 How to Determine the Purity of Pharmaceutical Raw Materials

21.6.1 Acid–Base Titration in Aqueous Environment
21.6.2 Acid–Base Titration in a Non-Aqueous Environment
21.6.3 Redox Titrations
21.6.4 High Performance Liquid Chromatography
21.6.5 UV spectrophotometry

21.7 How to Control Compounds for Which no Pharmacopoeia Monograph Exists

21.8 How are Ph.Eur. and USP Updated?

22 Chemical Analysis of Final Pharmaceutical Products

22.1 Quality Control of Final Pharmaceutical Products
22.2 Monographs and Chemical Testing
22.3 Identification of the Active Pharmaceutical Ingredient
22.4 Assay of the Active Pharmaceutical Ingredient
22.5 Chemical Tests for Final Pharmaceutical Products

23 Analysis of Drugs in Biological Fluids

23.1 Introduction
23.1.1 Drug Development
23.1.2 Therapeutic Drug Monitoring
23.1.3 Forensic and Toxicological Analysis
23.1.4 Doping Control Analysis
23.2 The Biological Matrix
23.3 Bioanalytical Methods

xii Table of Contents
23.3.7 Detection 464
23.3.8 Calibration and Quantification 465
23.4 Examples 466
 23.4.1 Sample Preparation 466
 23.4.1.1 Sample Preparation Procedure by LLE 466
 23.4.1.2 Comments to the Procedure 466
 23.4.1.3 Sample Preparation Procedure by LLE and Back Extraction 467
 23.4.1.4 Comments to the Procedure 467
 23.4.1.5 Sample Preparation Procedure by SPE 467
 23.4.1.6 Comments to the Procedure 468
 23.4.1.7 Sample Preparation Procedure by Protein Precipitation 468
 23.4.1.8 Comments to the Procedure 468
 23.4.2 Quantitative Determination 468
 23.4.2.1 Quantitative Determination of Amitriptyline in Serum by LC-MS 468
 23.4.2.2 Comments to the Procedure 469
 23.4.2.3 Determination of Valproic Acid in Serum by GC-MS 471
 23.4.2.4 Comments to the Procedure 471
 23.4.3 Identification 472
 23.4.3.1 Sample Preparation Procedure for Unknown Screening by Mixed Mode Cation Exchange 472
 23.4.3.2 Comments to the Procedure 472
 23.4.3.3 GC-MS Procedure for Unknown Screening 473
 23.4.3.4 Comments to the Procedure 473
 23.4.3.5 LC-MS-MS Procedure for Unknown Screening 475
 23.4.3.6 Comments to the Procedure 475

Index 477
Preface

This textbook, entitled “Introduction to Pharmaceutical Chemical Analysis”, is the first textbook giving a systematic introduction to the chemical analysis of pharmaceutical raw materials, finished pharmaceutical products, and drugs in biological fluids, as carried out in the pharmaceutical laboratories worldwide. In addition to this, the textbook teaches the fundamentals of all the major analytical techniques used in the pharmaceutical laboratory and teaches the international pharmacopoeias and guidelines of importance for the field. The textbook is primarily intended for the pharmacy student, to teach the requirements in “analytical chemistry” for the 5-year pharmacy curriculum, but the textbook is also intended for analytical chemists moving into the field of pharmaceutical analysis.

The field of pharmaceutical analysis is very broad and challenging to define and limit, and therefore we have made priority to some major areas of focus. First, the textbook has a major focus on low-molecular-weight drug substances. This “low-molecular” focus was selected to limit the size of the book, but also because we have a clear ambition of linking all the discussions of the different chemical techniques and methods to the chemical properties of the drug substances. We feel this is very important for a good understanding, and this understanding is much easier to obtain for low-molecular drug substances than for macromolecules. Thus, although macromolecules, like peptides and proteins, are also used as drugs, they are not discussed in this textbook.

Second, this textbook has a major focus on pharmaceutical routine applications, including how drug substances are analyzed as raw materials prior to pharmaceutical production, how they are analyzed in finished pharmaceutical products, and how they are analyzed in patient samples following administration. This “routine” focus was also selected to limit the size of the book. Thus, applications of pharmaceutical analysis during development of new drugs and during pharmaceutical research have not been discussed. However, many of these applications are similar to the routine applications in terms of fundamental understanding, and as long as the readers understand the routine applications, they also have the best fundament to understand the more advanced applications.

Third, the textbook has a major focus on classical analytical techniques such as titration, chromatography, electrophoresis, and spectroscopy. This “classical” focus was a natural consequence of the “low-molecular” and “routine” focuses discussed above. Additionally, we feel that discussing the most important techniques comprehensively is much more valuable for the reader than mentioning all the techniques involved in pharmaceutical analysis. In future revisions however, we may include more new analytical techniques as they are gradually included as official methods in the international pharmacopoeias.
This textbook first gives a short introduction to the field of pharmacy, to the field of pharmaceutical analysis, and to the regulations and guidelines relevant for the field (Chapters 1 and 2). This is an important motivation for the reader, but is also a basis for understanding the “landscape” of pharmaceutical analysis. Then, the textbook gives a short chemistry course to make sure that the reader is at an appropriate level in terms of chemical understanding (Chapter 3). This is very important, as we try to link every discussion later in the book to chemical structures. The third part of the book (Chapters 4–20) describes all the analytical techniques (tools). In this part of the textbook, we basically fill up the tool box to be used in the final part. In the latter (Chapters 21–23), we describe how the different tools (analytical techniques) are used for the analysis of pharmaceutical raw materials, for the analysis of finished pharmaceutical products, and for the analysis of patient samples. Unlike many other textbooks, we have no student problems. However, we have replaced the student problems with many real examples, and for each example, we have given priority to fundamental understanding of the chemistry and to calculations. Thus, in this textbook, you learn how to calculate the concentration of a certain drug in your sample based on the number displayed on your analytical instrument. Welcome to the challenging world of pharmaceutical analysis!

Copenhagen/Oslo, April 2011

Steen Honoré Hansen
University of Copenhagen

Knut Einar Rasmussen
University of Oslo

Stig Pedersen-Bjergaard
University of Oslo

University of Copenhagen
1

Introduction to Pharmaceutical Analysis

This chapter briefly reviews the life of medical products and the manufacture of medical products according to international regulations and guidelines. Based on this review the major areas and usage of pharmaceutical analysis are identified.

1.1 Applications and Definitions

The European Pharmacopeia defines a medical product as:

(a) Any substance or combination of substances presented as having properties for treating or preventing disease in human beings and/or animals; or (b) any substance or combination of substances that may be used in or administered to human beings and/or animals with a view either to restoring, correcting or modifying physiological functions by exerting a pharmacological, immunological or metabolic action, or to making a medical diagnosis.

A medical product contains a substance that is pharmacologically active and that substance is called the active ingredient (AI) or active pharmaceutical ingredient (API) defined as follows:

Any substance intended to be used in the manufacture of a medicinal product and that, when so used, becomes an active ingredient of the medicinal product. Such substances are intended to furnish a pharmacological activity or other direct effect in the diagnosis, cure, mitigation, treatment or prevention of disease, or to affect the structure and function of the body.
An herbal medical product is:

A medicinal product, exclusively containing as active ingredients one or more herbal drugs or one or more herbal drug preparations, or one or more such herbal drugs in combination with one or more such herbal drug preparation.

Drug substances are administered very rare as the pure active substance. Typically the active substance and excipients (auxiliary substances) are combined into dosage forms to produce the final medical product. An excipient is:

Any constituent of a medicinal product that is not an active substance.

Adjuvants, stabilizers, antimicrobial preservatives, diluents, antioxidants, for example, are excipients.

The dosage form can be, for example, a tablet or a capsule or syrup to be administered orally, injections that are for parenteral administration into the body, or ointments for topical administration. Figure 1.1 shows typical dosage forms.

Formulation is the process in which different chemical substances, including the active ingredient and excipients are combined to produce a final medical product. It involves developing a preparation of the drug that is both stable and acceptable to the patient. For orally taken drugs this usually involves incorporating the drug and excipients in a solid
dosage form such as a tablet or a capsule or a liquid dosage forms such as a syrup. The main function of excipients is summarized as follows:

- Ensure that the preparation has a shape and size that is easy to use for the patient;
- Ensure that the active substance is optimally adsorbed in the patient;
- Ensure that the preparation has an acceptable shelf life;
- Ensure that the preparation does not have an unpleasant taste or odor;
- Ensure easy production.

There is a wide spectrum of different excipients, which varies widely from preparation to preparation. To illustrate this, Table 1.1 shows the excipients of a tablet and syrup which both contain paracetamol as the active ingredient. Paracetamol is both an analgesic (\textit{an} = no, \textit{alg} = pain) and a antipyretic (\textit{anti} = against, \textit{pyretos} = fever), which means that it is used against pain and fever.

<table>
<thead>
<tr>
<th>Table 1.1</th>
<th>Excipients of a paracetamol tablet and a paracetamol syrup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content</td>
<td>Amount (mg)</td>
</tr>
<tr>
<td>Tablet (weight 285 mg)</td>
<td></td>
</tr>
<tr>
<td>Paracetamol</td>
<td>250</td>
</tr>
<tr>
<td>Hydroxypropyl cellulose</td>
<td></td>
</tr>
<tr>
<td>Maize starch</td>
<td></td>
</tr>
<tr>
<td>Talcum</td>
<td></td>
</tr>
<tr>
<td>Magnesium stearate</td>
<td></td>
</tr>
<tr>
<td>Syrup (volume 1 ml)</td>
<td></td>
</tr>
<tr>
<td>Paracetamol</td>
<td>24</td>
</tr>
<tr>
<td>Sorbitol</td>
<td></td>
</tr>
<tr>
<td>Glycerol</td>
<td></td>
</tr>
<tr>
<td>Polyvinylpyrrolidone</td>
<td></td>
</tr>
<tr>
<td>Saccharine sodium salt</td>
<td></td>
</tr>
<tr>
<td>Methylparabene</td>
<td></td>
</tr>
<tr>
<td>Ethylparabene</td>
<td></td>
</tr>
<tr>
<td>Propylparabene</td>
<td></td>
</tr>
<tr>
<td>Sodium metabisulphite</td>
<td></td>
</tr>
<tr>
<td>Citric acid</td>
<td></td>
</tr>
<tr>
<td>Sodium citrate</td>
<td></td>
</tr>
<tr>
<td>Strawberry aroma</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
</tr>
</tbody>
</table>

Medical products may be divided into over the counter drugs (OTC), which may be sold directly to the consumer in pharmacies and supermarkets without restrictions, and
prescription only medicine (POM) that must be prescribed by a licensed practitioner. Medical products are predominantly produced by the pharmaceutical companies, only in rare occasions are pharmaceutical products produced in hospitals and in pharmacies. New products are often patented to give the developer exclusive right to produce them. Those that are not patented or with expired patents, are called generic drugs since they can be produced by other companies without restrictions or licenses from the patent holder. According to the European Federation of Pharmaceutical Industries and Associations (EFPIA), the pharmaceutical industry in Europe employed some 630 000 people, including 110 000 in research and development, in 2009. The trade surplus was Euro 55 200 million, and Euro 26 000 million was spent on pharmaceutical research and development. The retail value of the pharmaceutical market was Euro 215 000 million, which is just under 30% of the world market.

1.2 The Life of Medicines

Figure 1.2 outlines a typical industrial production of a pharmaceutical product. Production starts by ordering the current active ingredient and the necessary starting materials. In some cases, the company produces some of the ingredients, but most commonly they are produced elsewhere by various industrial raw material suppliers. The raw materials arrive in relatively large quantities (1–500 kg) and are typically packed in cardboard drums or in plastic containers. Figure 1.3 shows an example of a received batch of raw material in the photo gallery from a manufacturing facility.

![Diagram of the manufacturing process](image-url)
Figure 1.4 shows an outline of some areas found in a manufacturing facility.

Upon arrival the raw materials are registered in the manufacturer’s documentation system, tagged with internal labels and stored in a separate area of the warehouse or in a separate room where they are in quarantine until they are released for production. Samples of the raw materials are collected and analyzed to ensure that the raw materials are of...
satisfactory quality. This is the first of several important areas where pharmaceutical analysis are vital. We focus further on this in Chapter 21. If the results are in accordance with the specifications of the manufacturer the raw materials are labeled as released materials, and transferred to the production facility. Production starts with weighing or measuring the active ingredient and excipients in appropriate amounts for the subsequent production (see Figure 1.3). Then, the raw materials are transferred to the manufacturing machinery. Manufacture of tablets uses several types of equipment such as machinery for granulation, drying and tablet pressing (see Figure 1.3). The manufacture of liquid dosage forms is carried out in large tanks, while the production of ointments and creams are carried in large pots with agitator and heating. When the product leaves the production site samples
Figure 1.3 (Continued)
for a comprehensive finished product control is collected. A number of analytical tests are made, and this is another important field of pharmaceutical analysis which is discussed in detail in Chapter 22. The products are in quarantine until the results of the testing show compliance with specifications. The released product is filled in appropriate containers (filling; see Figure 1.3), the containers are marked with labels (labeling; see Figure 1.3) and the containers are packed in cardboard boxes (packaging; see Figure 1.3). Assessment of the finished product embrace all relevant factors, including production conditions, results of in-process testing, a review of manufacturing (including packaging), documentation, compliance with Finished Product Specifications and examination of the final finished pack.

As shown above, the industrial production of pharmaceuticals is a comprehensive process that takes place over many different steps. Typically, production is a batch process, which means that the products are made in limited batches. Each time a batch is produced a new manufacturing process is started from the beginning with new starting materials. Between each production of a given product, the equipment is often used for the production of other products. Consequently the production facility must be cleaned thoroughly between each batch to prevent the material from an earlier production contaminating other products (cross contamination).

After leaving the manufacturer the products are sent to pharmaceutical wholesalers, which provide for their further distribution to pharmacies, hospitals or other retailers where they becomes available to the patients. Medicines have a broad scope of usage, and are used against many types of illness and pain in various parts of the body.

At the start of medication, it is common to follow a standard treatment, but it is well known that different patients may exhibit large variations in response. In such cases it is important to adjust the dosage. One example is the treatment of hypertension. The dosage may be reduced when the blood pressure is too low and the dosage may be increased when the blood pressure is too high. For other types of treatment, such as depression, psychosis and epilepsy, the measurement of effect is difficult; and in those cases therapeutic drug monitoring (TDM) is advised. In TDM blood samples are collected and analyzed to ensure that the drug level is appropriate. The analysis of drugs in biological fluids is called bioanalysis. In addition to TDM, bioanalysis is crucial in drug development programs, in forensic and toxicological analysis and in doping control testing in sports. Bioanalysis is a third major area of pharmaceutical analysis, which is discussed in Chapter 23.

1.3 The Quality of Medical Products

The purchaser of food and drink normally discovers that a product is associated with a significant quality problem if has either an abnormal taste, unusual smell or a look that seems abnormal. Medicines are, however, special. For example, there is no way patients can decide whether a tablet contains the active ingredient, whether it is the correct dosage, or whether any contaminants or degradation products are present. The patient is not in a position to recognize that a medicine is incorrect or defective. The patient literally takes medicines entirely on trust and is at the end of a chain of implicit trust which extends back through administering, dispensing, prescribing and distributing, right back to those
responsible for manufacture of the product. It is therefore mandatory that the pharma-
aceutical industry maintains the highest standards of quality in the development, manufac-
ture and control of medical products.

Government health authorities are naturally concerned about the quality of medicines,
and regulate the development, manufacture and marketing of medical products by a number
of laws and guidelines. These are discussed in Chapter 2. The regulations and guidelines
are to assure the safety, protection and well being of the consumer or patient. Two important
areas are:

- Marketing authorization of medical products;
- Manufacturing authorization of medical products.

Marketing authorization, also called a license, is required before any medicine can be used
to treat people. Only when the regulatory bodies are satisfied that the product works as it
should, and that it is acceptably safe, is it given a marketing authorization or product license.

The regulatory system also imposes rigorous standards on manufacturers. Manufacturing
authorization is required by all pharmaceutical manufacturers and ensures that only
authorized manufacturers manufacture all licensed products. Competent authorities regu-
larly inspect the activities of the manufacturers and annually collect samples of marketed
medicines for assessment of quality. National Medical Control Agencies have the power to
withdraw a product from the market and to suspend production. These Agencies can also prosecute a manufacturer if the law has been broken.

The holder of a manufacturing authorisation must manufacture medical products so as to ensure that they are fit for their intended use. The products should comply with the requirements of the marketing authorization and should not put patients at risk due to inadequate safety, quality or efficacy. The attainment of quality is the responsibility of the management, and it relies on a comprehensively designed and correctly implemented system of Quality Assurance (QA) incorporating Good Manufacturing Practice (GMP) and Quality Control (QC). The system should be fully documented. The basic concepts of QA, GMP and QC are inter-related, as shown in Figure 1.5.

Quality Assurance is a wide-ranging concept, which covers all matters that influence the quality of a product. It is the sum of all organized arrangements that are made to ensure that medical products are of the quality required for their intended use. Quality Assurance therefore incorporates GMP, which ensures that products are consistently produced and controlled to the quality standards appropriate to their intended use and as required by the Marketing Authorization. The basics of GMP are that all manufacturing processes are clearly defined, systematically reviewed and shown to be capable of consistently manufacturing products of the required quality. Quality Control is part of GMP and is concerned with sampling, specifications and testing, and with the organization, documentation and release procedures. Release procedures should ensure that the necessary and relevant tests are actually carried out and that materials are not released for use, nor

![Figure 1.5 Illustration of the QA/GMP/QC inter-relationship](image-url)
products released for sale or supply, until their quality has been judged to be satisfactory. The independence of the Quality Control Department from other departments is considered fundamental. Quality Control is not confined to laboratory operations, but must be involved in all decisions that may concern the quality of a product.

According to European regulations each batch of finished product must be certified by a Qualified Person (QP) before being released for sale or supply.

Before certifying a batch the QP should ensure that at least the following requirements have been met:

- The batch and its manufacture comply with the provisions of the marketing authorization.
- Manufacture has been carried out in accordance with GMP.
- The principal manufacturing and testing processes have been validated (validation is defined as the documented act of demonstrating that processes will consistently lead to the expected results).
- Any deviations or planned changes in production or quality control have been authorized by the persons responsible in accordance with a defined system.
- All the necessary checks and tests have been performed.
- All necessary production and quality control documentation has been completed.
- The QP should in addition take into account any other factors of which he is aware which are relevant for the quality of the batch.

Good documentation constitutes an essential part of the quality assurance system and constitutes a vital part of batch release and certification by the QP. Clearly written documentation and standard operating procedures (SOP) prevent errors from spoken communication and permit tracing of batch history. The documentation include:

- Specifications that in detail describe the requirements that must be fulfilled prior to quality evaluation;
- Manufacturing formulae, processing and packaging instructions;
- Procedures that give directions for performing operations such as cleaning, sampling testing and equipment operation;
- Records providing a history of each batch or product.

The batch documentation shall be retained for at least one year after the expiry date of the batches.

1.4 Summary

Government health authorities have regulated the development, manufacture and marketing of medical products by a number of laws and guidelines to assure the safety, protection and well being of the patient. Market authorization is required before any medical product can be marketed and only authorized manufacturers can produce authorized products. Authorized manufacture is based on a correctly implemented system of Quality Assurance incorporating Good Manufacturing Practice and Quality Control.