Pharmacoepidemiology

EDITED BY

Brian L. Strom MD, MPH
George S. Pepper Professor of Public Health and Preventive Medicine
Professor of Biostatistics and Epidemiology, of Medicine, and of Pharmacology
Chair, Department of Biostatistics and Epidemiology
Director, Center for Clinical Epidemiology and Biostatistics
Vice Dean for Institutional Affairs
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, PA, USA

Stephen E. Kimmel MD, MSCE
Professor of Medicine and of Epidemiology
Senior Scholar, Center for Clinical Epidemiology and Biostatistics
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, PA, USA

Sean Hennessy PHARMD, PHD
Associate Professor of Epidemiology and of Pharmacology
Senior Scholar, Center for Clinical Epidemiology and Biostatistics
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, PA, USA

FIFTH EDITION
Contents

List of Contributors, ix
Preface, xvi
Acknowledgements, xx

PART I Introduction, 1

1 What is Pharmacoepidemiology?, 3
 Brian L. Strom

2 Basic Principles of Clinical Pharmacology Relevant to
 Pharmacoepidemiologic Studies, 23
 Jeffrey S. Barrett and Athena F. Zuppa

3 Basic Principles of Clinical Epidemiology Relevant to
 Pharmacoepidemiologic Studies, 38
 Brian L. Strom

4 Sample Size Considerations for Pharmacoepidemiologic Studies, 52
 Brian L. Strom

5 When Should One Perform Pharmacoepidemiologic Studies?, 62
 Brian L. Strom

PART II The Role of Pharmacoepidemiology in
Different Sectors, 71

6 The Role of Pharmacoepidemiology in the Health-Care System and Academia, 73
 Jerry Avorn

7 The Role of Pharmacoepidemiology in Industry, 84
 Jingping Mo, Nicolle M. Gatto, Rachel E. Sobel, and Robert F. Reynolds

8 The Role of Pharmacoepidemiology in Regulatory Agencies, 107
 Gerald J. Dal Pan and Peter Arlett

9 Pharmacoepidemiology and the Law, 117
 Aaron S. Kesselheim

PART III Sources of Data for
Pharmacoepidemiologic Studies, 135

Section A: Spontaneous Reporting

10 Postmarketing Spontaneous Pharmacovigilance Reporting Systems, 137
 Gerald J. Dal Pan, Marie Lindquist, and Kate Gelperin
Section B: Automated Data Systems

11 Overview of Automated Databases in Pharmacoepidemiology, 158
 Brian L. Strom

12 Health Maintenance Organizations/Health Plans, 163
 Susan E. Andrade, Marsha A. Raebel, Denise Boudreau, Robert L. Davis,
 Katherine Haffenreffer, Pamala A. Pawloski, Sengwee Toh, and Richard Platt

13 Commercial Insurance Databases, 189
 John Seeger and Gregory W. Daniel

14 US Government Claims Databases, 209
 Sean Hennessy, Cristin Palumbo Freeman, and Francesca Cunningham

15 Medical Record Databases, 224
 Alexis Ogdie, Sinéad M. Langan, John Parkinson, Hassy Dattani, Karel Kostev, and
 Joel M. Gelfand

16 In-hospital Databases, 244
 Brian T. Fisher, Peter K. Lindenauer, and Chris Feudtner

17 Canadian Provincial Databases, 259
 Yola Moride and Colleen J. Metge

18 Pharmacy-based Medical Record Linkage Systems, 270
 Ron M.C. Herings and Lars Pedersen

Section C: Ad Hoc Studies—Ongoing Systems for
Pharmacoepidemiologic Studies

19 Case-Control Surveillance, 287
 Lynn Rosenberg, Patricia F. Coogan, and Julie R. Palmer

20 Prescription-Event Monitoring, 301
 Deborah Layton and Saad A.W. Shakir

21 Registries, 331
 Nancy A. Dreyer and Priscilla Velentgas

Section D: Ad Hoc Studies—De Novo Studies

22 Field Studies, 347
 David W. Kaufman

Section E: Choosing Among the Available Alternatives

23 How Should One Perform Pharmacoepidemiologic Studies?
 Choosing Among the Available Alternatives, 364
 Brian L. Strom

PART IV Selected Special Applications
of Pharmacoepidemiology, 377

24 Studies of Drug Utilization, 379
 David Lee and Ulf Bergman

25 Evaluating and Improving Physician Prescribing, 402
 Sumit R. Majumdar, Helene Levens Lipton, and Stephen B. Soumerai
Contents vii

26 Pharmacoepidemiologic Studies of Vaccine Safety, 423
Robert T. Chen, Jason M. Glanz, and Claudia Vellozzi

27 Epidemiologic Studies of Medical Devices: Methodologic Considerations for Implantable Devices, 469
Danica Marinac-Dabic, Sharon-Lise Normand, Art Sedrakyan, and Thomas Gross

28 Studies of Drug-Induced Birth Defects, 487
Allen A. Mitchell

29 Risk Management, 505
Gerald J. Dal Pan, Stella Blackburn, and Claudia Karwoski

30 FDA’s Sentinel Initiative: Active Surveillance to Identify Safety Signals, 534
Judith A. Racoosin, Melissa A. Robb, Rachel E. Sherman, and Janet Woodcock

31 Pharmacoepidemiology and Pharmaceutical Reimbursement Policy, 555
Mitchell Levine and Jacques LeLorier

32 Comparative Effectiveness Research, 561
Brian L. Strom, Rita Schinnar, and Sean Hennessy

PART V Selected Special Methodologic Issues in Pharmacoepidemiology, 581

33 Assessing Causality of Case Reports of Suspected Adverse Events, 583
Judith K. Jones

34 Molecular Pharmacoepidemiology, 601
Stephen E. Kimmel, Hubert G. Leufkens, and Timothy R. Rebbeck

35 Bioethical Issues in Pharmacoepidemiologic Research, 623
Antoine C. El Khoury, Jason Karlawish, Elizabeth Andrews, and Arthur Caplan

36 The Use of Randomized Controlled Trials for Pharmacoepidemiologic Studies, 640
Samuel M. Lesko and Allen A. Mitchell

37 The Use of Pharmacoepidemiology to Study Beneficial Drug Effects, 655
Brian L. Strom and Kenneth L. Melmon

38 Pharmacoeconomics: Economic Evaluation of Pharmaceuticals, 678
Kevin A. Schulman, Henry A. Glick, Daniel Polsky, and Shelby D. Reed

39 Using Quality-of-Life Measurements in Pharmacoepidemiologic Research, 709
Holger Schünemann, Bradley C. Johnston, Roman Jaeschke, and Gordon H. Guyatt

40 The Use of Meta-analysis in Pharmacoepidemiology, 723
Jesse A. Berlin, M. Soledad Cepeda, and Carin J. Kim

41 Validity of Pharmacoepidemiologic Drug and Diagnosis Data, 757
Suzanne L. West, Mary Elizabeth Ritchey, and Charles Poole

42 Studies of Medication Adherence, 795
Trisha Acri and Robert Gross
43 Risk Evaluation and Communication, 810
Susan J. Blalock and Betsy L. Sleath

44 Studying Effects of Antibiotics, 827
Darren R. Linkin and Ebbing Lautenbach

45 The Pharmacoepidemiology of Medication Errors, 840
Hanna M. Seidling and David W. Bates

46 Sequential Statistical Methods for Prospective Postmarketing Safety Surveillance, 852
Martin Kulldorff

47 Advanced Approaches to Controlling Confounding in Pharmacoepidemiologic Studies, 868
Sebastian Schneeweiss and Samy Suissa

PART VI Conclusion, 893

48 The Future of Pharmacoepidemiology, 895
Brian L. Strom, Stephen E. Kimmel, and Sean Hennessy

Appendix A: Sample Size Tables, 904
Appendix B: Glossary, 921

Index, 931
List of Contributors

Trisha Acri
Assistant Professor
Department of Family and Community Medicine
Temple University School of Medicine
Philadelphia, PA
USA

Susan E. Andrade
Senior Research Associate and Research Associate Professor
Meyers Primary Care Institute and University of Massachusetts Medical School
Worcester, MA
USA

Elizabeth Andrews
Vice President Pharmacoepidemiology and Risk Management Research Triangle Institute Health Solutions Research Triangle Park, NC USA

Peter Arlett
Head Pharmacovigilance and Risk Management European Medicines Agency London, UK

Jerry Avorn
Chief Division of Pharmacoepidemiology and Pharmacoeconomics Brigham and Women’s Hospital and Professor of Medicine Harvard Medical School Boston, MA USA

Jeffrey S. Barrett
Director Laboratory for Applied Pharmacokinetics and Pharmacodynamics Director Pediatric Pharmacology Research Unit The Children’s Hospital of Philadelphia Research Professor, Pediatrics Kinetic Modeling and Simulation (KMAS) Core Director Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA USA

David W. Bates
Chief General Medicine Division Brigham and Women's Hospital and Professor of Medicine Harvard Medical School Boston, MA USA

Ulf Bergman
Professor, Senior Medical Officer Division of Clinical Pharmacology Department of Laboratory Medicine Karolinska Institute WHO Collaborating Centre for Drug Utilization Research and Clinical Pharmacological Services and Centre for Pharmacoepidemiology Karolinska University Hospital-Huddinge Stockholm, Sweden

Jesse A. Berlin
Vice President Department of Epidemiology Johnson & Johnson Pharmaceutical Research and Development Titusville, NJ USA

Stella Blackburn
EMA Risk Management Development and Scientific Lead European Medicines Agency London, UK

Susan J. Blalock
Associate Professor Division of Pharmaceutical Outcomes and Policy Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill, NC USA

Denise Boudreau
Scientific Investigator Group Health Research Institute Seattle, WA USA

Arthur Caplan
Director Center for Bioethics Professor of Medical Ethics Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA USA
M. Soledad Cepeda
Director
Department of Epidemiology
Johnson & Johnson Pharmaceutical Research and Development
Titusville, NJ
USA

Robert T. Chen
HIV Vaccine and Special Studies Team Leader
Division of HIV/AIDS Prevention Centers for Disease Control and Prevention
Atlanta, GA
USA

Patricia F. Coogan
Associate Professor of Epidemiology
Slone Epidemiology Center
Boston University
Boston, MA
USA

Francesca Cunningham
Director
Center for Medication Safety and Program Manager
Outcomes Research PBM Services
Department of Veterans Affairs Center for Medication Safety
Hines, IL
USA

Gerald J. Dal Pan
Director
Office of Surveillance and Epidemiology
Center for Drug Evaluation and Research
US Food and Drug Administration
Silver Spring, MA
USA

Gregory W. Daniel
Vice President
Government and Academic Research Healthcare
Alexandria, VA
USA

Hassy Dattani
Research Director
Cegedim Strategic Data Medical Research Ltd
London, UK

Robert L. Davis
Director of Research
Center for Health Research—Southeast
Kaiser Permanente Georgia
Atlanta, GA
USA

Nancy A. Dreyer
Chief of Scientific Affairs
Outcome Sciences Inc.
Cambridge, MA
USA

Antoine C. El Khoury
Leader, Outcomes Research
Global Health Outcomes
Merck & co., Inc
West Point, PA
USA

Chris Feudtner
Associate Professor
Department of Pediatrics
The Children’s Hospital of Philadelphia
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, PA
USA

Brian T. Fisher
Assistant Professor of Pediatrics
Center for Pediatric Clinical Effectiveness
The Children’s Hospital of Philadelphia
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, PA
USA

Cristin Palumbo Freeman
Research Project Manager
Center for Clinical Epidemiology and Biostatistics
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, PA
USA

Nicolle M. Gatto
Senior Director
Epidemiology
Worldwide Safety Strategy
Pfizer Inc.
New York, NY
USA

Joel M. Gelfand
Medical Director, Clinical Studies Unit
Assistant Professor of Dermatology and Epidemiology
Senior Scholar, Center for Clinical Epidemiology and Biostatistics
Departments of Dermatology and Biostatistics
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, PA
USA

Kate Gelperin
Medical Officer
Division of Epidemiology
Office of Surveillance and Epidemiology
Center for Drug Evaluation and Research
US Food and Drug Administration
Silver Spring, MD
USA

Jason M. Glanz
Epidemiologist
Institute for Health Research
Kaiser Permanente Colorado
Department of Epidemiology Colorado School of Public Health
Denver, CO
USA

Henry A. Glick
Professor of Medicine
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, PA
USA
Robert Gross
Associate Professor of Medicine and Epidemiology
Center for Clinical Epidemiology and Biostatistics
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, PA
USA

Thomas Gross
Deputy Director
Office of Surveillance and Biometrics
Center for Devices and Radiological Health
US Food and Drug Administration
Silver Spring, MD
USA

Gordon H. Guyatt
Professor
Department of Clinical Epidemiology and Biostatistics
McMaster University
Health Sciences Center and
Department of Medicine
St Joseph’s Hospital
Hamilton
Ontario, Canada

Katherine Haffenreffer
Project Administrator
Harvard Pilgrim Health Care Institute and
Department of Population Medicine
Harvard Medical School
Boston, MA
USA

Sean Hennessy
Associate Professor of Epidemiology and Pharmacology
Senior Scholar, Center for Clinical Epidemiology and Biostatistics
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, PA
USA

Ron M.C. Herings
Director
PHARMO Institute
Utrecht
The Netherlands and
Associate Professor of Pharmacoepidemiology
Department of Health Policy and Management
Erasmus University Rotterdam
Rotterdam, The Netherlands

Claudia Karwoski
Director
Division of Risk Management
Office of Surveillance and Epidemiology
Center for Drug Evaluation and Research
US Food and Drug Administration
Silver Spring, MA
USA

David W. Kaufman
Associate Director
Slone Epidemiology Center at Boston University and
Professor of Epidemiology
Boston University School of Public Health
Boston, MA
USA

Aaron S. Kesselheim
Assistant Professor of Medicine
Division of Pharmacoepidemiology and Pharmacoeconomics
Department of Medicine
Brigham and Women’s Hospital
Harvard Medical School
Boston, MA
USA

Carin J. Kim
Mathematical Statistician
Center for Drug Evaluation and Research
US Food and Drug Administration
Silver Spring, MD
USA

Stephen E. Kimmel
Professor of Medicine and Epidemiology
Senior Scholar, Center for Clinical Epidemiology and Biostatistics
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, PA
USA

Karel Kostev
Senior Research Analyst
Centre of Excellence Patient Data
IMS Health GmbH & Co OHG
Frankfurt/Main, Germany

Roman Jaeschke
Professor
Department of Clinical Epidemiology and Biostatistics
McMaster University
Health Sciences Center and
Department of Medicine
St Joseph’s Hospital
Hamilton
Ontario, Canada

Bradley C. Johnston
Assistant Professor
Department of Clinical Epidemiology and Biostatistics
McMaster University
Health Sciences Center
Hamilton
Ontario, Canada

Judith K. Jones
President and CEO
The Degge Group Ltd
Arlington, VA
USA and
Adjunct Professor and Lecturer
University of Michigan School of Public Health Summer Program
Georgetown University
Washington, DC
USA

Jason Karlawish
Professor of Medicine
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, PA
USA
List of Contributors

Martin Kulldorff
Professor, Biostatistician
Department of Population Medicine
Harvard Medical School and Harvard Pilgrim Health Care Institute
Boston, MA
USA

Sinéad M. Langan
National Institute for Health Research
Clinician Scientist and Honorary Consultant Dermatologist
London School of Hygiene and Tropical Medicine and St John’s Institute of Dermatology
London, UK

Ebbing Lautenbach
Professor of Medicine and Epidemiology
Senior Scholar, Center for Clinical Epidemiology and Biostatistics
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, PA
USA

Deborah Layton
Principal Research Fellow
Honorary Senior Lecturer
Portsmouth University
Drug Safety Research Unit academic contact for collaborative programme MSc in Pharmacovigilance
Portsmouth University
Portsmouth, UK

David Lee
Director
Technical Strategy and Quality Center for Pharmaceutical Management
Management Sciences for Health, Inc.
Arlington, VA
USA

Jacques LeLorier
Professor
Department of Medicine
Department of Pharmacology
Université de Montréal
CHUM/Centre de Recherche Hôpital Hôtel-Dieu de Montréal, Montreal, Quebec, Canada

Samuel M. Lesko
Medical Director and Director of Research
Northeast Regional Cancer Institute Scranton, PA
USA
and
Adjunct Professor of Public Health Sciences
Pennsylvania State University College of Medicine Hershey, PA
USA
and
Adjunct Professor of Basic Sciences
The Commonwealth Medical College Scranton, PA
USA

Hubert G. Leufkens
Professor
Department of Pharmacoepidemiology and Clinical Pharmacotherapy
Utrecht Institute for Pharmaceutical Sciences
Utrecht University
Utrecht, The Netherlands

Mitchell Levine
Professor
Department of Clinical Epidemiology & Biostatistics, Department of Medicine
McMaster University
Centre for Evaluation of Medicines Hamilton
Ontario, Canada

Peter K. Lindenauer
Director
Center for Quality of Care Research
Baystate Medical Center Springfield
and Associate Professor
Department of Medicine
Tufts University School of Medicine Boston, MA
USA

Marie Lindquist
Director
Uppsala Monitoring Centre WHO Collaborating Centre for International Drug Monitoring
Uppsala, Sweden

Darren R. Linkin
Assistant Professor of Medicine
Associate Scholar, Center for Clinical Epidemiology and Biostatistics
Perelman School of Medicine at the University of Pennsylvania and Philadelphia VA Medical Center
Philadelphia, PA
USA

Helene Levens Lipton
Professor of Pharmacy and Health Policy
Schools of Medicine and Pharmacy University of California at San Francisco
San Francisco, CA
USA

Sumit R. Majumdar
Professor of Medicine
Department of Medicine
Faculty of Medicine and Dentistry
University of Alberta
Edmonton
Alberta, Canada

Danica Marinac-Dabic
Director
Division of Epidemiology
Office of Surveillance and Biometrics Center for Devices and Radiological Health
US Food and Drug Administration Silver Spring, MD
USA

the late Kenneth L. Melmon
Stanford University School of Medicine
Stanford, CA
USA

Colleen J. Metge
Associate Professor (Senior Scholar)
Faculty of Pharmacy
University of Manitoba
Winnipeg
Manitoba, Canada
Allen A. Mitchell
Director
Slone Epidemiology Center at Boston University
and
Professor of Epidemiology and Pediatrics
Boston University Schools of Public Health and Medicine
Boston, MA
USA

Jingping Mo
Senior Director
Epidemiology, Worldwide Safety Strategy
Pfizer Inc.
New York, NY
USA

Yola Moride
Associate Professor
Faculty of Pharmacy
Université de Montréal and
Researcher
Research Centre
University of Montreal Hospital Centre (CRCHUM)
Montreal, Canada

Sharon-Lise Normand
Professor of Health Care Policy (Biostatistics)
Department of Health Care Policy
Harvard Medical School and
Professor
Department of Biostatistics
Harvard School of Public Health
Boston, MA
USA

Alexis Ogdie
Instructor in Medicine
Division of Rheumatology
Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA
USA

Julie R. Palmer
Professor of Epidemiology
Slone Epidemiology Center
Boston University
Boston, MA
USA

John Parkinson
Director
General Practice Research Database (GPRD)
Medicines and Healthcare products Regulatory Agency (MHRA)
London, UK

Pamala A. Pawloski
Research Investigator
HealthPartners Research Foundation
Bloomington, MN
USA

Lars Pedersen
Associate Professor of Clinical Epidemiology
Department of Clinical Epidemiology
Aarhus University Hospital
Aarhus, Denmark

Richard Platt
Professor and Chair
Department of Population Medicine, Harvard Medical School and
Executive Director
Harvard Pilgrim Health Care Institute
Boston, MA
USA

Daniel Polsky
Professor of Medicine
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, PA
USA

Charles Poole
Associate Professor
Department of Epidemiology
Gillings School of Global Public Health
University of North Carolina Chapel Hill, NC
USA

Judith A. Racoosin
Sentinel Initiative Scientific Lead
Office of Medical Policy
Center for Drug Evaluation and Research
Food and Drug Administration
Silver Spring, MD
USA

Marsha A. Raebel
Investigator
Institute for Health Research
Kaiser Permanente Colorado and
Clinical Professor
School of Pharmacy
University of Colorado at Denver
Denver, CO
USA

Timothy R. Rebbeck
Professor of Epidemiology
Senior Scholar, Center for Clinical Epidemiology and Biostatistics
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, PA
USA

Shelby D. Reed
Associate Professor in Medicine
Duke University
Durham, NC
USA

Robert F. Reynolds
Vice President
Epidemiology, Worldwide Safety Strategy
Pfizer Inc.
New York, NY
USA

Mary Elizabeth Ritchey
Associate Division Director
Food and Drug Administration
Center for Devices and Radiological Health
Silver Spring, MD
USA
Melissa A. Robb
Sentinel Initiative Program Director
Office of Medical Policy
Center for Drug Evaluation and Research
Food and Drug Administration
Silver Spring, MD
USA

Lynn Rosenberg
Professor of Epidemiology
Associate Director
Slone Epidemiology Center
Boston University
Boston, MA
USA

Rita Schinnar
Senior Research Project Manager and Analyst
Center for Clinical Epidemiology and Biostatistics
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, PA
USA

Sebastian Schneeweiss
Associate Professor of Medicine and Epidemiology
Harvard Medical School
and
Vice Chief
Division of Pharmacoepidemiology and Pharmacoeconomics
Brigham & Women’s Hospital
Boston, MA
USA

Kevin A. Schulman
Professor of Medicine and Gregory Mario and Jeremy Mario Professor of Business Administration
Duke University
Durham, NC
USA

Holger Schünemann
Professor and Chair
Department of Clinical Epidemiology and Biostatistics
McMaster University
Health Sciences Center
and
Professor
Department of Medicine
St Joseph’s Hospital
Hamilton
Ontario, Canada

Art Sedrakyan
Associate Professor
Director
Comparative Effectiveness Program at HSS and NYP
Weill Cornell Medical College
New York, NY
USA

John Seeger
Lecturer in Medicine
Brigham and Women’s Hospital/
Harvard Medical School
Boston, MA
USA

Hanna M. Seidling
Head of Cooperation Unit Clinical Pharmacy
Department of Clinical Pharmacology and Pharmacoepidemiology
Cooperation Unit Clinical Pharmacy
University of Heidelberg
Heidelberg
Germany

Saad A.W. Shakir
Professor and Director
Drug Safety Research Unit
Southampton, UK

Rachel E. Sherman
Director, Office of Medical Policy
Center for Drug Evaluation and Research
Food and Drug Administration
Silver Spring, MD
USA

Betsy L. Sleath
Professor and Chair
Division of Pharmaceutical Outcomes and Policy
Eshelman School of Pharmacy
University of North Carolina at Chapel Hill
Chapel Hill, NC
USA

Rachel E. Sobel
Senior Director
Epidemiology
Worldwide Safety Strategy
Pfizer Inc.
New York, NY
USA

Stephen B. Soumerai
Professor of Population Medicine
Professor of Medicine and Director of the Drug Policy Research Group
Department of Population Medicine
Harvard Medical School and Harvard Pilgrim Health Care Institute
Boston, MA
USA

Brian L. Strom
George S. Pepper Professor of Public Health and Preventive Medicine
Professor of Biostatistics and Epidemiology, of Medicine, and of Pharmacology
Chair
Department of Biostatistics and Epidemiology
Director
Center for Clinical Epidemiology and Biostatistics
Vice Dean for Institutional Affairs
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, PA
USA
Samy Suissa
James McGill Professor of Epidemiology, Biostatistics and Medicine
McGill University and
Director Centre for Clinical Epidemiology
Lady Davis Research Institute
Jewish General Hospital
Montreal
Quebec, Canada

Sengwee Toh
Assistant Professor
Department of Population Medicine
Harvard Medical School and Harvard Pilgrim Health Care Institute
Boston, MA
USA

Priscilla Velentgas
Director of Epidemiology
Outcome Sciences Inc.
Cambridge, MA
USA

Claudia Vellozzi
Deputy Director
Immunization Safety Office
Division of Healthcare Quality and Promotion
National Center for Emerging and Zoonotic Diseases
Centers for Disease Control and Prevention
Atlanta, GA
USA

Suzanne L. West
RTI Fellow and Senior Scientist
RTI International
Research Triangle Park and
Department of Epidemiology
Gillings School of Global Public Health
University of North Carolina
Chapel Hill, NC
USA

Janet Woodcock
Director
Center for Drug Evaluation and Research
Food and Drug Administration
Silver Spring, MD
USA

Athena F. Zuppa
Associate Professor of Pediatrics, Anesthesia and Critical Care Medicine
Laboratory for Applied Pharmacokinetics and Pharmacodynamics
Children’s Hospital of Philadelphia
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, PA
USA
Preface

“. . . If the whole materia medica, as now used, could be sunk to the bottom of the sea, it would be all the better for mankind, and all the worse for the fishes.”

Oliver Wendell Holmes,
Medical Essays, Comments and Counter-Currents in Medical Science

The history of drug regulation in the United States is largely a history of political responses to epidemics of adverse drug reactions, each adverse reaction of sufficient public health importance to lead to political pressure for regulatory change.

The initial law, the Pure Food and Drug Act, was passed in 1906. It was a response to the excessive adulteration and misbranding of foods and drugs. The 1938 Food, Drug, and Cosmetic Act was passed in reaction to an epidemic of renal failure resulting from a brand of elixir of sulfanilamide formulated with diethylene glycol. The 1962 Kefauver–Harris Amendment to the Food, Drug, and Cosmetic Act was enacted in response to the infamous “thalidomide disaster,” in which children exposed to thalidomide in utero were born with phocomelia, that is with flippers instead of limbs. The resulting regulatory changes led, in part, to the accelerated development of the field of clinical pharmacology, which is the study of the effects of drugs in humans.

Subsequent decades continued to see an accelerating series of accusations about major adverse events possibly associated with drugs. Those discussed in the first edition of this book included liver disease caused by benoxaprofen, subacute myelo-optic-neuropathy (SMON) caused by cloquinal, the oculomucocutaneous syndrome caused by practolol, acute flank pain and renal failure caused by suprofen, liver disease caused by ticrynafen, and anaphylactoid reactions caused by zomepirac. Added in the second edition were cardiac arrhythmias from astemizole and terfenadine; hypertension, seizures, and strokes from postpartum use of bromocriptine; deaths from fenoterol; suicidal ideation from fluoxetine; hypoglycemia from human insulin; birth defects from isotretinoin; cancer from depot medroxyprogesterone; multiple illnesses from silicone breast implants; memory and other central nervous system disturbances from triazolam; and hemolytic anemia and other adverse reactions from temafloxacin. Further added in the third edition were liver toxicity from the combination of amoxicillin and clavulanic acid; liver toxicity from bromfenac; cancer and myocardial infarction from calcium channel blockers; cardiac arrhythmias with cispapride; primary pulmonary hypertension and cardiac valvular disease from dexamfetamine and fenfluramine; gastrointestinal bleeding, postoperative bleeding, deaths, and many other adverse reactions associated with ketorolac; multiple drug interactions with mibefradil; thrombosis from newer oral contraceptives; myocardial infarction from sildenafil; seizures with tramadol; eosinophilia myalgia from tryptophan; anaphylactic reactions from vitamin K; and liver toxicity from troglitazon. Added in the fourth edition were ischemic colitis from alosertan; myocardial infarction from celecoxib, naproxen, and rofecoxib; rhabdomyolysis from cerivastatin; cardiac arrhythmias from grepafloxxacin; stroke from phenylpropanolamine; bronchospasm from ramipril; and many others. New in this fifth edition are progressive multifocal leukoencephalopathy from natalizumab; hepatotoxicity from pemoline and from lumiracoxib; serious cardiovascular complications from rosiglitazon, tegaserod, sibutramine, rimonabant, valdecoxib, pergolide, and propoxyphene; fatal adverse reactions when used with alcohol.
from hydromorphone; and serious and sometimes fatal brain infections from efalizumab. Many of these resulted in drug withdrawals. Published data also suggest that adverse drug reactions could be as much as the fourth leading cause of death. These and other serious but uncommon drug effects have led to the development of new methods to study drug effects in large populations. Academic investigators, the pharmaceutical industry, regulatory agencies, and the legal profession have turned for these methods to the field of epidemiology, the study of the distribution and determinants of disease in populations.

As this edition goes to press, major new changes have been made in drug regulation and organization, largely in response to a series of accusations about myocardial infarction and stroke caused by analgesics, each detected in long-term prevention trials rather than in normal use of the drugs. For example, the pharmacoepidemiology group at the US Food and Drug Administration (FDA) is being doubled in size, FDA has been given new regulatory authority after drug marketing, and has also been charged with developing the Sentinel Initiative, a program to conduct medical product safety surveillance in a population to exceed 100 million. Further, the development since January 1, 2006 of Medicare Part D, a US federal program to subsidize prescription drugs for Medicare recipients, introduces to pharmacoepidemiology a new database with a stable population of 25 million, as well as the interest of what may be the largest health-care system in the world. These developments portend major changes for our field.

The joining of the fields of clinical pharmacology and epidemiology resulted in the development of a new field: pharmacoepidemiology, the study of the use of and the effects of drugs in large numbers of people. Pharmacoepidemiology applies the methods of epidemiology to the content area of clinical pharmacology. This new field became the science underlying postmarketing drug surveillance, studies of drug effects that are performed after a drug has been released to the market. In recent years, pharmacoepidemiology has expanded to include many other types of studies, as well.

The field of pharmacoepidemiology has grown enormously since the publication of the first edition of this book. The International Society of Pharmacoepidemiology (ISPE), an early idea when the first edition of this book was written, has grown into a major international scientific force, with over 1280 members from 52 countries, an extremely successful annual meeting attracting close to 1000 attendees, a large number of very active committees and scientific interest groups, and its own journal (Pharmacoepidemiology and Drug Safety). In addition, a number of established journals have targeted pharmacoepidemiology manuscripts as desirable. As new scientific developments occur within mainstream epidemiology, they are rapidly adopted, applied, and advanced within our field as well. We have also become institutionalized as a subfield within the field of clinical pharmacology, with a Pharmacoepidemiology Section within the American Society for Clinical Pharmacology and Therapeutics, recently reorganized into a Section on Drug Safety, and with pharmacoepidemiology a required part of the clinical pharmacology board examination.

Most of the major international pharmaceutical companies have founded dedicated units to organize and lead their efforts in pharmacoepidemiology, pharmacoconomics, and quality-of-life studies. The continuing parade of drug safety crises continues to emphasize the need for the field, and some foresighted manufacturers have begun to perform “prophylactic” pharmacoepidemiology studies, to have data in hand and available when questions arise, rather than waiting to begin to collect data after a crisis has developed. Pharmacoepidemiologic data are now routinely used for regulatory decisions, and many governmental agencies have been developing and expanding their own pharmacoepidemiology programs. Risk management programs are now required by regulatory bodies with the marketing of new drugs, as a means of improving drugs’ benefit–risk balance, and manufacturers are scrambling to respond. Requirements that a drug be proven to be cost-effective have been added to national, local, and insurance health-care systems, either to justify reimbursement or even to justify drug availability. A number of schools of medicine,
pharmacy, and public health have established research programs in pharmacoepidemiology, and a few of them have also established pharmacoepidemiology training programs in response to a desperate need for more pharmacoepidemiology manpower. Pharmacoepidemiologic research funding is now more plentiful, and even limited support for training is now available.

In the United States, drug utilization review programs are required, by law, of each of the 50 state Medicaid programs, and have been implemented as well in many managed care organizations. Now, years later however, the utility of drug utilization review programs is being questioned. In addition, the Joint Commission on Accreditation of Health Care Organizations now requires that every hospital in the country have an adverse drug reaction monitoring program and a drug use evaluation program, turning every hospital into a mini-pharmacoepidemiology laboratory. Stimulated in part by the interests of the World Health Organization and the Rockefeller Foundation, there is even substantial interest in pharmacoepidemiology in the developing world. Yet, throughout the world, the increased concern by the public about privacy has made pharmacoepidemiologic research much more difficult.

In the first edition, the goal was to help introduce this new field to the scientific world. The explosion in interest in the field, the rapid scientific progress that has been made, and the unexpected sales of the first edition led to the second edition. The continued maturation of what used to be a new field, the marked increase in sales of the second edition over the first, and the many requests from people all over the world, led to the third edition. Thereafter, much in the field has changed, and the fourth edition was prepared. We also prepared a textbook version, which has been widely used. Now, six years after the fourth edition, the field continues to rapidly change, so it is time for a new edition. For this edition as well, we now include two co-editors who have both shared the work and contributed many important new ideas.

In the process, most chapters in the new edition have been thoroughly revised. Ten new chapters have been added, along with many new authors. With some reorganization of some sections and careful pruning of old chapters, the net size has been kept the same.

As in earlier editions, Part I of this book provides background information on what is included in the field of pharmacoepidemiology, a description of the study designs it uses, a description of its unique problem—the requirement for very large sample sizes—and a discussion about when one would want to perform a pharmacoepidemiology study. Also included is a chapter providing basic principles of clinical pharmacology. Part II presents a series of discussions on the need for the field, the contributions it can make, and some of its problems, from the perspectives of academia, industry, regulatory agencies, and the law. Part III describes the systems that have been developed to perform pharmacoepidemiologic studies, and how each approaches the problem of gathering large sample sizes of study subjects in a cost-effective manner. We no longer attempt to include all the databases in the field, as they have continued to multiply. Instead, in this edition we have combined databases into categories, rather than dedicating a separate chapter to each database. Part IV describes selected special opportunities for the application of pharmacoepidemiology to address major issues of importance. These are of particular interest as the field continues to turn its attention to questions beyond just those of adverse drug reactions. Part V presents state-of-the-art discussions of some particular methodologic issues that have arisen in the field. Finally, Part VI provides our personal speculations about the future of the field. Our expectation is that Parts I, II, III, and VI of this book will be of greatest interest to those new to the field. In contrast, Parts III, IV, V, and VI should be of greatest interest to those with some background, who want a more in-depth view of the field.

This book is not intended as a textbook of adverse drug reactions, that is a compilation of drug-induced problems organized either by drug or by problem. Nor is it intended primarily as a textbook for use in introductory pharmacoepidemiology courses (for which Textbook of Pharmacoepidemiology may be more appropriate).
Rather, it is intended to elucidate the methods of investigating adverse drug reactions, as well as other questions of drug effects. It is also not intended as a textbook of clinical pharmacology, organized by disease or by drug, or a textbook of epidemiology, but rather a text describing the overlap between the two fields.

It is our hope that this book can serve both as a useful introduction to pharmacoepidemiology and a reference source for the growing number of people interested in this field, in academia, in regulatory agencies, in industry, and in the law. It will also hopefully be useful as a reference text for the numerous courses now underway in this field. We have been excited by the rapid progress and growth that our field has seen, and delighted that this book has played a small role in assisting this. With this new edition, it will document the major changes the field has seen. In the process, we hope is that it can continue to serve to assist the field in its development.

Brian L. Strom
Stephen E. Kimmel
Sean Hennessy

Philadelphia
Acknowledgements

There are many individuals and institutions to whom we owe thanks for their contributions to our efforts in preparing this book. Over the years, our pharmacoepidemiology work has been supported mostly by grants, contracts, and cooperative agreements from the US government, especially multiple different branches of the National Institutes of Health, the Agency for Healthcare Research and Quality, Food and Drug Administration, and the Department of Veterans Affairs. Other funders of our work include the American Cancer Society, the American College of Cardiology, the American College of Clinical Pharmacy Foundation, the Asia Foundation, the Charles A. Dana Foundation, the Joint Commission on Prescription Drug Use, the Pennsylvania Department of Health, the Rockefeller Foundation, the Andrew W. Mellon Foundation, and the International Clinical Epidemiology Network, Inc. We have also benefitted from project grants from Aetna, Alza Corporation, Amgen, AstraZeneca, Bayer Corporation, Bayer Consumer Care, Berlex Laboratories, Boran Pharmaceuticals, Bristol-Myers Squibb, the Burroughs Wellcome Company, Ciba-Geigy Corporation, COR Therapeutics Inc., GlaxoSmithKline, Glaxo-SmithKline Beecham, Glaxo Welcome, Health Information Designs, Inc., Hoechst-Roussel Pharmaceuticals, Hoffman-La Roche, Inc., Integrated Therapeutics, Inc., a subsidiary of Schering-Plough Corporation, International Formula Council, Key Pharmaceuticals Inc., Marion Merrell Dow, Inc., McNeil Consumer Products, McNeil Pharmaceuticals, Mead Johnson Pharmaceuticals, Merck and Company, Novartis Pharmaceuticals Corp., Pfizer Inc, Pharming, PharMark Inc., A.H. Robins Company, Rowell Laboratories, Sandoz Pharmaceuticals, Schering Corporation, Searle Pharmaceutical, Shire, Smith Kline and French Laboratories, Sterling Winthrop Inc., Syntex, Inc., Takeda Pharmaceuticals North America, the Upjohn Company, and Wyeth-Ayerst Research. In addition, generous support to our pharmacoepidemiology training program has been provided by Abbott Laboratories, Alza Corporation, Amgen, Aventis Pharmaceuticals, Inc., Berlex Laboratories, Inc., Ciba-Geigy Corporation, Genentech, Inc., Hoechst-Marion-Roussel, Inc., Hoffman LaRoche, Integrated Therapeutics Group, Inc., Johnson and Johnson, Mary E Groff Charitable Trust, Merck and Company, Inc., McNeil Consumer Product Company, McNeil Consumer Healthcare, Novartis Pharmaceuticals Corporation, Pfizer Inc., Sanofi Aventis, Sanofi Pasteur, SmithKline Beecham Pharmaceuticals, Whitehall-Robins Healthcare, and Wyeth-Ayerst Research. Finally, we would like to thank the University of Pennsylvania. While none of this support was specifically intended to support the development of this book, without this assistance, we would not have been able to support our careers in pharmacoepidemiology. Finally, we would like to thank our publisher, John Wiley & Sons, Ltd., for their assistance and insights, both in support of this book, and in support of the field’s journal, Pharmacoepidemiology and Drug Safety.

Rita Schinnar’s contributions to this book were immeasurable, encompassing both the role of Managing Editor and reviewing all of the chapters, editing them thoughtfully and posing substantive questions and issues for the authors to address. She also co-authored one chapter and assisted BLS with researching topics to update his other chapters. Catherine Vallejo assisted with early arrangements to contact the authors. Finally, Anne Saint John provided superb help in preparing both the manu-
scripts for my chapters and all of the other chapters for submission to Wiley.

BLS would like to thank Steve Kimmel and Sean Hennessy for joining him as co-editors in this edition. These are two very special and talented men. It has been BLS’s pleasure to help to train them, now too many years ago, help them cultivate their own careers, and see them blossom into star pharmacoepidemiologists in their own right, now extremely effective and successful. It is a wonderful to be able to share with them this book, which has been an important part of BLS’s life and career.

BLS would also like to thank his parents for the support and education that were critical to his being able to be successful in his career. BLS would also like to thank Paul D. Stolley, M.D., M.P.H. and the late Kenneth L. Melmon, M.D., for their direction, guidance, and inspiration in the formative years of his career. He would like to thank his trainees, from whom he learns at least as much as he teaches. Last, but certainly not least, BLS would like to thank his family—Lani, Shayna, and Jordi—for accepting the time demands of the book, for tolerating his endless hours working at home on it, and for their ever present love and support.

SEK expresses his sincere gratitude to BLS for his almost 20 years as a mentor and colleague and for the chance to work on this book, to his parents for providing the foundation for all of his work, and to his family—Alison, David, Benjamin, and Jonathan—for all their support, patience, and willingness to engage in “no talking time” in the study while Dad worked.

SH also thanks BLS, his long-time friend and career mentor, and all of his students, mentees, and collaborators. Finally, he thanks his parents; and his family—Kristin, Landis, and Bridget—for their love and support.
PART I

Introduction
CHAPTER 1
What is Pharmacoepidemiology?

Brian L. Strom
Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

A desire to take medicine is, perhaps, the great feature which distinguishes man from other animals.
Sir William Osler, 1891

In recent decades, modern medicine has been blessed with a pharmaceutical armamentarium that is much more powerful than what it had before. Although this has given health-care providers the ability to provide better medical care for their patients, it has also resulted in the ability to do much greater harm. It has also generated an enormous number of product liability suits against pharmaceutical manufacturers, some appropriate and others inappropriate. In fact, the history of drug regulation parallels the history of major adverse drug reaction “disasters.” Each change in pharmaceutical law was a political reaction to an epidemic of adverse drug reactions. A 1998 study estimated that 100,000 Americans die each year from adverse drug reactions (ADRs), and 1.5 million US hospitalizations each year result from ADRs; yet, 20–70% of ADRs may be preventable. The harm that drugs can cause has also led to the development of the field of pharmacoepidemiology, which is the focus of this book. More recently, the field has expanded its focus to include many issues other than adverse reactions, as well.

To clarify what is, and what is not, included within the discipline of pharmacoepidemiology, this chapter will begin by defining pharmacoepidemiology, differentiating it from other related fields.

The history of drug regulation will then be briefly and selectively reviewed, focusing on the US experience as an example, demonstrating how it has led to the development of this new field. Next, the current regulatory process for the approval of new drugs will be reviewed, in order to place the use of pharmacoepidemiology and postmarketing drug surveillance into proper perspective. Finally, the potential scientific and clinical contributions of pharmacoepidemiology will be discussed.

Definition of pharmacoepidemiology

Pharmacoepidemiology is the study of the use of and the effects of drugs in large numbers of people. The term pharmacoepidemiology obviously contains two components: “pharmaco” and “epidemiology.” In order to better appreciate and understand what is and what is not included in this new field, it is useful to compare its scope to that of other related fields. The scope of pharmacoepidemiology will first be compared to that of clinical pharmacology, and then to that of epidemiology.

Pharmacoepidemiology versus clinical pharmacology

Pharmacology is the study of the effects of drugs. Clinical pharmacology is the study of the effects of drugs in humans (see also Chapter 2).
Pharmacoepidemiology obviously can be considered, therefore, to fall within clinical pharmacology. In attempting to optimize the use of drugs, one central principle of clinical pharmacology is that therapy should be individualized, or tailored, to the needs of the specific patient at hand. This individualization of therapy requires the determination of a risk/benefit ratio specific to the patient at hand. Doing so requires a prescriber to be aware of the potential beneficial and harmful effects of the drug in question and to know how elements of the patient’s clinical status might modify the probability of a good therapeutic outcome. For example, consider a patient with a serious infection, serious liver impairment, and mild impairment of his or her renal function. In considering whether to use gentamicin to treat his infection, it is not sufficient to know that gentamicin has a small probability of causing renal disease. A good clinician should realize that a patient who has impaired liver function is at a greater risk of suffering from this adverse effect than one with normal liver function. Pharmacoepidemiology can be useful in providing information about the beneficial and harmful effects of any drug, thus permitting a better assessment of the risk/benefit balance for the use of any particular drug in any particular patient.

Clinical pharmacology is traditionally divided into two basic areas: pharmacokinetics and pharmacodynamics. Pharmacokinetics is the study of the relationship between the dose administered of a drug and the serum or blood level achieved. It deals with drug absorption, distribution, metabolism, and excretion. Pharmacodynamics is the study of the relationship between drug level and drug effect. Together, these two fields allow one to predict the effect one might observe in a patient from administering a certain drug regimen. Pharmacoepidemiology encompasses elements of both of these fields, exploring the effects achieved by administering a drug regimen. It does not normally involve or require the measurement of drug levels. However, pharmacoepidemiology can be used to shed light on the pharmacokinetics of a drug when used in clinical practice, such as exploring whether aminophylline is more likely to cause nausea when administered to a patient simultaneously taking cimetidine. However, to date this is a relatively novel application of the field.

Specifically, the field of pharmacoepidemiology has primarily concerned itself with the study of adverse drug effects. Adverse reactions have traditionally been separated into those that are the result of an exaggerated but otherwise usual pharmacologic effect of the drug, sometimes called Type A reactions, versus those that are aberrant effects, so called Type B reactions. Type A reactions tend to be common, dose-related, predictable, and less serious. They can usually be treated by simply reducing the dose of the drug. They tend to occur in individuals who have one of three characteristics. First, the individuals may have received more of a drug than is customarily required. Second, they may have received a conventional amount of the drug, but they may metabolize or excrete the drug unusually slowly, leading to drug levels that are too high (see also Chapter 34). Third, they may have normal drug levels, but for some reason are overly sensitive to them (see Chapter 34).

In contrast, Type B reactions tend to be uncommon, not related to dose, unpredictable, and potentially more serious. They usually require cessation of the drug. They may be due to what are known as hypersensitivity reactions or immunologic reactions. Alternatively, Type B reactions may be some other idiosyncratic reaction to the drug, either due to some inherited susceptibility (e.g., glucose-6-phosphate dehydrogenase deficiency; see Chapter 34) or due to some other mechanism. Regardless, Type B reactions are the most difficult to predict or even detect, and represent the major focus of many pharmacoepidemiologic studies of adverse drug reactions.

One typical approach to studying adverse drug reactions has been the collection of spontaneous reports of drug-related morbidity or mortality (see Chapter 10), sometimes called pharmacovigilance (although at other times this term is used to refer to all of pharmacoepidemiology). However, determining causation in case reports of adverse reactions can be problematic (see Chapter 33), as can attempts to compare the effects of drugs in the same class (see Chapter 32). This has led academic investigators, industry, FDA, and the legal com-
Chapter 1: What is Pharmacoepidemiology?

Pharmacoepidemiology borrows its focus of inquiry. From epidemiology, pharmacoepidemiology borrows its methods of inquiry. In other words, it applies the methods of epidemiology to the content area of clinical pharmacology. In the process, multiple special logistical approaches have been developed and multiple special methodologic issues have arisen. These are the primary foci of this book.

Historical background

Early legislation
The history of drug regulation in the US is similar to that in most developed countries, and reflects the growing involvement of governments in attempting to assure that only safe and effective drug products were available and that appropriate manufacturing and marketing practices were used. The initial US law, the Pure Food and Drug Act, was passed in 1906, in response to excessive adulteration and misbranding of the food and drugs available at that time. There were no restrictions on sales or requirements for proof of the efficacy or safety of marketed drugs. Rather, the law simply gave the federal government the power to remove from the market any product that was adulterated or misbranded. The burden of proof was on the federal government.

In 1937, over 100 people died from renal failure as a result of the marketing by the Massengill Company of elixir of sulfanilamide dissolved in diethylene glycol. In response, Congress passed the 1938 Food, Drug, and Cosmetic Act. Preclinical toxicity testing was required for the first time. In addition, manufacturers were required to gather clinical data about drug safety and to submit these data to the FDA before drug marketing. The FDA had 60 days to object to marketing or else it would proceed. No proof of efficacy was required.

Little attention was paid to adverse drug reactions until the early 1950s, when it was discovered that chloramphenicol could cause aplastic anemia. In 1952, the first textbook of adverse drug reactions was published. In the same year, the AMA Council on Pharmacy and Chemistry established the first official registry of adverse drug effects, to collect

munity to turn to the field of epidemiology. Specifically, studies of adverse effects have been supplemented with studies of adverse events (ADEs). In the former, investigators examine case reports of purported adverse drug reactions and attempt to make a subjective clinical judgment on an individual basis about whether the adverse outcome was actually caused by the antecedent drug exposure. In the latter, controlled studies are performed examining whether the adverse outcome under study occurs more often in an exposed population than in an unexposed population. This marriage of the fields of clinical pharmacology and epidemiology has resulted in the development of a field: pharmacoepidemiology.

Pharmacoepidemiology versus epidemiology
Epidemiology is the study of the distribution and determinants of diseases in populations (see Chapter 3). Since pharmacoepidemiology is the study of the use of and effects of drugs in large numbers of people, it obviously falls within epidemiology, as well. Epidemiology is also traditionally subdivided into two basic areas. The field began as the study of infectious diseases in large populations, that is, epidemics. It has since been expanded to encompass the study of chronic diseases. The field of pharmacoepidemiology uses the techniques of chronic disease epidemiology to study the use of and the effects of drugs. Although application of the methods of pharmacoepidemiology can be useful in performing the clinical trials of drugs that are performed before marketing, the major application of these principles is after drug marketing. This has primarily been in the context of postmarketing drug surveillance, although in recent years the interests of pharmacoepidemiologists have broadened considerably. Now, as will be made clearer in future chapters, pharmacoepidemiology is considered of importance in the whole life cycle of a drug, from the time when it is first discovered or synthesized through when it is no longer sold as a drug.
Part I: Introduction

cases of drug-induced blood dyscrasias. In 1960, the FDA began to collect reports of adverse drug reactions and sponsored new hospital-based drug monitoring programs. The Johns Hopkins Hospital and the Boston Collaborative Drug Surveillance Program developed the use of in-hospital monitors to perform cohort studies to explore the short-term effects of drugs used in hospitals. This new procedure also delayed drug marketing until the FDA explicitly gave approval. With some modifications, these are the requirements still in place in the US today. In addition, the amendments required the review of all drugs approved between 1938 and 1962, to determine if they too were efficacious. The resulting DESI (Drug Efficacy Study Implementation) process, conducted by the National Academy of Sciences’ National Research Council with support from a contract from FDA, was not completed until years later, and resulted in the removal from the US market of many ineffective drugs and drug combinations. The result of all these changes was a great prolongation of the approval process, with attendant increases in the cost of drug development, the so-called drug lag. However, the drugs that are marketed are presumably much safer and more effective.

Drug crises and resulting regulatory actions

Despite the more stringent process for drug regulation, subsequent years have seen a series of major adverse drug reactions. Subacute myelo-optic neuropathy (SMON) was found in Japan to be caused by clioquinol, a drug marketed in the early 1930s but not discovered to cause this severe neurological reaction until 1970. Epidemiologic studies established its cause to be in utero exposure to thalidomide. In the United Kingdom, this resulted in the establishment in 1968 of the Committee on Safety of Medicines. Later, the World Health Organization established a bureau to collect and collate information from this and other similar national drug monitoring organizations (see Chapter 10).

The US had never permitted the marketing of thalidomide and, so, was fortunately spared this epidemic. However, the “thalidomide disaster” was so dramatic that it resulted in regulatory change in the US as well. Specifically, in 1962 the Kefauver–Harris Amendments were passed. These amendments strengthened the requirements for proof of drug safety, requiring extensive preclinical pharmacologic and toxicologic testing before a drug could be tested in man. The data from these studies were required to be submitted to the FDA in an Investigational New Drug (IND) Application before clinical studies could begin. Three explicit phases of clinical testing were defined, which are described in more detail below. In addition, a new requirement was added to the clinical testing, for “substantial evidence that the drug will have the effect it purports or is represented to have.” “Substantial evidence” was defined as “adequate and well-controlled investigations, including clinical investigations.” Functionally, this has generally been interpreted as requiring randomized clinical trials to document drug efficacy before marketing. This new procedure also delayed drug marketing until the FDA explicitly gave approval. With some modifications, these are the requirements still in place in the US today. In addition, the amendments required the review of all drugs approved between 1938 and 1962, to determine if they too were efficacious. The resulting DESI (Drug Efficacy Study Implementation) process, conducted by the National Academy of Sciences’ National Research Council with support from a contract from FDA, was not completed until years later, and resulted in the removal from the US market of many ineffective drugs and drug combinations. The result of all these changes was a great prolongation of the approval process, with attendant increases in the cost of drug development, the so-called drug lag. However, the drugs that are marketed are presumably much safer and more effective.