Wolfgang Hofmann | Jürgen Schlabbach | Wolfgang Just

REACTIVE **POONER** COMPENSATION A PRACTICAL GUIDE

COSU

REACTIVE POWER COMPENSATION

REACTIVE POWER COMPENSATION A PRACTICAL GUIDE

Wolfgang Hofmann *Reactive Power Engineering, Munich, Germany*

Jürgen Schlabbach University of Applied Sciences, Bielefeld, Germany

Wolfgang Just Engineering Consultant, Dorsten, Germany

This edition first published 2012 © 2012, John Wiley & Sons, Ltd

This book includes an authorised translation of selected content from the original German edition published by VDE Verlag GmbH

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloguing-in-Publication Data

Hofmann, Wolfgang, 1945-

[Blindstrom-Kompensation in der Betreibspraxis. English]
Reactive power compensation : a practical guide / Wolfgang Hofmann, Jurgen Schlabbach, Wolfgang Just. p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-97718-7 (alk. paper)
1. Capacitors. 2. Reactance (Electricity) 3. Electric capacity. 4. Electric action of points.
I. Schlabbach, J. (Jürgen) II. Just, Wolfgang. III. Title.
TK2805.H6413 2012
621.3815-dc23

Print ISBN: 9780470977187

A catalogue record for this book is available from the British Library.

Typeset in 10/12pt Times by Aptara Inc., New Delhi, India

2011042394

Contents

Foreword and Acknowledgements		xiii	
1	Basics	of Reactive Power	1
1.1	Chapter Overview		
1.2	Phasors	and Vector Diagrams	1
1.3	Definiti	on of Different Types of Power	4
1.4	Definiti	on of Power for Non-Sinusoidal Currents and Voltages	6
1.5	Equival	ent Mechanical Model for Inductance	9
1.6	Equival	ent Mechanical Model for Capacitance	11
1.7	Ohmic	and Reactive Current	12
1.8	Summa	ry	13
	Referen	nces	13
2	Reactiv	ve Power Consumers	15
2.1	Chapter	r Overview	15
2.2	Reactiv	e Energy Demand	15
2.3	Simplif	ied Model: Series Reactive Power Consumer	16
2.4	Realisti	c Model: Mixed Parallel and Series Reactive Power	16
2.5	Reactive Power Demand of Consumers		
	2.5.1	Asynchronous Motors	17
	2.5.2	Transformers	18
	2.5.3	Control Gear (Ballast) for Gas Discharge Lamps	18
2.6	Summa	ry	21
3	Effect of	of Reactive Power on Electricity Generation, Transmission	
	and Dis	stribution	23
3.1	Chapter	r Overview	23
3.2	Loading	g of Generators and Equipment	23
3.3	Power S	System Losses	24
3.4	Generat	tors	27
3.5	Voltage	Drop	28
	3.5.1	General	28
	3.5.2	Transferable Power of Lines and Voltage Drop	29
	3.5.3	Transformer Voltage Drop	32

3.6 3.7	Available Power of Transformers Summary	34 35
4	Reactive Power in Standard Energy Contracts	37
4.1	Chapter Overview	37
4.2	Introduction	37
4.3	Reactive Energy to be Considered in Standardized Contracts of Suppliers	38
	4.3.1 Pricing Dependent on Consumed Reactive Energy (kvarh)	38
	4.3.2 Pricing Dependent on Consumed Apparent Energy (kVAh)	40
4.4	Importance of Reactive Power in Determining the Costs of Connection	42
4.5	Summary	
	Reference	42
5	Methods for the Determination of Reactive Power and Power Factor	43
5.1	Chapter Overview	43
5.2	Methods	43
	5.2.1 Determination of Power Factor in Single-Phase Grids	43
	5.2.2 Direct Indication of Power Factor by Means of Brueger's Device	44
	5.2.3 Determination of Power Factor in Three-Phase System	44
	5.2.4 Determination of Power Factor Using Portable Measuring	
	Equipment	46
	5.2.5 Determination of Power (Factor) via Recorded Data	48
	5.2.0 Determination of Power Factor by Means of an Active Energy Motor	10
	Melei 5.2.7 Determination of Power Factor by Means of an Active and	40
	S.2.7 Determination of 1 over Factor by Means of an Active and Reactive Energy Meter	40
	5.2.8 Determination of Power Factor via the Energy Rill	50
5.3	Summary	51
6	Improvement of Power Factor	53
6.1	Chapter Overview	53
6.2	Basics of Reactive Power Compensation	53
6.3	Limitation of Reactive Power without Phase Shifting	55
6.4	Compensation of Reactive Power by Rotational Phase-Shifting Machines	55
6.5	Compensation of Reactive Power by Means of Capacitors	56
6.6	Summary	58
7	Design, Arrangement and Power of Capacitors	61
7.1	Chapter Overview	61
7.2	Basics of Capacitors	61
7.3	Reactive Power of Capacitors	64
7.4	Different Technologies in Manufacturing Capacitors	65
	7.4.1 Capacitors with Paper Insulation	65
	7.4.2 Capacitors with Metallized Paper (MP Capacitor)	65
	7.4.5 Capacitors with Metallized Plastic Foils	66

7.5	Arrangements and Reactive Power of Capacitors	66
	7.5.1 Capacitors Connected in Parallel	67
	7.5.2 Capacitors Connected in Series	67
	7.5.3 Star and Delta Connection of Power Capacitors	68
7.6	Design of MV Capacitors	69
7.7	Long-Term Stability and Ageing of Capacitor Installations	69
	7.7.1 General	69
	7.7.2 Influence of Operating Voltage	70
	7.7.3 Ageing in the Case of Detuned Capacitors	72
	7.7.4 Ageing due to Switching Operations	73
7.8	Summary	73
	References	73
8	Determination of Required Power of Capacitors	75
8.1	Chapter Overview	75
8.2	Basics of Calculation	75
8.3	Determination of Compensation at New Projected Plants	79
8.4	Summary	85
	Reference	85
9	Types of Reactive Power Compensation	87
9.1	Chapter Overview	87
9.2	Single-Type Compensation	87
	9.2.1 Single-Type Compensation in Asynchronous Motors	88
	9.2.2 Single-Type Compensation of Transformers	97
	9.2.3 Single-Type Compensation of Reactive Power for Welding Transformers	90
	924 Single-Type Compensation of Fluorescent Lamps	103
9.3	Bulk-Type Compensation	108
9.4	Central-Type Compensation	111
9.5	Mixed Compensation	112
9.6	Advantages and Disadvantages of Different Types of Compensations	113
9.7	Summary	115
	Reference	115
10	Compensation of Existing Installations	117
10.1	Chapter Overview	117
10.2	Methods of Determining the Reactive Power for Extension	117
10.3	Calculation of the Extension Unit by Means of Energy Invoices	118
10.4	Summary	121
11	Control of Reactive Power	123
11.1	Chapter Overview	123
11.2	General	123
	11.2.1 Reactive Power Compensation Units	124

11.3	Control	of Reactive Power by Automatic Reactive Power Controllers	124
	11.3.1	General	124
	11.3.2	Number of Steps and Reactive Power of the Capacitor Steps	125
	11.3.3	Threshold Level C/k Value	131
	11.3.4	<i>Reverse Control Scheme (cos φ_d Line)</i>	133
	11.3.5	Automatic Reactive Power Control	135
	11.3.6	No-Volt Release Function	137
11.4	How to V	Wire a Power Factor Relay	137
11.5	Reactive	Power Control by 'Mixed Measurement'	138
11.6	Reactive	Power Control with Multiple Feed-ins	140
	11.6.1	Measuring by Means of Summation Current Transformer	140
	11.6.2	Parallel Operation of Compensation Banks for Each Incoming	
		Supply	142
11.7	Performa	ances of Automatic Compensation Banks	144
11.8	Summar	у	146
12	Discharg	ging Devices for Power Capacitors	147
12.1	Chapter	Overview	147
12.2	Basis at	LV Applications	147
	12.2.1	Rapid Discharging with Additional Resistances Switched in	150
	12.2.2	Discharging Capacitors by Means of Reactors	150
12.3	Discharg	ring Devices in MV Capacitors	152
	12.3.1	MV Capacitors to be Discharged by Resistances	152
	12.3.2	MV Capacitors to be Discharged by Reactors	154
12.4	Calculat	ion of the Electric Charge to be Stored on an MV Capacitor	154
12.5	Summar	У	156
13	Protecti	on of Capacitors and Compensations	157
13.1	Chapter	Overview	157
13.2	Protectio	on against Overcurrent and Short Circuit	157
13.3	Overvolt	age Protection	158
13.4	Protectio	on against Overtemperatures	158
13.5	Protectio	on against Internal Faults	158
	13.5.1	Protection against Voltage Flashover	159
	13.5.2	Self-healing Technology	159
	13.5.3	Protection against Overheating and Internal Overpressure	159
13.6	Protectio	on by Balance Observation at Single-Phase MV Capacitors	162
13.7	Summar	У	163
	Reference	ce de la constante de la consta	163
14	Switchir	ng of Capacitors	165
14.1	Chapter	Overview	165
14.2	General		165
14.3	Selection	1 of Switchgear	16/
	14.5.1	AIT CONTACTORS	108
	14.5.2 14.2.2	CITCUII BREAKERS Switch Euses and Magnetic Twing	169
	14.3.3	Switch Fuses and Magnetic Trips	109

14.4	Switching by Semiconductors (Thyristor Modules)			
	14.4.1	General	169	
	14.4.2	Static Contactors for Switching Capacitors up to 415 V	171	
	14.4.3	Static Contactors for Switching Capacitors of Rated Voltage Higher	•	
		than 500 V	173	
	14.4.4	Power Factor Relays for Static Contactors	173	
	14.4.5	Dynamic Reactive Power Compensation (Ready to Install)	174	
14.5	Summary	T	175	
	Reference	e	175	
15	Installati	on, Disturbances and Maintenance	177	
15.1	Chapter (Dverview	177	
15.2	Installatio	on of Automatically Controlled Compensation Banks	177	
15.3	Automati	c Compensation Banks: Setting into Operation	178	
	15.3.1	Selection of Current Transformer (CT) and Determination of the		
		CT Cable	178	
	15.3.2	Preset Switching Time Delay per Capacitor Step	183	
15.4	Disturbar	nces and How to Solve Them	184	
15.5	Working	and Maintenance	185	
15.6	Summary			
	Reference	es	187	
16	Reactive	Power Compensation in Electrical Plants with Generators	189	
16.1	Chapter (Dverview	189	
16.2	General		189	
16.3	Automati	c Control of Reactive Power within Four Quadrants	190	
	16.3.1	Technical Considerations	190	
164	16.3.2	Bargaining Considerations	192	
16.4	Summary	T	193	
	Reference	es	194	
17	Effects o	f Perturbation Considering Especially the Impact of Harmonics	40.	
1 7 1	on Power	r Factor Correction Capacitors	195	
1/.1	Chapter (Jverview	195	
17.2	Magazin	a and Analysis	190	
17.5	Summor	g and Analysis	202	
17.4	Reference	es	203	
10	Decomon	and in Electrical Down Systems	205	
10	Kesonances in Electrical Power Systems			
18.1	Darallal E	Diciview Desonance Circuit	205	
18.2	Paranet Resonance Circuit 2 Series Desonance Circuit 2			
18.4	Typical R	Pesonances in Power Systems	200	
10.7	18.4 1	Resonance due to Reactive Power Compensation in 6 kV System	208	
	18.4.2	Parallel Resonance in a 30 kV Industrial System	210	
	18.4.3	Impedance in Urban 10 kV System	212	
		*		

18.5	Summary	212
	Reference	212
19	Reactor-Protected Capacitors and Filter Circuits	213
19.1	Chapter Overview	213
19.2	Effect of Reactor-Protected Systems and System Configuration	214
	19.2.1 Effect of Reactor-Protected Systems	214
	19.2.2 System Configuration of Reactor-Protected Capacitor Banks	217
19.3	Notes on the Selection of Reactors	220
19.4	Influence of the Reactor Rate on the Capacitor's Lifetime	222
19.5	Filter Effect with Detuned Filters	223
19.6	Filter Circuits	225
	19.6.1 General	225
	19.6.2 Active Filters	227
	19.6.3 Passive Filters	229
	19.6.4 Comparison of Active and Passive Filters	233
19.7	Neutral Line Harmonic Filtering	233
	19.7.1 General	233
	19.7.2 Special Features of the Third Harmonic	234
	19.7.3 Network Relief by the Neutral Line Harmonic Filter	235
19.8	Summary	238
	References	239
20	Dynamic Reactive Power Compensation Systems	241
20 20.1	Dynamic Reactive Power Compensation Systems Chapter Overview	241 241
20 20.1	Dynamic Reactive Power Compensation Systems Chapter Overview 20.1.1 Improvement of Power Quality via Dynamic Reactive Power	241 241
20 20.1	Dynamic Reactive Power Compensation Systems Chapter Overview 20.1.1 Improvement of Power Quality via Dynamic Reactive Power Compensation Systems	241 241 242
20 20.1 20.2	Dynamic Reactive Power Compensation Systems Chapter Overview 20.1.1 Improvement of Power Quality via Dynamic Reactive Power Compensation Systems Motor Startup Compensation Startup Compensation	241 241 242 245
20 20.1 20.2 20.3	Dynamic Reactive Power Compensation Systems Chapter Overview 20.1.1 Improvement of Power Quality via Dynamic Reactive Power Compensation Systems Motor Startup Compensation Flicker Compensation	241 241 242 245 245
 20 20.1 20.2 20.3 20.4 	Dynamic Reactive Power Compensation Systems Chapter Overview 20.1.1 Improvement of Power Quality via Dynamic Reactive Power Compensation Systems Motor Startup Compensation Flicker Compensation Flicker Compensation Evaluation of Power Factor Correction Solutions as Seen by the Distribution	 241 241 242 245 245
 20 20.1 20.2 20.3 20.4 	Dynamic Reactive Power Compensation Systems Chapter Overview 20.1.1 Improvement of Power Quality via Dynamic Reactive Power Compensation Systems Motor Startup Compensation Flicker Compensation Evaluation of Power Factor Correction Solutions as Seen by the Distribution System Operator (Power Utility)	241 241 242 245 245 245 251
 20 20.1 20.2 20.3 20.4 20.5 	Dynamic Reactive Power Compensation Systems Chapter Overview 20.1.1 Improvement of Power Quality via Dynamic Reactive Power Compensation Systems Motor Startup Compensation Flicker Compensation Evaluation of Power Factor Correction Solutions as Seen by the Distribution System Operator (Power Utility) Summary	241 241 242 245 245 245 251 252
 20 20.1 20.2 20.3 20.4 20.5 	Dynamic Reactive Power Compensation Systems Chapter Overview 20.1.1 Improvement of Power Quality via Dynamic Reactive Power Compensation Systems Motor Startup Compensation Flicker Compensation Evaluation of Power Factor Correction Solutions as Seen by the Distribution System Operator (Power Utility) Summary References	241 241 242 245 245 245 251 252 252
 20 20.1 20.2 20.3 20.4 20.5 21 	Dynamic Reactive Power Compensation Systems Chapter Overview 20.1.1 Improvement of Power Quality via Dynamic Reactive Power Compensation Systems Motor Startup Compensation Flicker Compensation Evaluation of Power Factor Correction Solutions as Seen by the Distribution System Operator (Power Utility) Summary References	241 241 242 245 245 245 252 252 252 252 253
 20 20.1 20.2 20.3 20.4 20.5 21 21.1 	Dynamic Reactive Power Compensation Systems Chapter Overview 20.1.1 Improvement of Power Quality via Dynamic Reactive Power Compensation Systems Motor Startup Compensation Flicker Compensation Evaluation of Power Factor Correction Solutions as Seen by the Distribution System Operator (Power Utility) Summary References Compensation Effects at Rectifiers Chapter Overview	241 241 242 245 245 245 252 252 252 252 253 253
 20 20.1 20.2 20.3 20.4 20.5 21 21.1 	Dynamic Reactive Power Compensation Systems Chapter Overview 20.1.1 Improvement of Power Quality via Dynamic Reactive Power Compensation Systems Motor Startup Compensation Flicker Compensation Evaluation of Power Factor Correction Solutions as Seen by the Distribution System Operator (Power Utility) Summary References Compensation Effects at Rectifiers Chapter Overview 21.1.1 General	241 241 242 245 245 245 252 252 252 252 253 253 253
 20 20.1 20.2 20.3 20.4 20.5 21 21.1 21.2 	Dynamic Reactive Power Compensation Systems Chapter Overview 20.1.1 Improvement of Power Quality via Dynamic Reactive Power Compensation Systems Motor Startup Compensation Flicker Compensation Evaluation of Power Factor Correction Solutions as Seen by the Distribution System Operator (Power Utility) Summary References Compensation Effects at Rectifiers Chapter Overview 21.1.1 General Compensation Bank at a Six-Pulse Rectifier	241 241 242 245 245 245 251 252 252 252 253 253 253 254
 20 20.1 20.2 20.3 20.4 20.5 21 21.1 21.2 	Dynamic Reactive Power Compensation Systems Chapter Overview 20.1.1 Improvement of Power Quality via Dynamic Reactive Power Compensation Systems Motor Startup Compensation Flicker Compensation Evaluation of Power Factor Correction Solutions as Seen by the Distribution System Operator (Power Utility) Summary References Compensation Effects at Rectifiers Chapter Overview 21.1.1 General Compensation Bank at a Six-Pulse Rectifier 21.2.1 Time Courses of Voltage and Current at a Three-Phase	241 241 242 245 245 251 252 252 252 253 253 253 254
 20 20.1 20.2 20.3 20.4 20.5 21 21.1 21.2 	Dynamic Reactive Power Compensation Systems Chapter Overview 20.1.1 Improvement of Power Quality via Dynamic Reactive Power Compensation Systems Motor Startup Compensation Flicker Compensation Evaluation of Power Factor Correction Solutions as Seen by the Distribution System Operator (Power Utility) Summary References Compensation Effects at Rectifiers Chapter Overview 21.1.1 General Compensation Bank at a Six-Pulse Rectifier 21.2.1 Time Courses of Voltage and Current at a Three-Phase Bridge-Connected Rectifier	241 241 242 245 245 245 252 252 252 253 253 253 254 256
 20 20.1 20.2 20.3 20.4 20.5 21 21.1 21.2 	Dynamic Reactive Power Compensation Systems Chapter Overview 20.1.1 Improvement of Power Quality via Dynamic Reactive Power Compensation Systems Motor Startup Compensation Flicker Compensation Evaluation of Power Factor Correction Solutions as Seen by the Distribution System Operator (Power Utility) Summary References Compensation Effects at Rectifiers Chapter Overview 21.1.1 General Compensation Bank at a Six-Pulse Rectifier 21.2.1 Time Courses of Voltage and Current at a Three-Phase Bridge-Connected Rectifier 21.2.2 How Compensation Banks Affect Three-Phase	241 241 242 245 245 245 252 252 252 253 253 253 254 256
 20 20.1 20.2 20.3 20.4 20.5 21 21.1 21.2 	Dynamic Reactive Power Compensation Systems Chapter Overview 20.1.1 Improvement of Power Quality via Dynamic Reactive Power Compensation Systems Motor Startup Compensation Flicker Compensation Evaluation of Power Factor Correction Solutions as Seen by the Distribution System Operator (Power Utility) Summary References Compensation Effects at Rectifiers Chapter Overview 21.1.1 General Compensation Bank at a Six-Pulse Rectifier 21.2.1 Time Courses of Voltage and Current at a Three-Phase Bridge-Connected Rectifier 21.2.2 How Compensation Banks Affect Three-Phase Bridge-Connected Rectifiers	241 241 242 245 245 245 252 252 252 253 253 253 254 256 257
 20 20.1 20.2 20.3 20.4 20.5 21 21.2 21.3 	Dynamic Reactive Power Compensation Systems Chapter Overview 20.1.1 Improvement of Power Quality via Dynamic Reactive Power Compensation Systems Motor Startup Compensation Flicker Compensation Evaluation of Power Factor Correction Solutions as Seen by the Distribution System Operator (Power Utility) Summary References Compensation Effects at Rectifiers Chapter Overview 21.1.1 General Compensation Bank at a Six-Pulse Rectifier 21.2.1 Time Courses of Voltage and Current at a Three-Phase Bridge-Connected Rectifier 21.2.2 How Compensation Banks Affect Three-Phase Bridge-Connected Rectifiers Characteristic Behaviour of Reactive Power Controllers at Rectifiers	241 241 242 245 245 252 252 252 253 253 253 254 256 257 260
 20 20.1 20.2 20.3 20.4 20.5 21 21.1 21.2 21.3 21.4 	Dynamic Reactive Power Compensation SystemsChapter Overview20.1.1Improvement of Power Quality via Dynamic Reactive Power Compensation SystemsMotor Startup CompensationFlicker CompensationEvaluation of Power Factor Correction Solutions as Seen by the Distribution System Operator (Power Utility)Summary ReferencesCompensation Effects at Rectifiers Chapter Overview21.1.1General Compensation Bank at a Six-Pulse Rectifier21.2.1Time Courses of Voltage and Current at a Three-Phase Bridge-Connected Rectifier21.2.2How Compensation Banks Affect Three-Phase Bridge-Connected RectifiersCharacteristic Behaviour of Reactive Power Controllers at Rectifiers	241 241 242 245 245 252 252 252 253 253 253 254 256 257 260 261

22	Environmental and Climate Protection Using Capacitors		
22.1	Chapter Overview	263	
22.2	PCB-Filled Capacitors	263	
22.3	Climate Change and Energy Efficiency through Power Factor Correction	264	
22.4	Summary	267	
	References	267	
Symb	ools and Abbreviations	269	
Index	4	273	

Foreword and Acknowledgements

The book gives a general overview and also specific deep knowledge about the segment "compensation of reactive power". Network quality, power losses, energy saving and reduction of CO_2 are discussed within 22 chapters forming a technical "dictionary". It is written to be accessible for all specialists; including engineers, electricians and students. The purpose of this book is to extend the knowledge in this specified field. This "technical guide" answers a lot of questions arising in controlling reactive power e.g. at parallel operation with generators.

This book is based on a book in German published by the VDE Verlag GmbH (Berlin and Offenbach) in the year 2003. Some chapters were revised and adapted or entirely rewritten to conform to new technological developments and changing standards. The chapters have been primarily revised by:

Jürgen Schlabbach – Chapters 1 incl. 4; 18 and 22 Wolfgang Hofmann – Chapters 5 incl. 16 and 21 Wolfgang Just – Chapters 17, 19 and 20

The authors would like to thank all the companies that have contributed pictures and information for the update of this book. We would like to express a special word of thanks to Mr. M. Kreienberg of VDE publishers who supported the idea for this book in English. His assistance in the creation of the drawings was very helpful. Special thanks are also due to the staff of John Wiley & Sons for their help and cooperation during the preparation of this book. We would also like to remember the late Miss Nicky Skinner, who looked after our book project at the very beginning.

Our thanks are also extended to our families for their patience during the uncounted hours of writing the book.

Our sincere thanks are directed to the following companies who supplied us with documentations, photos, (circuit-) diagrams and technical support for the total of 22 chapters of our book:

Maschinenfabrik Reinhausen GmbH KoCos Power Grid Services GmbH Janitza Electronics GmbH Hans von Mangold GmbH & Co. KG Electronicon Kondensatoren GmbH

System Electric Power Quality GmbH

Frako Kondensatoren und Anlagenbau GmbH

Condensator Dominit GmbH

IESA; Brazil

Boddingtons Power Controls LTD, U.K.

General Motors do Brasil

Schneider Electric; Brazil

Dr. Rolf Richter, ZVEI e.V., Frankfurt, Germany

Florence Richter (freelance translator, BA in English and Ancient Greek) in translating Chapters 17, 19 and 20

Munich, Dorsten, Bielefeld; Germany; 2011-10-20

In case the reader may have any questions, please contact the authors:

rpe.w.hofmann@t-online.de juergen.schlabbach@fh-bielefeld.de wolfg.just@t-online.de 1

Basics of Reactive Power

1.1 Chapter Overview

This chapter deals with the definitions and fundamentals of active, reactive and apparent power in the case of sinusoidal and non-sinusoidal current and voltage. The differences between power factor, taking account of only the fundamental frequency components, and distortion factor, taking account of higher frequency components as well, are explained. Equivalent mechanical models are presented to explain the behaviour of inductance and capacitance and the generation of reactive power.

1.2 Phasors and Vector Diagrams

Motors, discharge lamps, transformers, generators with lagging power factor, as well as cables and overhead lines with high current loading, need reactive power to build up the magnetic field, sometimes called the consumption of reactive or inductive power. Other equipment and consumers, such as rectifiers with capacitive smoothing, compact fluorescent lamps, capacitors, generators with leading power factor and overhead transmission lines and cables in no-load or low-load operation, need reactive power to build up the electric field, an effect called the generation of reactive or capacitive power. In contrast to active power, reactive power is not converted into heat, light or torque, but fluctuates between the source (e.g. capacitor) and the drain (e.g. motor). Compared with pure active power, the current is increased as the active current and the reactive current are added to the apparent current according to their amount and phase angle.

When dealing with AC and three-phase systems, it should be noted that currents and voltages are generally not in phase. The phase position depends on the amount of inductance, capacitance and ohmic resistance at the impedance.

The time course, for example of a current or voltage, varies in accordance with

$$u(t) = \hat{u}\cos\left(\omega t + \varphi_U\right) \tag{1.1a}$$

$$i(t) = i\cos\left(\omega t + \varphi_I\right) \tag{1.1b}$$

Reactive Power Compensation: A Practical Guide, First Edition. Wolfgang Hofmann, Jürgen Schlabbach and Wolfgang Just. © 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

Figure 1.1 Vector diagram and time course of AC voltage [1].

as can be shown in a line diagram, see Figure 1.1. In the case of sinusoidal variables, these can be shown at the complex numerical level by rotating pointers, which rotate in a mathematically positive sense (counter-clockwise) with angular velocity ω as follows:

$$\underline{U} = \sqrt{2}U \cdot e^{(j\omega t + \varphi_U)} \tag{1.2a}$$

$$\underline{I} = \sqrt{2I} \cdot e^{(j\omega t + \varphi_I)} \tag{1.2b}$$

The time course in this case is obtained as a projection onto the real axis, as in Figure 1.1. The terms for the designation of resistances and admittances are stipulated in DIN 40110 [2] and in IEC 60027-7 [3]. These specify the following:

Resistance	R	Active resistance
Reactance	X	Reactance
Conductance	G	Active conductance
Susceptance	В	Susceptance

The generic term for resistances is given as impedance or apparent impedance

$$\underline{Z} = R + jX \tag{1.3a}$$

The generic term for conductance is admittance or apparent admittance

$$\underline{Y} = G + jB \tag{1.3b}$$

The reactance depends on the particular frequency under consideration and can be calculated for capacitances or inductances from

$$X_C = \frac{1}{\omega C} \tag{1.4a}$$

$$X_L = \omega L \tag{1.4b}$$

For sinusoidal variables, the current through a capacitor, or the voltage at an inductance, can be calculated as follows:

$$i(t) = C \cdot \frac{du(t)}{dt} \tag{1.5a}$$

$$u(t) = L \cdot \frac{di(t)}{dt}$$
(1.5b)

The derivation for sinusoidal variables establishes that the current achieves, by an inductance, its maximum value a quarter period after the voltage. When considering the process at the complex level, the pointer for the voltage precedes the pointer for the current by 90°. This corresponds to multiplication by +j.

For capacitance, on the other hand, the voltage does not reach its maximum value until a quarter period after the current, the voltage pointer lagging behind the current by 90°, which corresponds to multiplication by -j. This enables the relationship between current and voltage for inductances and capacitances to be expressed in a complex notation. Thus

$$\underline{U} = j\omega L \cdot \underline{I} \tag{1.6a}$$

$$\underline{I} = \frac{1}{j\omega C} \cdot \underline{U} \tag{1.6b}$$

Vectors are used to describe electrical processes. They are therefore used in DC, AC and three-phase systems. Vector systems can, by definition, be chosen as required, but must not be changed during an analysis or calculation. It should also be noted that the appropriate choice of the vector system is of substantial assistance in describing and calculating special tasks. The need for vector systems is clear if one considers Kirchhoff's law, for which the positive directions of the active and reactive powers are then also stipulated.

For reasons of comparability and transferability, the vector system for the three-phase network (L1,L2,L3 components or RYB) should also be used for other component systems (e.g. symmetrical components), which describe the three-phase network.

If vectors are drawn as shown in Figure 1.2, the active and reactive powers, for instance output by a generator in overexcited operation, are positive. This vector system is designated as a generator vector system (GVS). Accordingly, the active and reactive powers consumed by

Figure 1.2 Definition of vectors for current, voltage and power in three-phase AC systems [1]: (a) power system diagram; (b) electrical diagram for symmetrical conditions (positive sequence system).

Figure 1.3 Vector diagram of current, voltage and power [1]: (a) related to consumer vector system – CVS); (b) related to power generation (generation vector system – GVS).

the load (e.g. motor) are positive when choosing the consumer vector system (CVS). Figure 1.3 shows the phasor diagram of an ohmic–inductive load in the generator and in the consumer vector system.

1.3 Definition of Different Types of Power

The definitions and explanantions are given in accordance with DIN 40110 [2]. The instantaneous value of the power p(t) in an AC system is calculated as follows:

$$p(t) = u(t) \cdot \dot{i}(t) \tag{1.7}$$

with i(t) and u(t) as the instantaneous values of current and voltage. Generally the product of current and voltage is oscillating and shows positive and negative values within one period. The mean value of the oscillating power is called active power \overline{P} :

$$\overline{P} = \frac{1}{T} \int_{0}^{T} u(t) \cdot i(t) dt$$
(1.8)

In the case of sinusoidal current and voltage

$$u(t) = \hat{u}\cos\left(\omega t + \varphi_U\right) \tag{1.9a}$$

$$i(t) = \hat{i}\cos\left(\omega t + \varphi_I\right) \tag{1.9b}$$

The instantaneous value of the power p(t) as the product of the instantaneous values of current and voltage is

$$p(t) = \hat{u}\hat{i}\cos(\omega t + \varphi_U)\cos(\omega t + \varphi_I)$$
(1.10a)

After some numerical operations and with $\varphi = \varphi_U - \varphi_I$, the following equation is obtained:

$$p(t) = \frac{\hat{u}\hat{i}}{2}\cos\varphi + \frac{\hat{u}\hat{i}}{2}\cos(2\omega t + \varphi)$$
(1.10b)

Equation 1.10b indicates that the power p(t) oscillates with twice the frequency of the current and voltage; its mean value is called active power P:

$$P = \frac{\hat{u}\hat{i}}{2}\cos\varphi \tag{1.11a}$$

The term $\hat{ui}/2$ is called apparent power S:

$$S = \frac{\hat{u}\hat{i}}{2} \tag{1.11b}$$

If one eliminates φ_I in the above equations the following is obtained:

$$p(t) = \frac{\hat{u}\hat{i}}{2}\cos\varphi + \frac{\hat{u}\hat{i}}{2}\cos\varphi \cdot \cos\left(2\omega t + 2\varphi_U\right) + \frac{\hat{u}\hat{i}}{2}\sin\varphi \cdot \sin\left(2\omega t + 2\varphi_U\right)$$
(1.12)

The term $(\hat{u}\hat{i}/2)\sin\varphi$ is called reactive power Q. The reactive power oscillates with twice the frequency of the current and voltage; its mean value is zero:

$$Q = \frac{\hat{u}\hat{i}}{2}\sin\varphi \tag{1.11c}$$

The reactive power in the CVS is positive if the phase angle φ is between 0° and +180°; that is, if the voltage pointer leads the current pointer. In this case the reactive power is called the inductive power, which is the power drawn from the system by a reactance. If the voltage pointer lags behind the current pointer, which is when the phase angle φ is between 0° and -180° , the reactive power becomes negative. This is called capacitive power, as it is the power supplied to the system by a capacitance.

In general, the following equation is valid

$$|Q| = \sqrt{S^2 - P^2} \tag{1.13}$$

for the amplitudes of the active power P, reactive power Q and apparent power S are defined as above. If rms values are used instead of peak values, as is common in calculating power systems, the active, reactive and apparent power become

$$P = P = U \cdot I \cos(\varphi_U - \varphi_I) \tag{1.14a}$$

$$Q = U \cdot I \sin(\varphi_U - \varphi_I) \tag{1.14b}$$

$$S = U \cdot I \tag{1.14c}$$

The quotient from active power *P* and reactive power *S* is called the power factor λ . In the case of sinusoidal currents and voltages the power factor is identical to the distortion factor of the fundamental frequency $\cos \varphi_1$.

Figure 1.4 indicates the time course of current and voltage at an ohmic–inductive consumer load and the resulting active, reactive and apparent power.

1.4 Definition of Power for Non-Sinusoidal Currents and Voltages

Active power can only be converted if current and voltage have equal frequency, as the integral for current and voltage of unequal frequency in accordance with

$$\overline{P} = \frac{1}{T} \int_{0}^{T} u(t) \cdot i(t) dt$$
(1.8)

makes no contribution.

If current and voltage both have a non-sinusoidal waveform

$$u(t) = \sum_{k=1}^{N} \hat{u}_{k} \cos(k\omega_{1}t + \varphi_{U,k})$$
(1.15a)

$$i(t) = \sum_{l=1}^{N} \hat{i}_{l} \cos(l\omega_{1}t + \varphi_{l,l})$$
 (1.15b)

the instantaneous value of the power is calculated as

$$p(t) = \sum_{k=l=1}^{N} \frac{\hat{u}_{k}\hat{i}_{l}}{2} \cos(\varphi_{U,k} - \varphi_{I,l}) + \sum_{k=1}^{N} \sum_{l=1}^{N} \frac{\hat{u}_{k}\hat{i}_{l}}{2} \cos((k+l)\omega_{1}t + \varphi_{U,k} + \varphi_{I,l}) + \sum_{\substack{k=1\\k \neq l}}^{N} \sum_{l=1}^{N} \frac{\hat{u}_{k}\hat{i}_{l}}{2} \cos((k-l)\omega_{1}t + \varphi_{U,k} - \varphi_{I,l})$$
(1.16)

Figure 1.4 Current, voltage and powers at an ohmic–inductive consumer load: (a) current and voltage; (b) active, reactive and apparent power.

The first summand describes the active power, whereby the component with k = l = 1 represents the fundamental component active power and the summands where k = l > 1 render the harmonic active powers. The second summand renders the reactive power Q and the third summand the distortion power Q_d . The time course of these powers oscillates non-sinusoidally about the zero-frequency mean value. Note that the higher frequencies of voltage and current generate active power as well, if their frequencies are the same.

The correlation between the powers is as follows (active part of fundamental current I_{w1} ; reactive part of fundamental current I_{b1} ; harmonic part of current I_{v}):

$$S^2 = P_1^2 + Q_1^2 + Q_d^2 (1.17a)$$

$$S^{2} = U^{2} \left(I_{w1}^{2} + I_{b1}^{2} + \sum_{\nu=2}^{H} I_{\nu}^{2} \right)$$
(1.17b)

The active power P_1 and the reactive power Q_1 are related to the fundamental frequency of current and voltage, and the distortion power Q_d is related to the harmonic currents and the fundamental frequency of the voltage:

$$P_1 = U \cdot I_1 \cdot \cos \varphi \tag{1.18a}$$

$$Q_1 = U \cdot I_1 \cdot \sin \varphi \tag{1.18b}$$

$$Q_d = U \cdot \sqrt{\sum_{\nu=2}^H I_\nu^2}$$
(1.18c)

The different terms are represented in a three-dimensional diagram as in Figure 1.5.

The power factor λ , which is defined as the quotient of active power and apparent power, is generally defined as follows:

$$\lambda = \frac{|P|}{\sqrt{(P^2 + Q_1^2 + Q_d^2)}}$$
(1.19)

The displacement factor $\cos \varphi_1$ is defined as the quotient of active power and apparent power with fundamental frequency (in the case of sinusoidal voltage and non-sinusoidal current):

$$\cos\varphi_1 = \frac{P_1}{\sqrt{P_1^2 + Q_1^2}} = \frac{P_1}{S_1}$$
(1.20)

The power factor λ and displacement factor $\cos \varphi_1$ are related to each other by the fundamental content g_i of the current:

$$\lambda = g_i * \cos \varphi_1 \tag{1.21}$$

Figure 1.5 Active, reactive, apparent and distortion power, power factor and displacement factor.

The fundamental content g_i is defined as the quotient of the rms value of fundamental current to the total rms value:

$$g_i = \frac{I_1}{I} \tag{1.22}$$

The total rms value also includes the higher frequency components of the current as well:

$$I = \sqrt{\sum_{\nu=1}^{H} I_{\nu}^{2}}$$
(1.23)

1.5 Equivalent Mechanical Model for Inductance

An equivalent model from mechanics can illustrate, as in Figure 1.6, the phenomena of inductance, capacitance, active and reactive power. A train with mass *m* is accelerated by the locomotive to its final velocity *v*. The pointers of force and velocity are in the same direction, and the power and energy supplied are positive as well. When the force is increased or decreased in a stepwise fashion, the velocity of the train does not change stepwise, but increases or decreases by means of an exponential function. The energy supplied, in the case of increasing force, or not supplied, in the case of decreasing force, is stored in the movement of the train, which is identical to the phenomena of storage and discharge of electrical energy in an inductance. The mechanical energy W_{mec} is given by

$$W_{mec} = m \cdot \frac{v^2}{2} \tag{1.24a}$$

and the electrical energy W_{el} by

$$W_{el} = L \cdot \frac{I^2}{2} \tag{1.25a}$$

Figure 1.6 Force and velocity while accelerating and decelerating a train [4].

Comparing electrical and mechanical phenomena, the equivalents are:

Voltage	=	Mechanical force
Current	=	Velocity
Inductance	=	Physical mass
Capacitance	=	Spring constant
Electrical energy	=	Mechanical energy
Electrical power	=	Mechanical power

If the force to accelerate the train is a sinusoidal function it is obvious that the velocity of the train does not change synchronously (with the same frequency), but with a time delay, see Figure 1.7. The maximal values of velocity and mechanical force have a time delay or phase shift similar to the phase shift between voltage and current at an inductance, which is described by the term 'reactive power'. Reactive power in this case is reactive power by an inductance. It is always present if the phasors of mechanical force (equivalent to the voltage) and velocity (equivalent to the current) have opposite directions and different signs. Reactive power W_{mag} in inductances stored in the magnetic field is

$$W_{mag} = L \cdot \frac{I^2}{2} \tag{1.25b}$$

Figure 1.7 Equivalent electrical and mechanical model (inductance and mass): (a) starting point; (b) accelerating – energy supply (imported); (c) decelerating – energy generation (exported); (d) exported energy (voltage switched off); (e) time course of current, voltage and power.

In the mechanical model the equivalent of the magnetically stored energy is the kinetic energy of the moving mass:

$$W_{kin} = m \cdot \frac{v^2}{2} \tag{1.24b}$$

1.6 Equivalent Mechanical Model for Capacitance

Reactive power can be compensated by capacitors, which store energy in the electric field:

$$W_{cap} = C \cdot \frac{U^2}{2} \tag{1.26}$$

The equivalent of a capacitor in the mechanical model is a spring, which stores energy (potential energy)

$$W_{pot} = k \cdot \frac{F^2}{2} \tag{1.27}$$

with mechanical force F and spring constant k. If a laminated spring (leaf spring) is compressed and expanded with a sinusoidal force, the maximum mechanical force is supplied when the velocity is zero. In the case of maximal velocity the mechanical force is zero, see Figure 1.8.

Figure 1.8 Equivalent electrical and mechanical model (capacitance and spring): (a) starting point; (b) compressed – energy supply (imported); (c) expanded – energy generation (exported); (d) discharging the capacitor, voltage switched off (exported); (e) time course of current, voltage and power.

Mechanical force and velocity are characterized by a time shift of 90°, similar to the time shift of current and voltage at a capacitor. The mechanical system 'mass \leftrightarrow spring' and the electrical system 'inductance \leftrightarrow capacitor' can both oscillate with a defined frequency, namely the resonance frequency.

1.7 Ohmic and Reactive Current

An ohmic–inductive load with a sinusoidal waveform of current and voltage, such as in AC motors, transformers and reactors, can be modelled as the equivalent circuit of an ohmic resistance R in parallel with an inductive resistance X_L as in Figure 1.9a. The current can be represented in this equivalent model as two orthogonal components, see Figure 1.9b, one in phase with the voltage U, called the active current I_w , and the other with a phase shift of 90° lagging, called the inductive or reactive current I_b . The apparent current I has a phase shift against the voltage of phase angle φ . The active component I_w of the current describes the ohmic component and active power, while the reactive component I_b describes the inductive component, representing the reactive power. A line diagram of current, voltage and power is outlined in Figure 1.9c.

Electrical parameters such as voltage, current and power can be described by pointers (vectors) with rms values represented by the length of the pointer. Figure 1.10 indicates the relationship of active, reactive and apparent current and power in the orthogonal system, representing the same quantities and relations as the line diagram in Figure 1.9c. The phase shift (phase angle φ) depends on the amount of the reactive component in relation to the active component. With constant reactive power and increasing active power, the power factor and

Figure 1.9 Phase shift of current and voltage in the case of ohmic–inductive load: (a) equivalent circuit diagram; (b) orthogonal components of current; (c) line diagram of current, voltage and power.

Figure 1.10 Orthogonal components of current and power: (a) current; (b) power.

the apparent power are both increasing; in the case of constant active power and increasing reactive power, the power factor is decreasing and the apparent power increasing. For details see also Figure 1.5 and Equation 1.20.

1.8 Summary

The power in AC systems has an oscillating time course; the mean value is called the active power. The reactive power has a mean value of zero and is determined by the phase angle between voltage and current. One has to distinguish between the fundamental power factor $\cos \varphi$, sometimes called the displacement factor, which takes account of the active power and reactive power at the fundamental frequency, and the power factor λ , which takes the distortion power Q_d of the higher frequencies (harmonics and interharmonics) into account as well.

References

- Schlabbach, J., Blume, D. and Stephanblome T. (2001) Voltage Quality in Electrical Power Systems, IEE Power Series No. 36, Institution of Electrical Engineers, Stevenage.
- [2] DIN 40110 (2002) Wechselstromgrößen Teil 2: Mehrleiter-Stromkreise (Quantities used in alternating current theory Part 2: Multi-line circuits), Beuth-Verlag, Berlin, November.
- [3] Hofmann, W. (1995) Reactive power does not always mean reactive power. etz, 116 (22), 22–28.
- [4] IEC 600027-7 (2008) Quantities and units, and their letter symbols.