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The area of reactive power compensation is gaining increasing importance worldwide. If 
suitably designed, it is capable of improving voltage quality signifi cantly, meaning that losses 
in equipment and power systems are reduced, the permissible loading of equipment can be 
increased, and the over-all stability of system operation improved. Ultimately, energy use 
and CO2 emisson are reduced.

This unique guide discusses the effects of reactive power on generation, transmission and 
distribution, and looks at the compensation of existing installations in detail. It outlines 
methods for determination of reactive power and answers the questions that arise when 
controlling it, for example, at parallel operation with generators. There is also a chapter 
devoted to installation, maintenance and disturbances.

Key features include:

� A concise overview as well as deep specifi c knowledge on the segment power factor 
regulation and network quality

� Theory of reactive power compensation coupled with typical application examples 
such as car manufacturing, metal rolling and chemical works

� Chapter summaries with charts explaining how to put the theory into practice
� Coverage on the cost-saving aspects of this technology, including the effi cient use of 

energy and the reduction of CO2

A practical guide for electrical engineers and technicians in utilities, this is also essential 
reading for maintenance engineers, designers, electrical contractors, manufacturing 
companies, and researchers, also those in industry and planning agencies. Insightful and 
clear, the book will also appeal to senior undergraduate and graduate electrical 
engineering students and professors.

A comprehensive resource on reactive power compensation, presenting the 
design, application and operation of reactive power equipment and installations.
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1
Basics of Reactive Power

1.1 Chapter Overview

This chapter deals with the definitions and fundamentals of active, reactive and apparent power
in the case of sinusoidal and non-sinusoidal current and voltage. The differences between power
factor, taking account of only the fundamental frequency components, and distortion factor,
taking account of higher frequency components as well, are explained. Equivalent mechanical
models are presented to explain the behaviour of inductance and capacitance and the generation
of reactive power.

1.2 Phasors and Vector Diagrams

Motors, discharge lamps, transformers, generators with lagging power factor, as well as cables
and overhead lines with high current loading, need reactive power to build up the magnetic
field, sometimes called the consumption of reactive or inductive power. Other equipment and
consumers, such as rectifiers with capacitive smoothing, compact fluorescent lamps, capacitors,
generators with leading power factor and overhead transmission lines and cables in no-load
or low-load operation, need reactive power to build up the electric field, an effect called the
generation of reactive or capacitive power. In contrast to active power, reactive power is not
converted into heat, light or torque, but fluctuates between the source (e.g. capacitor) and the
drain (e.g. motor). Compared with pure active power, the current is increased as the active
current and the reactive current are added to the apparent current according to their amount
and phase angle.

When dealing with AC and three-phase systems, it should be noted that currents and
voltages are generally not in phase. The phase position depends on the amount of inductance,
capacitance and ohmic resistance at the impedance.

The time course, for example of a current or voltage, varies in accordance with

u(t) = û cos (ωt + ϕU ) (1.1a)

i(t) = î cos (ωt + ϕI ) (1.1b)

Reactive Power Compensation: A Practical Guide, First Edition. Wolfgang Hofmann, Jürgen Schlabbach and Wolfgang Just.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

1
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Figure 1.1 Vector diagram and time course of AC voltage [1].

as can be shown in a line diagram, see Figure 1.1. In the case of sinusoidal variables, these can
be shown at the complex numerical level by rotating pointers, which rotate in a mathematically
positive sense (counter-clockwise) with angular velocity ω as follows:

U =
√

2U · e( jωt+ϕU ) (1.2a)

I =
√

2I · e( jωt+ϕI ) (1.2b)

The time course in this case is obtained as a projection onto the real axis, as in Figure 1.1.
The terms for the designation of resistances and admittances are stipulated in DIN 40110

[2] and in IEC 60027-7 [3]. These specify the following:

Resistance R Active resistance
Reactance X Reactance
Conductance G Active conductance
Susceptance B Susceptance

The generic term for resistances is given as impedance or apparent impedance

Z = R + jX (1.3a)

The generic term for conductance is admittance or apparent admittance

Y = G + jB (1.3b)

The reactance depends on the particular frequency under consideration and can be calculated
for capacitances or inductances from

XC = 1

ωC
(1.4a)

XL = ωL (1.4b)
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Basics of Reactive Power 3

For sinusoidal variables, the current through a capacitor, or the voltage at an inductance,
can be calculated as follows:

i(t) = C · du(t)

dt
(1.5a)

u(t) = L · di(t)

dt
(1.5b)

The derivation for sinusoidal variables establishes that the current achieves, by an induc-
tance, its maximum value a quarter period after the voltage. When considering the process at
the complex level, the pointer for the voltage precedes the pointer for the current by 90◦. This
corresponds to multiplication by +j.

For capacitance, on the other hand, the voltage does not reach its maximum value until a
quarter period after the current, the voltage pointer lagging behind the current by 90◦, which
corresponds to multiplication by −j. This enables the relationship between current and voltage
for inductances and capacitances to be expressed in a complex notation. Thus

U = jωL · I (1.6a)

I = 1

jωC
· U (1.6b)

Vectors are used to describe electrical processes. They are therefore used in DC, AC and
three-phase systems. Vector systems can, by definition, be chosen as required, but must not be
changed during an analysis or calculation. It should also be noted that the appropriate choice
of the vector system is of substantial assistance in describing and calculating special tasks.
The need for vector systems is clear if one considers Kirchhoff’s law, for which the positive
direction of currents and voltages must be specified. In this way, the positive directions of the
active and reactive powers are then also stipulated.

For reasons of comparability and transferability, the vector system for the three-phase
network (L1,L2,L3 components or RYB) should also be used for other component systems
(e.g. symmetrical components), which describe the three-phase network.

If vectors are drawn as shown in Figure 1.2, the active and reactive powers, for instance
output by a generator in overexcited operation, are positive. This vector system is designated
as a generator vector system (GVS). Accordingly, the active and reactive powers consumed by

IL2,Q

IL3,Q

IL1,Q

+ P
+ Q

UL1,Q UL2,Q UL3,Q

(a)

UQ/U ,Q = 3

(b)

E

+ P
+ Q

IL1,Q

L1

L2

L3

01
U1,QU ,Q =

a. c. power system
positive-
sequence

component
‘1’

L1,Q L2,Q L3,Q L1 Q L2 Q L3 Q0; 0, , ,I I I U U U+ + = + + =

Figure 1.2 Definition of vectors for current, voltage and power in three-phase AC systems [1]: (a)
power system diagram; (b) electrical diagram for symmetrical conditions (positive sequence system).
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Figure 1.3 Vector diagram of current, voltage and power [1]: (a) related to consumers (consumer vector
system – CVS); (b) related to power generation (generation vector system – GVS).

the load (e.g. motor) are positive when choosing the consumer vector system (CVS). Figure 1.3
shows the phasor diagram of an ohmic–inductive load in the generator and in the consumer
vector system.

1.3 Definition of Different Types of Power

The definitions and explanantions are given in accordance with DIN 40110 [2]. The instanta-
neous value of the power p(t) in an AC system is calculated as follows:

p(t) = u(t) · i(t) (1.7)
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Basics of Reactive Power 5

with i(t) and u(t) as the instantaneous values of current and voltage. Generally the product of
current and voltage is oscillating and shows positive and negative values within one period.
The mean value of the oscillating power is called active power P:

P = 1

T

T∫

0

u(t) · i(t) dt (1.8)

In the case of sinusoidal current and voltage

u(t) = û cos (ωt + ϕU ) (1.9a)

i(t) = î cos (ωt + ϕI ) (1.9b)

The instantaneous value of the power p(t) as the product of the instantaneous values of
current and voltage is

p(t) = ûî cos(ωt + ϕU ) cos(ωt + ϕI ) (1.10a)

After some numerical operations and with ϕ = ϕU − ϕI, the following equation is obtained:

p(t) = ûî

2
cos ϕ + ûî

2
cos(2ωt + ϕ) (1.10b)

Equation 1.10b indicates that the power p(t) oscillates with twice the frequency of the
current and voltage; its mean value is called active power P:

P = ûî

2
cos ϕ (1.11a)

The term ûî/2 is called apparent power S:

S = ûî

2
(1.11b)

If one eliminates ϕI in the above equations the following is obtained:

p(t) = ûî

2
cos ϕ + ûî

2
cos ϕ · cos (2ωt + 2ϕU ) + ûî

2
sin ϕ · sin (2ωt + 2ϕU ) (1.12)

The term (ûî/2) sin ϕ is called reactive power Q. The reactive power oscillates with twice
the frequency of the current and voltage; its mean value is zero:

Q = ûî

2
sin ϕ (1.11c)

The reactive power in the CVS is positive if the phase angle ϕ is between 0◦ and +180◦;
that is, if the voltage pointer leads the current pointer. In this case the reactive power is called
the inductive power, which is the power drawn from the system by a reactance. If the voltage
pointer lags behind the current pointer, which is when the phase angle ϕ is between 0◦ and
−180◦, the reactive power becomes negative. This is called capacitive power, as it is the power
supplied to the system by a capacitance.
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6 Reactive Power Compensation

In general, the following equation is valid

|Q| =
√

S2 − P2 (1.13)

for the amplitudes of the active power P, reactive power Q and apparent power S are defined
as above. If rms values are used instead of peak values, as is common in calculating power
systems, the active, reactive and apparent power become

P = P = U · I cos(ϕU − ϕI ) (1.14a)

Q = U · I sin(ϕU − ϕI ) (1.14b)

S = U · I (1.14c)

The quotient from active power P and reactive power S is called the power factor λ. In the
case of sinusoidal currents and voltages the power factor is identical to the distortion factor of
the fundamental frequency cos ϕ1.

Figure 1.4 indicates the time course of current and voltage at an ohmic–inductive consumer
load and the resulting active, reactive and apparent power.

1.4 Definition of Power for Non-Sinusoidal Currents and Voltages

Active power can only be converted if current and voltage have equal frequency, as the integral
for current and voltage of unequal frequency in accordance with

P = 1

T

T∫

0

u(t) · i(t) dt (1.8)

makes no contribution.
If current and voltage both have a non-sinusoidal waveform

u(t) =
N∑

k=1

ûk cos(kω1t + ϕU,k) (1.15a)

i(t) =
N∑

l=1

îl cos(lω1t + ϕI,l ) (1.15b)

the instantaneous value of the power is calculated as

p(t) =
N∑

k=l=1

ûk îl

2
cos(ϕU,k − ϕI,l )

+
N∑

k=1

N∑
l=1

ûk îl

2
cos((k + l)ω1t + ϕU,k + ϕI,l ) (1.16)

+
N∑

k=1
k �=l

N∑
l=1

ûk îl

2
cos((k − l)ω1t + ϕU,k − ϕI,l )
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Figure 1.4 Current, voltage and powers at an ohmic–inductive consumer load: (a) current and voltage;
(b) active, reactive and apparent power.

The first summand describes the active power, whereby the component with k = l = 1
represents the fundamental component active power and the summands where k = l > 1 render
the harmonic active powers. The second summand renders the reactive power Q and the third
summand the distortion power Qd. The time course of these powers oscillates non-sinusoidally
about the zero-frequency mean value. Note that the higher frequencies of voltage and current
generate active power as well, if their frequencies are the same.
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8 Reactive Power Compensation

The correlation between the powers is as follows (active part of fundamental current Iw1;
reactive part of fundamental current Ib1; harmonic part of current Iν):

S2 = P2
1 + Q2

1 + Q2
d (1.17a)

S2 = U2

(
I2
w1 + I2

b1 +
H∑

ν=2

I2
ν

)
(1.17b)

The active power P1 and the reactive power Q1 are related to the fundamental frequency of
current and voltage, and the distortion power Qd is related to the harmonic currents and the
fundamental frequency of the voltage:

P1 = U · I1 · cos ϕ (1.18a)

Q1 = U · I1 · sin ϕ (1.18b)

Qd = U ·
√√√√ H∑

ν=2

I2
ν (1.18c)

The different terms are represented in a three-dimensional diagram as in Figure 1.5.
The power factor λ, which is defined as the quotient of active power and apparent power, is

generally defined as follows:

λ = |P|√(
P2 + Q2

1 + Q2
d

) (1.19)

The displacement factor cos ϕ1 is defined as the quotient of active power and apparent power
with fundamental frequency (in the case of sinusoidal voltage and non-sinusoidal current):

cos ϕ1 = P1√
P2

1 + Q2
1

= P1

S1
(1.20)

The power factor λ and displacement factor cos ϕ1 are related to each other by the funda-
mental content gi of the current:

λ = gi ∗ cos ϕ1 (1.21)

Q

S1

S
Qd

Q1

P

z

x

y
‘λ’

ϕ1

Figure 1.5 Active, reactive, apparent and distortion power, power factor and displacement factor.
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The fundamental content gi is defined as the quotient of the rms value of fundamental
current to the total rms value:

gi = I1

I
(1.22)

The total rms value also includes the higher frequency components of the current as well:

I =
√√√√ H∑

ν=1

I2
ν (1.23)

1.5 Equivalent Mechanical Model for Inductance

An equivalent model from mechanics can illustrate, as in Figure 1.6, the phenomena of
inductance, capacitance, active and reactive power. A train with mass m is accelerated by
the locomotive to its final velocity v. The pointers of force and velocity are in the same
direction, and the power and energy supplied are positive as well. When the force is increased
or decreased in a stepwise fashion, the velocity of the train does not change stepwise, but
increases or decreases by means of an exponential function. The energy supplied, in the case
of increasing force, or not supplied, in the case of decreasing force, is stored in the movement
of the train, which is identical to the phenomena of storage and discharge of electrical energy
in an inductance. The mechanical energy Wmec is given by

Wmec = m · v2

2
(1.24a)

and the electrical energy Wel by

Wel = L · I2

2
(1.25a)

+f

f, v

0
–

+

+v

Energy supply Energy generation

No load Decelerating

–f

–f

Accelerating

Figure 1.6 Force and velocity while accelerating and decelerating a train [4].
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10 Reactive Power Compensation

Comparing electrical and mechanical phenomena, the equivalents are:

Voltage ≡ Mechanical force
Current ≡ Velocity
Inductance ≡ Physical mass
Capacitance ≡ Spring constant
Electrical energy ≡ Mechanical energy
Electrical power ≡ Mechanical power

If the force to accelerate the train is a sinusoidal function it is obvious that the velocity of
the train does not change synchronously (with the same frequency), but with a time delay,
see Figure 1.7. The maximal values of velocity and mechanical force have a time delay or
phase shift similar to the phase shift between voltage and current at an inductance, which is
described by the term ‘reactive power’. Reactive power in this case is reactive power by an
inductance. It is always present if the phasors of mechanical force (equivalent to the voltage)
and velocity (equivalent to the current) have opposite directions and different signs. Reactive
power Wmag in inductances stored in the magnetic field is

Wmag = L · I2

2
(1.25b)
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Figure 1.7 Equivalent electrical and mechanical model (inductance and mass): (a) starting point; (b)
accelerating – energy supply (imported); (c) decelerating – energy generation (exported); (d) exported
energy (voltage switched off); (e) time course of current, voltage and power.
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In the mechanical model the equivalent of the magnetically stored energy is the kinetic
energy of the moving mass:

Wkin = m · v2

2
(1.24b)

1.6 Equivalent Mechanical Model for Capacitance

Reactive power can be compensated by capacitors, which store energy in the electric field:

Wcap = C · U2

2
(1.26)

The equivalent of a capacitor in the mechanical model is a spring, which stores energy
(potential energy)

Wpot = k · F2

2
(1.27)

with mechanical force F and spring constant k. If a laminated spring (leaf spring) is compressed
and expanded with a sinusoidal force, the maximum mechanical force is supplied when the
velocity is zero. In the case of maximal velocity the mechanical force is zero, see Figure 1.8.
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Figure 1.8 Equivalent electrical and mechanical model (capacitance and spring): (a) starting point; (b)
compressed – energy supply (imported); (c) expanded – energy generation (exported); (d) discharging
the capacitor, voltage switched off (exported); (e) time course of current, voltage and power.
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12 Reactive Power Compensation

Mechanical force and velocity are characterized by a time shift of 90◦, similar to the time
shift of current and voltage at a capacitor. The mechanical system ‘mass ↔ spring’ and the
electrical system ‘inductance ↔ capacitor’ can both oscillate with a defined frequency, namely
the resonance frequency.

1.7 Ohmic and Reactive Current

An ohmic–inductive load with a sinusoidal waveform of current and voltage, such as in AC
motors, transformers and reactors, can be modelled as the equivalent circuit of an ohmic
resistance R in parallel with an inductive resistance XL as in Figure 1.9a. The current can be
represented in this equivalent model as two orthogonal components, see Figure 1.9b, one in
phase with the voltage U, called the active current Iw, and the other with a phase shift of 90◦

lagging, called the inductive or reactive current Ib. The apparent current I has a phase shift
against the voltage of phase angle ϕ. The active component Iw of the current describes the
ohmic component and active power, while the reactive component Ib describes the inductive
component, representing the reactive power. A line diagram of current, voltage and power is
outlined in Figure 1.9c.

Electrical parameters such as voltage, current and power can be described by pointers
(vectors) with rms values represented by the length of the pointer. Figure 1.10 indicates the
relationship of active, reactive and apparent current and power in the orthogonal system,
representing the same quantities and relations as the line diagram in Figure 1.9c. The phase
shift (phase angle ϕ) depends on the amount of the reactive component in relation to the active
component. With constant reactive power and increasing active power, the power factor and
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Figure 1.9 Phase shift of current and voltage in the case of ohmic–inductive load: (a) equivalent circuit
diagram; (b) orthogonal components of current; (c) line diagram of current, voltage and power.
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Q

Figure 1.10 Orthogonal components of current and power: (a) current; (b) power.

the apparent power are both increasing; in the case of constant active power and increasing
reactive power, the power factor is decreasing and the apparent power increasing. For details
see also Figure 1.5 and Equation 1.20.

1.8 Summary

The power in AC systems has an oscillating time course; the mean value is called the active
power. The reactive power has a mean value of zero and is determined by the phase angle
between voltage and current. One has to distinguish between the fundamental power factor
cos ϕ, sometimes called the displacement factor, which takes account of the active power and
reactive power at the fundamental frequency, and the power factor λ, which takes the distortion
power Qd of the higher frequencies (harmonics and interharmonics) into account as well.
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