PHOTOVOLTAICS System Design and Practice

HEINRICH HÄBERLIN

PHOTOVOLTAICS

PHOTOVOLTAICS SYSTEM DESIGN AND PRACTICE

Heinrich Häberlin

Berne University of Applied Sciences, Switzerland

Translated by Herbert Eppel

HE Translations, Leicester, UK

This edition first published 2012 © 2012, John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

Authorised Translation from the German language second edition published by Electrosuisse (2010)

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as expressly permitted by law, without either the prior written permission of the Publisher, or authorization through payment of the appropriate photocopy fee to the Copyright Clearance Center. For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com. Request for permission should be addressed to the Publisher, Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK, Tel: +44 (0)1243 779777; Fax: +44 (0)1243 770620, email: PermissionsUK@wiley.com

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The author and the publisher of this book have attempted to trace the copyright holders of all material reproduced in this book and reasonable efforts have been made to obtain permission to use it in this publication. If by mistake any material should have been published without proper acknowledgement or permission, we apologise to copyright holders. In this case please let us know, so we may rectify it in any future publication.

Neither the author nor the publisher are responsible or liable for any error and/or incomplete information in this book, or for any loss, damage or injury that could potentially result from using the information and advice contained in this book. The various electrical configurations and processes discussed in this book are presented without regard for the patent status of any such element; are presented for educational purposes only and may only be used with the express permission of the relevant patent or licence holder, if any.

Library of Congress Cataloguing-in-Publication Data

Häberlin, Heinrich.
Photovoltaics : system design and practice / Heinrich Häberlin; translated by Herbert Eppel. p. cm.
Includes bibliographical references and index.
ISBN 978-1-119-99285-1 (cloth)
Photovoltaic power systems-Design and construction. 2. Photovoltaic power systems-Standards.
3. Photovoltaic power generation. I. Title.
TK1087.H33 2012

621.31'244-dc23

2011032983

A catalogue record for this book is available from the British Library.

Print ISBN: 9781119992851

Set in 9/11pt, Times by Thomson Digital, India

To my wife Ruth and my children Andreas and Kathrin, who, while I was writing this book, weren't able to spend as much time with me as they would have liked – and to all those who want to see our society transition to sustainable and responsible electricity generation.

Contents

For	eword		xiii
Pre	face		XV
Abo	out the	Author	xvii
Ack	nowle	lgements	xix
Not	e on t	e Examples and Costs	xxi
List	of Sy	nbols	xxiii
1	Intr	oduction	1
	1.1	Photovoltaics – What's It All About?	1
	1.2	Overview of this Book	10
	1.3	A Brief Glossary of Key PV Terms	11
		1.3.1 Relevant Terminology Relating to Meteorology, Astronomy and Geometry	11
	14	1.5.2 PV Terminology Decommended Guide Values for Estimating DV System Potential	13
	1.4	14.1 Solar Coll Efficiency n	14
		1.4.2 Solar Module Efficiency no.	14
		1.4.2 Solar Module Efficiency η_M 1.4.3 Energy Efficiency (Utilization Ratio System Efficiency) n	15
		1.4.5 Energy Efficiency (Ornization Ratio, System Efficiency) η_E	15
		Generator Capacity	15
		1.4.5 PV Installation Space Requirements	17
		1.4.6 Cost per Installed Kilowatt of Peak Power	17
		1.4.7 Feed-in Tariffs: Subsidies	18
		1.4.8 Worldwide Solar Cell Production	20
		149 Installed Peak Capacity	21
		1.4.10 The Outlook for Solar Cell Production	22
	1.5	Examples	24
	1.6	Bibliography	25
2	Key	Properties of Solar Radiation	27
	2.1	Sun and Earth	27
		2.1.1 Solar Declination	27
		2.1.2 The Apparent Path of the Sun	28
	2.2	Extraterrestrial Radiation	31

	2.3	Radiation on the Horizontal Plane of the Earth's Surface	32
		2.3.1 Irradiated Energy H on the Horizontal Plane of the Earth's Surface	34
	2.4	Simple Method for Calculating Solar Radiation on Inclined Surfaces	39
		2.4.1 Annual Global Irradiation Factors	44
		2.4.2 Elementary Radiation Calculation Examples for Inclined Surfaces	47
	2.5	Radiation Calculation on Inclined Planes with Three-Component Model	49
		2.5.1 Components of Global Radiation on the Horizontal Plane	49
		2.5.2 Radiation Reflected off the Ground	50
		2.5.3 The Three Components of Radiation on Inclined Surfaces	51
		2.5.4 Approximate Allowance for Shading by the Horizon	54
		2.5.5 Effect of Horizon and Façade/Roof Edge Elevation on Diffuse Radiation	
		(Sky and Reflected Radiation)	58
		2.5.6 Total Energy Incident on Inclined Surfaces (Generic Case)	62
		2.5.7 Retrospective Calculation of Irradiance Incident on Inclined Solar	
		Generators, Using Global Radiation Readings on the Horizontal Plane	63
		2.5.8 Examples of Radiation Calculations with the Three-Component Method	64
	2.6	Approximate Annual Energy Yield for Grid-Connected PV Systems	68
		2.6.1 Examples for Approximate Energy Yield Calculations	69
	2.7	Composition of Solar Radiation	69
	2.8	Solar Radiation Measurement	71
		2.8.1 Pyranometers	71
		2.8.2 Reference Cells	71
		2.8.3 Pyranometer Versus Reference Cell Measurements	73
	2.9	Bibliography	76
3	Sola	ar Cells: Their Design Engineering and Operating Principles	79
	3.1	The Internal Photoelectric Effect in Semiconductors	79
	3.2	A Brief Account of Semiconductor Theory	81
		3.2.1 Semiconductor Doping	81
		3.2.2 The P–N Junction	83
		3.2.3 Characteristic Curves of Semiconductor Diodes	85
	3.3	The Solar Cell: A Specialized Semiconductor Diode with a Large Barrier Layer	
	0.0	that is Exposed to Light	86
		3.3.1 Structure of a Crystalline Silicon Solar Cell	86
		3.3.2 Equivalent Circuit of a Solar Cell	87
		3.3.3 Characteristic Curves of Solar Cells	89
	3.4	Solar Cell Efficiency	94
		3.4.1 Spectral Efficiency n_s (of Solar Cells with a Single Junction)	94
		3.4.2 Theoretical Efficiency n_{τ} (of Solar Cells with a Single Junction)	97
		3.4.3 Practical Efficiency n _{PV} (at a Junction)	100
		3.4.4 Efficiency Optimization Methods	104
	3.5	The Most Important Types of Solar Cells and the Attendant Manufacturing	101
	0.0	Methods	108
		3.5.1 Crystalline Silicon Solar Cells	108
		3.5.2 Gallium Arsenide Solar Cells	111
		3.5.3 Thin-Film Solar Cells	114
		3.5.4 Dye Sensitized Solar Cell (DSSC: Photoelectrochemical Solar Cells	
		Grätzel Solar Cells)	121
	36	Bifacial Solar Cells	121
	37	Examples	122
	3.8	Bibliography	124
	2.0	8rJ	121

4	Sola	ar Modules and Solar Generators	127
	4.1	Solar Modules	127
	4.2	Potential Solar Cell Wiring Problems	138
		4.2.1 Characteristic Curves of Solar Cells in all Quadrants	138
		4.2.2 Wiring Solar Cells in Series	140
		4.2.3 Parallel-Connected Solar Cells	147
	4.3	Interconnection of Solar Modules and Solar Generators	149
		4.3.1 Series Connection of Solar Modules to a String	149
		4 3 2 Parallel-Connected Solar Modules	152
		4 3 3 Solar Generators with Parallel-Connected Series Strings	152
		4 3 4 Solar Generators with Solar Module Matrixing	159
	44	Solar Generator Power Loss Resulting from Partial Shading and Mismatch Loss	160
		4.4.1 Power Loss Induced by Module Shading	160
		4.4.2 Mismatch Loss Attributable to Manufacturing Tolerances	163
		4.4.3 Mismatch Loss Attributable to String Inhomogeneity	165
	15	Solar Generator Structure	166
	ч.5	4.5.1 Solar Generator Mounting Ontions	166
		4.5.1 Solar Generator Mounting Options	176
		4.5.2 Mounting Systems 4.5.3 Electrical Integration of Solar Congrators	19/
		4.5.5 Electrical Integration of Solar Generators	104
		4.5.4 DC wiring Power Loss	190
		4.5.5 Grounding Problems on the DC side	190
		4.5.0 Structure of Larger-Scale Solar Generators	199
		4.5.7 Sujely Protection Against Touch Voltage	201
	10	4.5.8 Factors that Reduce Solar Generator Power Yield	202
	4.0	Examples	21/
5	PV 5.1	Energy Systems Stand-alone PV Systems 5.1.1 PV System Batteries 5.1.2 Structure of Stand-alone PV Systems	223 223 225 242
		5.1.3 PV Installation Inverters	248
		5.1.4 Stand-alone Installation DC Appliances	2.58
		5.1.5 Stand-alone 230 V AC PV Installations	259
		5.1.6 Stand-alone PV Installations with Integrated AC Power Busses	2.59
	52	Grid-Connected Systems	262
	0.2	5.2.1 Grid-Connected Operation	262
		5.2.2 Design Engineering and Operating Principles of PV System Inverters	266
		5.2.3 Standards and Regulations for Grid-Connected Inverters	277
		5.2.6 Standards and Regulations for Grad Connected Interventions 5.2.4 Avoidance of Islanding and Stand-alone Operation in Grid Inverters	288
		5.2.7 Anomance of Islanding and Stand done operation in Oria Inverters	302
		5.2.6 Problems that Occur in Grid-Connected Systems and Possible	302
		Countermeasures	347
		5.2.7 Regulation and Stability Problems in Grid Systems	368
	5.3	Bibliography	389
6	Pro	tecting PV Installations Against Lightning	395
	6.1	Probability of Direct Lightning Strikes	395
		6.1.1 Specimen Calculation for the Annual Number of Direct Lightning	
		Strikes N _D	397
			221

6.2	Lighti	ning Strikes: Guide Values; Main Effects	398
	6.2.1	Types of Lightning	398
	6.2.2	Effects of Lightning	399
	6.2.3	Lightning Protection Installation Classes and Efficiency	399
	6.2.4	Use of Approximate Solutions for Lightning Protection Sizing	399
6.3	Basic	principles of Lightning Protection	400
	6.3.1	Internal and External Lightning Protection	400
	6.3.2	Protection Zone Determination Using the Lightning Sphere Method	400
	6.3.3	Protection Zone for Lightning Conductors and Lightning Rods	401
	6.3.4	Lightning Protection Measures for Electricity Installations	402
6.4	Shunt	ing Lightning Current to a Series of Down-conductors	402
6.5	Poten	tial Increases; Equipotential Bonding	404
	6.5.1	Equipotential Bonding Realization	405
	6.5.2	Lightning Current in Conductors that are Incorporated into the	
		Equipotential Bonding Installation	405
	6.5.3	Lightning Protection Devices	407
6.6	Lighti	ning-Current-Induced Voltages and Current	408
	6.6.1	Mutual Inductance and Induced Voltages in a Rectangular Loop	409
	6.6.2	Proximity Between Down-conductors and other Installations	413
	6.6.3	Induced Current	415
	6.6.4	Voltages in Lightning-Current-Conducting Cylinders	429
6.7	PV In	stallation Lightning Protection Experiments	432
	6.7.1	Introduction	432
	6.7.2	The Surge Current Generator	432
	6.7.3	Test Apparatus for Solar Module Characteristic Curves	433
	6.7.4	Solar Cell and Solar Module Damage Induced by Surge Current	435
	6.7.5	Improving Module Immunity to Lightning Current	439
	6.7.6	Mini-lightning Conductors for PV Installations	440
	6.7.7	Measurement of Induced Voltage in Individual Modules	440
	6.7.8	Voltage Induced in Wired Solar Generators	450
	6.7.9	Conclusions Drawn from the Test Results	458
6.8	Optin	al Sizing of PV Installation Lightning Protection Devices	459
	6.8.1	Solar Module Mutual Inductance	460
	6.8.2	Wiring Mutual Inductance	461
	6.8.3	Specimen Calculation for M_S and v_{max} in a Whole String	462
	6.8.4	Effects of Distant Lightning Strikes	463
6.9	Recor	nmendations for PV Installation Lightning Protection	470
	6.9.1	Possible Protective Measures	470
	6.9.2	Protection Against Distant Lightning Strikes	471
	6.9.3	Protection Against Both Distant and Nearby Strikes (up to about 20 m)	475
	6.9.4	Protection Against Direct Lightning Strikes on PV Installations and Buildings	476
	6.9.5	Lightning Protection for Large-Scale Ground-Based PV Installations	479
	6.9.6	Lightning Protection for PV Installations on Flat Roofs	480
	6.9.7	PV Installation Lightning Protection as Prescribed by Swiss Law	481
6.10	Recap	and Conclusions	484
6.11	Biblic	graphy	485

7	Nor	malized Representation of Energy and Power of PV Systems	487
	7.1	Introduction	487
	7.2	Normalized Yields, Losses and Performance Ratio	487
		7.2.1 Normalized Yields	487
		7.2.2 Definition of Normalized Losses	490
		7.2.3 Performance Ratio	490
		7.2.4 New Normalized Values of Merit	491
	7.3	Normalized Diagrams for Yields and Losses	491
		7.3.1 Normalized Monthly and Annual Statistics	491
		7.3.2 Normalized Daily Statistics Broken Down by Hours	495
	7.4	Normalized PV Installation Power Output	495
		7.4.1 Normalized Daily Diagram with Instantaneous Values	496
		7.4.2 Derivation of Daily Energy Yield from Normalized Instantaneous Values	497
		7.4.3 Definition of the Correction Factors k_G , k_T and of efficiency n_I	497
		7.4.4 Assessment Methods Using Normalized Daily Diagrams	497
		7.4.5 Specimen Normalized Daily Diagrams	498
	7.5	Anomaly Detection Using Various Types of Diagrams	502
	7.6	Recap and Conclusions	506
	7.7	Bibliography	506
8	PV	Installation Sizing	507
	8.1	Principal of and Baseline Values for Yield Calculations	507
		8.1.1 Insolation Calculations	508
		8.1.2 Determination of the Temperature Correction Factor k_T	508
		8.1.3 Defining the Solar Generator Correction Factor k_G	513
	8.2	Energy Yield Calculation for Grid-Connected Systems	523
		8.2.1 Examples of Grid-Connected System Energy Yield	525
	8.3	Sizing PV Installations that Integrate a Battery Bank	533
		8.3.1 Determination of Mean Daily Appliance Power Consumption	533
		8.3.2 Requisite Battery Capacity K	534
		8.3.3 Solar Generator Sizing	535
		8.3.4 Stand-alone System Sizing Tables	538
	0.4	8.3.5 Sizing Exercises for Stand-alone Installations	541
	8.4	Insolation Calculation Freeware	549
		8.4.1 PVGIS Solar Irradiation Data	550
	0.5	8.4.2 The European Satel-Light Insolation Database	550
	8.5	Simulation Software	550
	8.0	Bibliography	551
9	The	Economics of Solar Power	553
	9.1	How Much Does Solar Energy Cost?	553
		9.1.1 Examples of More Exact Energy Price Calculations	222
		9.1.2 Comparison of PV and Conventional Electricity Costs	557
		9.1.5 PV Electricity Pump Storage System Costs	500
	0.2	9.1.4 PV Electricity Battery Storage Costs	562
	9.2 9.3	Bibliography	562 566
10	D .		5.00
10	Per	Cormance Unaracteristics of Selected PV Installations	569
	10.1	Energy field Data and Other Aspects of Selected PV Installations	569
		10.1.1 Gjeller FV Installation in Burgdorf, Switzerland	509
		10.1.2 Mont Solell PV Installation in the Jura Mountains (Elevation 12/0 m)	572

	10.1.3 Jungfraujoch PV Installation (Elevation: 3454 m)	579
	10.1.4 Birg PV Installation (Elevation: 2670 m)	585
	10.1.5 Stade de Suisse PV Installation in Bern	588
	10.1.6 Newtech PV Installation with Thin-Film Solar Cell Modules	592
	10.1.7 Neue Messe PV Installation in Munich, Germany	600
	10.1.8 Leipziger Land PV Installation	603
	10.1.9 Borna PV Installation with Biaxial Solar Trackers	607
	10.1.10 Erlasee Solar Park with Biaxial Solar Trackers	607
	10.1.11 Guadix PV Installation in Southern Spain, with Biaxial Solar Trackers	609
	10.1.12 Biaxial Solar Tracker ENEA PV Installation near Naples, Italy	609
	10.1.13 PV Installation in Mudgee, Australia	611
	10.1.14 PV Installation in Springerville, Arizona	612
	10.2 Long-Term Comparison of Four Swiss PV Installations	614
	10.3 Long-Term Energy Yield of the Burgdorf Installation	617
	10.4 Mean PV Installation Energy Yield in Germany	619
	10.5 Bibliography	620
11	In Conclusion	623
App	endix A: Calculation Tables and Insolation Data	633
A1	Insolation Calculation Tables	633
	A1.1 Basic Insolation Calculation	633
	A1.2 Insolation Calculation Using the Three-Component Model	633
A2	Aggregate Monthly Horizontal Global Insolation	634
A3	Global Insolation for Various Reference Locations	634
A4	R_{B} Factors for Insolation Calculations Using the Three-Component Model	648
A5	Shading Diagrams for Various Latitudes	673
A6	Energy Yield Calculation Tables	676
	A6.1 Energy Yield Calculation Tables for Grid-Connected Systems	677
	A6.2 Stand-alone Installation Sizing Tables	679
A7	k_T and k_G Figures for Energy Yield Calculations	681
	A7.1 k_{τ} Figures for Various Reference Stations	682
	A7.2 $k_{\rm c}$ Figures for Various Reference Stations	682
A8	Insolation and Energy Yield Calculation Maps	683
	A8.1 Specimen Polar Shading Diagram	683
	A8.2 Insolation Mans	683
	A8.3 Maps for Estimates of Annual PV Energy Yield in Europe and Environs	689
Apr	endix B: Links: Books: Acronyms: etc.	691
B1	Links to PV Web Sites	691
	B1.1 Organizations	691
	B1.2 Government Organizations	692
	B1.3 Research Organizations	692
	B1.4 Specialized Journals	692
B2	Books on Photovoltaics and Related Areas	693
B3	Acronyms	695
B4	Prefixes for Decimal Fractions and Metric Multiples	696
B5	Conversion Factors	696
B6	Key Physical Constants	696
Inde	ex	697

Index

Foreword

Energy and the concerns it raises for individuals, society at large and the environment, is a more burning issue today than ever before. Evolutions such as climate change, energy security issues, energy market deregulation, energy price fluctuations and the like have made energy the centre of a multi-faceted debate where the need for sustainable energy and improved energy efficiency are taking centre stage as never before. The European Commission's objectives for 2020 in this regard are both courageous and pioneering.

The Stern Report issued by the British government in 2006 noted that global warming and its worldwide economic repercussions constitute the widest-ranging failure of free market mechanisms that the world has ever seen. This report also quantified the economic costs of this evolution. The 'business as usual' attitude that unfortunately still prevails in the business and political communities is going to cost us dearly; and the longer we wait to act, the higher the cost will be. A growing number of politicians, business leaders, and consumers have come to the realization that action must be taken, and that such action will not come cheap.

The timing of this book's publication could not be better. Admittedly photovoltaics is no magic bullet solution for the myriad problems we face but photovoltaics is one of the key technologies that will bring us closest to a sustainable energy supply in the foreseeable and distant future. Many technical and other obstacles remain to be surmounted before photovoltaics can do this, however, the undeniable fact of the matter is that photovoltaics is now the subject of feverish and rapid worldwide development on an industrial scale. The annual growth rates of upwards of 40 percent registered by the photovoltaics industry are all the more remarkable in light of the recent financial crisis, not to mention past economic recessions.

The term photovoltaics is often associated primarily with solar cells and solar modules. As these are the core elements of photovoltaic technology, this mindset makes perfect sense. However, it does not go far enough when it comes to characterizing the energy production of a solar power installation. Only if we regard photovoltaics as an energy system can we begin to make accurate statements concerning its contribution to the energy supply. Moreover, regarding a phenomenon as a system often allows us to connect the dots between theory and practice, paradigm and experience.

As growing numbers of PV installations are put into operation, questions are increasingly being raised concerning their quality and reliability. Only a PV installation that works properly can genuinely contribute to the energy supply. Hence such issues are looming ever larger worldwide. One of the great virtues of the present book is that it places tremendous emphasis on the system related aspects of photovoltaics.

Over the course of his many years of research on the system related aspects of photovoltaics, Prof. Häberlin has accumulated unparalleled experience that is richly detailed in his numerous publications on the subject. He has now made this experience available to a wider public, via this book, which in using its author's experience as a springboard, provides a wealth of insights and highly practical information concerning the design and operation of PV installations. In so doing, this book also addresses an increasingly pressing problem, namely that rapid growth in the photovoltaics industry and other renewable energy sectors will increase the need for qualified individuals in this domain. Thus education and training are a matter of growing importance in this regard. I would like to on one hand express my gratitude to Prof. Häberlin for having written this book, and on the other congratulate him on his willingness to share his photovoltaics expertise with a wider audience via this book, which I feel will make a significant contribution to the advancement of photovoltaic technology. I am confident that this richly detailed and very complete book will enable numerous photovoltaics engineers, researchers and other professionals to gain greater insight into photovoltaics, and particularly into the practical aspects of this intriguing field.

Stefan Nowak, Ph.D. Chairman of the International Energy Agency Photovoltaics Power Systems Programme (IEA PVPS) St. Ursen, Switzerland

Preface

The PV industry has experienced an exponential growth since the appearance of the first edition of this book in German in 2007 and ever-larger PV installations are being realized in an ever-growing number of countries. The tremendous interest shown in the first edition of this book, as well as the extensive positive feedback it elicited, show that photovoltaics, which is discussed comprehensively and in all its complexity in this book, is a topic of tremendous importance nowadays.

Therefore the second edition published also in German in 2010 goes into even greater depth on a number of matters and also explores some aspects of and insights into photovoltaics that were not contained in the first edition. For this second edition, I have extensively revised, updated and expanded the material from the first edition in such a way that, using the information in this book, designers can make very close sizing and yield estimates for PV installations at any site worldwide between 40 °S and 60 °N. In addition to updating my own extremely extensive PV installation monitoring data, I have also included energy yield figures from other countries, thanks to the generosity of the relevant operators who kindly provided data concerning their installations.

Considering the success of the two German books and the expressed interest also from many English speaking PV engineers, it was decided to translate this book into English to make my extended PV experience available also to them. The present book is an exact translation into English of the extended second German edition published in 2010.

Since the finalisation of the German book and the translation, prices for PV modules have considerably dropped further especially in 2011. For large quantities of crystalline modules prices of $1 \in$ per Wp or even somewhat less were offered in autumn 2011, i.e. even less than the lowest values indicated in the book. Therefore the price of PV electricity is now already very close to competiveness with conventional electricity in many countries.

Heinrich Häberlin Ersigen October 2011

About the Author

After earning a Masters degree in electrical engineering from ETH Zurich, Heinrich Häberlin became a staff researcher at the ETH Microwave Lab. During this time he developed hardware, software and numerous learning applications for a computerized teaching and learning system that was used at ETH until 1988. He earned a doctorate in 1978, based on the thesis he wrote concerning this system.

From 1979 to 1980, Dr. Häberlin headed a team at the Zellweger Company that worked on the development of hardware and software for microprocessor-based control of a complex short-wave radio system.

In late 1980 he was appointed a professor to the engineering school in Burgdorf, Switzerland, where from 1980 to 1988 besides electrical engineering he also taught computer science.

Prof. Häberlin has been actively involved in photovoltaics since 1987. In 1988 he established the Bern University of Applied Sciences Photovoltaics Lab, where he and his staff mainly investigate the behaviour of grid-connected systems. Since 1989 he has also been operating his own PV installation. In 1988 he began testing various PV inverters and in 1990 he initiated a series of lab experiments concerning PV installation lightning protection. Prof. Häberlin's PV Lab has, since 1992, also been continuously monitoring more than 70 PV installations, mainly under the auspices of research projects commissioned by Switzerland's Federal Office for Energy. His lab also carries out specialized measurements of PV installation components for the relevant manufacturers and also works on various EU projects.

Prof. Häberlin has been teaching photovoltaics at Bern University of Applied Sciences since 1989. He is a member of Electrosuisse, ETG, the Swiss TK82 panel of experts on PV installations, and the IEC's International Photovoltaics Standards Committee TC82.

Acknowledgements

I would like to thank all of the private and public sector organizations that kindly provided photos, graphics, data and other documentation for this book. Without these elements, I would not have been able to provide such a detailed and in-depth account of the relevant issues.

I would also like to express my heartfelt gratitude to my past and current assistants, who carried out investigations and analyses in connection with numerous research projects and whose work products I have used in this book. I also owe a debt of gratitude to the following organizations that commissioned and financed the aforementioned research projects: the Swiss Ministry of Energy; the Swiss Ministry of Science and Education; the Bern Canton Office of Water and Energy Resource Management; and various power companies (namely, Localnet, Bernische Kraftwerke, Gesellschaft Mont Soleil, Elektra Baselland and Elektrizitätswerk der Stadt Bern).

My former assistants Christoph Geissbühler, Martin Kämpfer and Urs Zwahlen, and my current assistants Luciano Borgna and Daniel Gfeller, read the manuscript for the first edition of this book in German and pointed out errors and elements that were unclear. My colleagues Dr Urs Brugger and Michael Höckel read certain sections of the first-edition manuscript and provided helpful suggestions.

The manuscript for the second book in German was read by my current assistants Daniel Gfeller, David Joss, Monika Münger and Philipp Schärf, who likewise pointed out errors and elements that were unclear.

I would like to express my gratitude to all of these individuals for their assistance.

Heinrich Häberlin Ersigen January 2010

Note on the Examples and Costs

Many of the chapters in this book contain examples whose numbers were in many cases calculated using spreadsheet programs that round off the exact numbers that were originally input. On the other hand, for reasons of space many of the numbers in the tables in Appendix A have been rounded off to two decimal places. Hence, when used for actual calculations, these rounded-off numbers may under certain circumstances differ slightly from the counterpart numbers indicated in the examples.

In several sections of this book, costs of PV modules or PV systems or feed-in tariffs are given in euros. In some cases or examples, especially where the situation in Switzerland is discussed, costs in Swiss francs (SFr) are expressed as their equivalent in euros (e). The exchange rate used in this case was the exchange rate during the finalization of the German book, i.e. 1 Swiss franc is equivalent to about 0.67 euros. Due to the problems on the financial markets, there were extreme variations of this exchange rate in 2010 and 2011 (variation between about 1 SFr \approx 0.67 e and 1 SFr \approx 1 e). For actual values in Swiss francs the actual exchange rate has to be used.

List of Symbols

Symbol	Name	Metric
а	Depreciation rate	%
a_A	Battery depreciation rate	%
a_E	Depreciation rate for electronic installations	%
A_G	Total surface area of a solar generator field (aggregate module	
	surface area)	01
a_G	Solar generator depreciation rate	%
A_L	Space required for a ground-based or rooftop solar generator field	m²
AM	Air mass number	
a_{MB}	Relative number of shaded modules per string	
a_{MM}	Relative number of modules per string that exhibit power loss	
A_Z	Solar cell surface area	m²
С	Battery capacity	F
С	Capacitance	F
C_E	Solar generator earthing capacitance	F
CF	Capacity factor	—
c_T	Temperature coefficient for a solar generator's MPP output	K^{-1}
d <i>i</i> /dt _{max}	Maximum current curve in a lightning leader stroke	kA/μs
d_V	Relative voltage rise at the grid link point	
е	Electron charge (scope of an electron or proton charge) $(e = 1.602 \cdot 10^{-19} \text{ A s})$	A s
e	Basis for natural logarithms: $e = 2.718 \ 281 \ 828$	
Ε	Energy (in general)	kWh. MJ
es	PV installation surface-related grev energy	kWh/m ² MJ/m ²
EAC	PV installation AC power output	kWh
ED	Mean daily DC power used by a stand-alone installation	Wh/d
E_{DC}	PV installation DC power output	kWh
E_{DC} s	Mean DC power output per day and string for a stand-alone	Wh/d
DC-5	installation with MPT	
EF	Yield factor = L/ERZ	
E_G	Band gap energy (usually expressed in eV; $1 \text{ eV} = 1.602 \cdot 10^{-19} \text{ J}$)	eV
E_H	Mean daily energy yield of a hybrid generator	Wh/d
E_I	Total energy produced by a PV installation during its service life	kWh. MJ
e _P	Peak-power-related grey energy in PV installations	kWh/W. MJ/W
ERZ	Energy payback time (time needed to produce grey energy)	a
f	Frequency	Hz
FF	Filling factor for a solar cell, solar module or solar generator	
FF_i	Idealized filling factor	
-		

G	Global irradiance (power/surface), usually indicated for the	W/m ²
C	Direct hear irradiance, usually indicated for the horizontal plane	W/m^2
C_B	Diffuse irrediance, usually indicated for the horizontal plane	W/m^2
	Gray apargy	
GE	Extractomentation introduce of	K W II, W J
G_{ex}		W/m
G_G	Global irradiance on the solar generator plane	W/m ⁻
G_o, G_{STC}	Irradiance under STC: $G_o = 1 \text{ kW/m}^2$	W/m^2
Н	Total irradiation (energy/area), usually indicated for the	kWh/m² (MJ/m²)
H_B	Total irradiation; direct beam irradiation (usually indicated for the	kWh/m ² (MJ/m ²)
	horizontal plane)	
H_D	Total irradiation; diffuse irradiation (usually indicated for the horizontal plane)	kWh/m ² (MJ/m ²)
H_{ex}	Total extraterrestrial irradiation on a plane parallel to the horizontal plane outside of the Earth's atmosphere	kWh/m ² (MJ/m ²)
H_{c}	Total irradiation irradiation on the solar generator plane	kWh/m^2 (MI/m ²)
116	(energy/area)	
Ι	Electric current (general)	А
i _A	Lightning current in a down-conductor	А
i _{Amax}	Peak lightning current in a down-conductor	А
IDaaff	Figure for the DC input current of a stand-alone inverter	А
IE	Passband current	A
	Charging current	A
- <u>L</u> i	Peak lightning current voltage	A
Imax	MPP current	A
	Solar generator current	A
	Solar module reverse current (= $nasshand$ current in a	A
I _R	solar cell diode)	1
I_S	Saturation current of a diode or solar cell	А
I_{SC}	Short-circuit current of a solar cell, solar module or solar generator	А
Isc stc	Short-circuit current under STC	А
In	Nominal string fuse voltage	A
i _s	Short-circuit current induced by lightning current in a conductor	A
150	loon	11
ia	Peak induced short-circuit current in a conductor loop	Δ
isomax	Displacement current induced in a PV installation by a distant	Δ
<i>iv</i>	lightning strike	А
i_V	Varistor current induced by lightning current	А
I _{V8/20}	Requisite nominal varistor current (for an 8/20 µs waveform)	Α
J_{\max}	Peak current density	A/m^2
J_S	Saturation current density	A/m ²
k	Boltzmann's constant = $1.38 \cdot 10^{-23}$ J/K	J/K
K_A	Battery costs for stand-alone installations	euros
k _B	Annual operating costs	euros/year
k_B	Shading correction factor (1 for no shading, 0 for full shading)	_
k_{C}	Proportion of lightning current in a down-conductor	
$\tilde{K_F}$	Costs for electronic components such as inverters	euros
ka	Solar generator correction factor	
Kc	Costs attributable to a solar generator site modification wiring	euros
 G	and so on	curos

k_I	Total harmonic current distortion	
K_J	Total annual PV installation operating costs	euros/year
k_{MR}	Correction factor for deriving M_{Mi} from M_{MR} for a module frame	
K_N	Usable battery capacity	Ah
K_S	Cost savings for roof tiles and the like for PV installations that are	euros
	integrated into buildings	
k_T	Temperature correction factor	
K_{x}	Battery discharge capacity expressed as x number of hours	Ah
	$(K_x = f(x))$	
L	Inductance (in general)	Н
L	Installation lifetime (in years)	а
L_C	Capture losses	h/d
L_{CM}	Miscellaneous capture losses	h/d
l_{CM}	Standardized miscellaneous non-capture losses: $l_{CM} = y_T - y_A$	
L_{CT}	Thermal capture losses	h/d
l_{CT}	Standardized thermal capture losses: $l_{CT} = y_R - y_T$	
L_S	Conductor loop inductance	Н
l_S	Standardized system capture losses: $l_S = y_A - y_F$	
L_S, L_{BOS}	Balance of system losses	h/d
М	Mutual inductance (in general)	Н
M_i	Effective mutual inductance, based on total lightning current i	Н
M_{Mi}	Effective mutual inductance of a module (based on total lightning current <i>i</i>)	Н
M_{MR}	Module frame mutual inductance (based on $i_A = k_C \cdot i$)	Н
Пар	Number of parallel-connected batteries	
n _{AS}	Number of series-connected batteries	
ND	Mean annual number of direct lightning strikes	
Nø	Number of lightning strikes per square kilometre and year	
n_I	Inverter efficiency (energy efficiency)	
n _{MP}	Number of parallel-connected modules in a solar generator	
n _{MS}	Number of series-connected modules in a string	
n _{MSB}	Number of shaded modules per string	
n _{MSM}	Number of modules per string that exhibit power loss	
n _{sp}	Number of parallel-connected strings in a solar generator	
n_{VZ}	Full-cycle service life of a battery	
nz	Number of series-connected cells	
n _{ZP}	Number of parallel-connected strings in a solar module	
P	Effective power	W
D	Interest rate that is to be applied to depreciation	%
P_A	Solar generator DC power output	W
P_{Aa}	Effective (measured) peak solar generator output under STC	W
P_{AC}	AC-side output	W
P_{AC1}	Maximum connectable single-phase nominal inverter output	W
P_{AC3}	Maximum connectable triphase nominal inverter output	W
PACn	AC-side nominal output of an inverter or a PV installation	W
P_{DC}	DC-side output	W
P_{DC}	DC-side nominal inverter output	W
PF	Packing factor	
P_{Go}	Nominal solar generator peak output under STC (aggregate $P_{M_{a}}$)	W
P_{GoT}	Temperature-corrected nominal solar generator neak output	W
Pmax	Maximum output (equates to P_{MBB} under STC)	W
P_{Mo}	Nominal module output under STC, according to the vendor's data	W
	· · ·	

P_{MPP}	MPP of a solar cell, solar module or solar generator	W
Puse	PV installation output power	W
PR	Performance ratio = Y_F/Y_R	
pr	Instantaneous performance ratio = y_F/y_R	
PR_a	Annual performance ratio	—
p_{VTZ}	Maximum allowable area-specific solar cell power loss	W/m ²
Q	Watless power (> 0 when inductive)	var
Q_D	Mean daily load consumption for a stand-alone installation	Ah/d
Q_H	Mean daily hybrid solar generator charge for a stand-alone installation	Ah/d
Q_L	Lightning current charge (up to a few hundred milliseconds)	A s
Q_L	Mean daily charge consumption $(> Q_D)$ for a stand-alone installation	Ah/d
Q_{PV}	Mean daily charge provided by a solar generator	Ah/d
Q_S	Lightning current charge (surge current of less than 1 ms duration)	As
Q_S	Mean daily string charge for a stand-alone installation	Ah/d
R	Resistance (in general); real component of a complex	Ω
	impedance Z	
R_{1L}	Real component of complex single-phase impedance in a	Ω
	conductor between a transformer and grid link point (for	
	inverter connection purposes)	
R_{1N}	Real component of complex single-phase grid impedance (ohmic component)	Ω
<i>R</i> _{1<i>S</i>}	Real component of complex single-phase interconnecting line impedance (with impedance \underline{Z}_S) between a grid link point and inverter	Ω
<i>R</i> _{3<i>L</i>}	Real component of complex triphase impedance in a conductor between a transformer and grid link point (for inverter connection purposes)	Ω
R_{3N}	Real component of complex triphase grid impedance (ohmic	Ω
31	component)	
R_{3S}	Real component of complex triphase interconnecting line	Ω
55	impedance (with impedance \underline{Z}_S) between a grid link point and inverter	
$R(\beta,\gamma)$	Global radiation factor = H_G/H	
$R_a(\beta,\gamma)$	Annual global radiation factor = H_{Ga}/H_a (ratio of annual irradiance figures)	
R_B	Direct beam radiation factor $= H_{GB}/H_B$ (as in the tables in Section A4)	
r _B	Lightning sphere radius	m
R_D	Diffuse radiation factor = H_{GD}/H_D	
R_D	Ground resistance of a grounding installation	Ω
R_i	Inner resistance of a battery or the like	Ω
R_L	Power lead resistance (real component of \underline{Z}_L)	Ω
R_M	Shielding resistance; resistance in the cladding of a shielded conductor	Ω
$R_{\rm M}$	Inner grid resistance (real component of $Z_{\rm sr}$)	0
$R_{\rm P}$	Parallel resistance	0
R_{P}	Frame reduction factor	
Rs	Series resistance of a solar cell or conductor loop	Ω
R_T	Medium-voltage transformer resistance (real component of Z_T)	Ω
	U	

R_V	Equivalent (linearized) resistance in a varistor replacement source	Ω
S	Apparent output	VA
S_{1KV}	Single-phase grid short-circuit current at the grid link point	VA
SF	Voltage factor	
S_{KV}	Triphase grid short-circuit current at the grid link point	VA
s _{min}	Minimum safety gap for hazardous proximities	m
S_{WR}	Apparent triphase output of an inverter	VA
T	Absolute temperature	K
T_C	Cell temperature (variant of T_{Z})	°C
T_o, T_{STC}	Reference STC temperature (25 °C)	°C
T_U	Ambient temperature	°C
t_V	AC full-load hours (installation full load P_{ACn})	h
t_{Vb}	AC full-load hours for a PV installation whose power limitation is	h
	$P_{AC-Grenz} < P_{AC\max}$	
t_{Vm}	AC full load hours for a PV installation based on the installation's	h
	peak AC output $P_{AC_{\text{max}}}$ (normally $P_{AC_{\text{max}}}$ differs from $P_{AC_{\text{max}}}$)	
t_{Vo}	PV installation full-load hours, including peak output P_{Ga}	h
10	(under STC)	
T_{7}	Cell temperature	°C
t_{7}	Battery depth of discharge	
Tzc	Irradiance-weighted cell and module temperature	°C
V	Voltage (in general)	V
V_{1N}	Grid phase voltage for a replacement source under open-circuit conditions	V
V.u	Phase voltage at the grid link point	V
V_{1V}	Phase voltage at the inverter connection point	v
V	Bypass diode voltage under avalanche conditions	v
V _{BA}	Bypass aloae voltage ander avalanche conditions Battery charge limiting voltage (gassing voltage)	v
VG V.	Battery charging voltage: output voltage of an MPT charge	v
v _L	controller	V V
V_M	Peak voltage induced by lightning current in a module	V
v _{max}	Maximum induced voltage	V
V _{MPP}	MPP voltage	V
V _{MPPA-STC}	PV installation or solar generator MPP voltage under STC	V
V_N	open-circuit conditions	V
V_{OC}	Open-circuit voltage of a solar cell, solar module or solar generator	V
V _{OCA-STC}	Open-circuit PV installation voltage under STC	V
V_{Ph}	Theoretical photovoltage = E_G/e	V
V_{PV}	Solar generator voltage	V
V_R	Inverse voltage	V
V _{RRM}	Diode inverse voltage	V
Vs	PV installation system voltage	V
Vs	Peak voltage induced by lightning current in a string	V
$\tilde{V_V}$	Concatenated voltage at the grid link point	V
\dot{V}_V	Equivalent (linearized) voltage in a varistor replacement source	V
\dot{V}_V	Peak voltage induced by lightning current in wiring	V
V _{VDC}	Varistor DC operating voltage specified by the vendor	V
V _{WR}	Concatenated voltage at the inverter connection point	V
$V_{\rm max}$	Peak potential increase relative to remote ground	V
	-	

X	Reactance (in general); imaginary component of an impedance Z	Ω
X_{1L}	Imaginary component of complex single-phase impedance in a conductor between a transformer and grid link point (for	Ω
	inverter connection purposes)	
X_{1N}	Imaginary component of complex single-phase grid impedance (reactance)	Ω
<i>X</i> _{1<i>S</i>}	Imaginary component of complex single-phase interconnecting line impedance (with impedance \underline{Z}_S) between a grid link point and inverter	Ω
Xar	Imaginary component of complex triphase impedance in a	0
M3L	conductor between a transformer and grid link point	22
	(for inverter connection purposes)	
X_{3N}	Imaginary component of complex triphase grid impedance (reactance)	Ω
<i>X</i> ₃₅	Imaginary component of complex triphase interconnecting line impedance (with impedance \underline{Z}_S) between a grid link point and inverter	Ω
X_{I}	Power lead reactance (imaginary component of Z_i)	Ω
X_N	Grid reactance (imaginary component of \underline{Z}_{N})	Ω
X_T	Medium-voltage transformer reactance (imaginary component $cf Z$)	Ω
V.	$\frac{U}{Z_T}$	h/d
I _A	Standardized solar generator power $-P_{\rm c}/P_{\rm c}$	II/u
yA Yr	Final yield i.e. full-load P_{c} hours	h/d
r F Vr	Standardized output power $-P_{a}/P_{a}$	11/d
yF Yr	Specific annual energy yield	kWh/kWn and h/a
Y_{P}	Reference vield, i.e. full-load solar hours	h/d
V _D	Standardized irradiance = G_c/G_c	
Y_T	Temperature-corrected reference vield	h/d
VT	Temperature-corrected standardized irradiance = $v_R \cdot P_{GaT}/P_{Ga}$	
Z	Complex impedance $Z = R + iX$ (in general)	Ω
Ζ	Impedance amount (AC resistance)	Ω
Z_{1I}	Complex single-phase line impedance at the transformer grid link	Ω
	point	
Z_{1N}	Complex single-phase grid impedance	Ω
\overline{Z}_{3L}	Complex triphase line impedance at the transformer grid link	Ω
Z_{3N}	Complex triphase grid impedance	Ω
$\overline{Z_I}$	Complex power lead impedance	Ω
\overline{Z}_N	Complex grid impedance	Ω
\overline{Z}_{S}	Complex grid impedance in the inverter interconnecting line	Ω
\overline{Z}_N	Amount of grid impedance	Ω
Z_T	Complex medium-voltage transformer impedance	Ω
\overline{Z}_W	DC cable wave impedance	Ω
ΔV_V	Voltage rise at the grid link point	V
ΔV_{WR}	Voltage rise at the inverter connection point	V
α	Lightning protection angle	0
β	Solar generator angle of incidence	0
γ	Solar generator azimuth	0
δ	Solar declination	0
η_{Ah}	Battery ampere-hour efficiency	
η_E	PV installation energy efficiency	