HILBERT TRANSFORM APPLICATIONS IN MECHANICAL VIBRATION

Michael Feldman
Technion – Israel Institute of Technology, Israel

Hilbert Transform Applications in Mechanical Vibration addresses recent advances in theory and applications of the Hilbert transform to vibration engineering, enabling laboratory dynamic tests to be performed more rapidly and accurately. The author integrates important pioneering developments in signal processing and mathematical models with typical properties of mechanical dynamic constructions such as resonance, nonlinear stiffness and damping. A comprehensive account of the main applications is provided, covering dynamic testing and the extraction of the modal parameters of nonlinear vibration systems including the initial elastic and damping force characteristics. This unique merger of technical properties and digital signal processing allows the instant solution of a variety of engineering problems and the in-depth exploration of the physics of vibration by analysis, identification and simulation. This book will appeal to both professionals and students working in mechanical, aerospace, and civil engineering, as well as naval architecture, biomechanics, robotics, and mechatronics.

Hilbert Transform Applications in Mechanical Vibration employs modern applications of the Hilbert transform time domain methods including:

- The Hilbert Vibration Decomposition method for adaptive separation of a multi-component non-stationary vibration signal into simple quasi-harmonic components; this method is characterized by high frequency resolution, which provides a comprehensive account of the case of amplitude and frequency modulated vibration analysis.
- The FREEVIB and FORCEVIB main applications, covering dynamic testing and extraction of the modal parameters of nonlinear vibration systems including the initial elastic and damping force characteristics under free and forced vibration regimes. Identification methods contribute to efficient and accurate testing of vibration systems, avoiding effort-consuming measurement and analysis.
- Precise identification of nonlinear and asymmetric systems considering high frequency harmonics on the base of the congruent envelope and congruent frequency.
- Companion website houses MATLAB® / Simulink® codes.

Enjoyed this book? Why not tell others about it and write a review on your favourite online bookseller.

Companion Website
www.wiley.com/go/feldman
Hilbert Transform Applications in Mechanical Vibration
Hilbert Transform Applications in Mechanical Vibration

Michael Feldman

Technion - Israel Institute of Technology, Israel
This edition first published 2011
© 2011 John Wiley & Sons, Ltd.

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for
permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as
permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names
and product names used in this book are trade names, service marks, trademarks or registered trademarks of
their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the publisher is not engaged in rendering professional services.
If professional advice or other expert assistance is required, the services of a competent professional should
be sought.

MATLAB® and Simulink® are trademarks of The MathWorks, Inc. and is used with permission. The
MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of
MATLAB® or Simulink® softwares or related products does not constitute endorsement or sponsorship by The
MathWorks of a particular pedagogical approach or particular use of the MATLAB® or Simulink® softwares.

Library of Congress Cataloging-in-Publication Data
Feldman, Michael, 1951-
Hilbert transform applications in mechanical vibration / Dr. Michael Feldman.
 p. cm.
 Includes bibliographical references and index.
ISBN 978-0-470-97827-6 (hardback)
TA355.F35 2011
620.3’515723’.dc22
2010051079

A catalogue record for this book is available from the British Library.

Print ISBN: 9780470978276 (H/B)
E-PDF ISBN 97811199991649
O-book ISBN 97811199991656
E-Pub ISBN 97811199991526

Typeset in 10/12pt Times by Aptara Inc., New Delhi, India
Contents

List of Figures xiii

List of Tables xxv

Preface xxvii

1 Introduction 1

1.1 Brief history of the Hilbert transform 2

1.2 Hilbert transform in vibration analysis 4

1.3 Organization of the book 5

PART I HILBERT TRANSFORM AND ANALYTIC SIGNAL 9

2 Analytic signal representation 9

2.1 Local versus global estimations 9

2.2 The Hilbert transform notation 9

2.3 Main properties of the Hilbert transform 10

2.4 The Hilbert transform of multiplication 11

2.5 Analytic signal representation 12

2.6 Polar notation 13

2.7 Angular position and speed 14

2.8 Signal waveform and envelope 15

2.9 Instantaneous phase 16

2.10 Instantaneous frequency 17

2.11 Envelope versus instantaneous frequency plot 18

2.12 Distribution functions of the instantaneous characteristics 19

2.12.1 Envelope distribution and average values 19

2.12.2 Instantaneous frequency average values 20

2.13 Signal bandwidth 20

2.14 Instantaneous frequency distribution and negative values 21

2.15 Conclusions 21

3 Signal demodulation 23

3.1 Envelope and instantaneous frequency extraction 23

3.2 Hilbert transform and synchronous detection 24
vi CONTENTS

3.3 Digital Hilbert transformers
 3.3.1 Frequency domain 27
 3.3.2 Time domain 28

3.4 Instantaneous characteristics distortions
 3.4.1 Total harmonic distortion and noise 30
 3.4.2 End effect of the Hilbert transform 31

3.5 Conclusions 32

PART II HILBERT TRANSFORM AND VIBRATION SIGNALS

4 Typical examples and description of vibration data 35
 4.1 Random signal 35
 4.2 Decay vibration waveform 37
 4.3 Slow linear sweeping frequency signal 38
 4.4 Harmonic frequency modulation 40
 4.5 Harmonic amplitude modulation
 4.5.1 Envelope and instantaneous frequency of AM signal 43
 4.5.2 Low modulation index 44
 4.5.3 High modulation index 44
 4.6 Product of two harmonics 46
 4.7 Single harmonic with DC offset 48
 4.8 Composition of two harmonics 50
 4.9 Derivative and integral of the analytic signal 53
 4.10 Signal level
 4.10.1 Amplitude overall level 54
 4.10.2 Amplitude local level 55
 4.10.3 Points of contact between envelope and signal 55
 4.10.4 Local extrema points 55
 4.10.5 Deviation of local extrema from envelope 56
 4.10.6 Local extrema sampling 56
 4.11 Frequency contents 57
 4.12 Narrowband and wideband signals 57
 4.13 Conclusions 58

5 Actual signal contents 59
 5.1 Monocomponent signal 59
 5.2 Multicomponent signal 60
 5.3 Types of multicomponent signal 61
 5.4 Averaging envelope and instantaneous frequency 62
 5.5 Smoothing and approximation of the instantaneous frequency 63
 5.6 Congruent envelope 65
 5.7 Congruent instantaneous frequency 68
 5.8 Conclusions 70
6 Local and global vibration decompositions

6.1 Empirical mode decomposition

6.2 Analytical basics of the EMD

6.2.1 Decomposition of a harmonic plus DC offset

6.2.2 Decomposition of two harmonics

6.2.3 Distance between envelope and extrema

6.2.4 Mean value between the local maxima and minima Curves

6.2.5 EMD as a nonstationary and nonlinear filter

6.2.6 Frequency resolution of the EMD

6.2.7 Frequency limit of distinguishing closest harmonics

6.3 Global Hilbert Vibration Decomposition

6.4 Instantaneous frequency of the largest energy component

6.5 Envelope of the largest energy component

6.6 Subtraction of the synchronous largest component

6.7 Hilbert Vibration Decomposition scheme

6.7.1 Frequency resolution of the HVD

6.7.2 Suggested types of signals for decomposition

6.8 Examples of Hilbert Vibration Decomposition

6.8.1 Nonstationary single-sine amplitude modulated signals

6.8.2 Nonstationary overmodulated signals

6.8.3 Nonstationary waveform presentation

6.8.4 Forced and free vibration separation

6.8.5 Asymmetric signal analysis

6.9 Comparison of the Hilbert transform decomposition methods

6.10 Common properties of the Hilbert transform decompositions

6.11 The differences between the Hilbert transform decompositions

6.12 Amplitude—frequency resolution of HT decompositions

6.12.1 The EMD method

6.12.2 The HVD method

6.13 Limiting number of valued oscillating components

6.13.1 The EMD method

6.13.2 The HVD method

6.14 Decompositions of typical nonstationary vibration signals

6.14.1 Examples of nonstationarity vibration signals

6.15 Main results and recommendations

6.16 Conclusions

7 Experience in the practice of signal analysis and industrial application

7.1 Structural health monitoring

7.1.1 The envelope and IF as a structure condition indicator

7.1.2 Bearing diagnostics

7.1.3 Gears diagnosis

7.1.4 Motion trajectory analysis

7.2 Standing and traveling wave separation
viii CONTENTS

7.3 Echo signal estimation 135
7.4 Synchronization description 135
7.5 Fatigue estimation 135
7.6 Multichannel vibration generation 135
7.7 Conclusions 136

PART III HILBERT TRANSFORM AND VIBRATION SYSTEMS

8 Vibration system characteristics 141
8.1 Kramers–Kronig relations 141
8.2 Detection of nonlinearities in frequency domain 143
8.3 Typical nonlinear elasticity characteristics 145
8.3.1 Large amplitude nonlinear behavior. polynomial model 146
8.3.2 Vibro-impact model 147
8.3.3 Restoring force saturation (limiter) 147
8.3.4 Small amplitude nonlinear behavior backlash spring 149
8.3.5 Preloaded (precompressed) spring 149
8.3.6 Piecewise linear spring bilinear model 150
8.3.7 Combination of different elastic elements 151
8.4 Phase plane representation of elastic nonlinearities in vibration systems 151
8.5 Complex plane representation 154
8.6 Approximate primary solution of a conservative nonlinear system 156
8.7 Hilbert transform and hysteretic damping 159
8.8 Nonlinear damping characteristics in a SDOF vibration system 159
8.9 Typical nonlinear damping in a vibration system 161
8.10 Velocity-dependent nonlinear damping 162
8.10.1 Velocity squared (quadratic, turbulent) damping 163
8.10.2 Dry friction 164
8.11 Velocity-independent damping 166
8.12 Combination of different damping elements 166
8.13 Conclusions 167

9 Identification of the primary solution 169
9.1 Theoretical bases of the Hilbert transform system identification 170
9.2 Free vibration modal characteristics 171
9.3 Forced vibration modal characteristics 172
9.4 Backbone (skeleton curve) 174
9.5 Damping curve 175
9.6 Frequency response 175
9.7 Force static characteristics 177
9.7.1 Averaging of the instantaneous modal parameters 178
9.7.2 Polynomial scaling technique

9.7.3 Selecting extrema and scaling technique

9.7.4 Decomposition technique

9.8 Conclusions

10 The FREEVIB and FORCEVIB methods

10.1 FREEVIB identification examples

10.2 FORCEVIB identification examples

10.3 System identification with biharmonic excitation

10.3.1 Linear system model

10.3.2 Nonlinear hardening system

10.3.3 Nonlinear softening system

10.4 Identification of nonlinear time-varying system

10.4.1 Model 1. Modulated elasticity

10.4.2 Model 2. Modulated elasticity + Quadratic damping + Swept excitation

10.4.3 Model 3. Parametric excitation

10.4.4 Model 4. Van-der-Pol + Duffing

10.4.5 Model 5. Van-der-Pol + Biharmonic excitation

10.4.6 Model 6. Van-der-Pol + Swept excitation

10.5 Experimental Identification of nonlinear vibration system

10.5.1 The structure under test

10.5.2 Free vibration identification

10.5.3 Forced vibration identification

10.6 Conclusions

11 Considering high-order superharmonics. Identification of asymmetric and MDOF systems

11.1 Description of the precise method scheme

11.2 Identification of the instantaneous modal parameters

11.3 Congruent modal parameters

11.3.1 Congruent envelope of the displacement

11.3.2 Congruent modal frequency

11.3.3 Congruent modal damping

11.3.4 Congruent envelope of the velocity

11.4 Congruent nonlinear elastic and damping forces

11.5 Examples of precise free vibration identification

11.5.1 Nonlinear spring identification

11.5.2 Nonlinear damping identification

11.5.3 Combined nonlinear spring and damping identification

11.6 Forced vibration identification considering high-order superharmonics

11.7 Identification of asymmetric nonlinear system

11.7.1 Asymmetric nonlinear system representation

11.7.2 The Hilbert transform identification technique

11.7.3 Asymmetric nonlinear system examples
CONTENTS

11.8 Experimental identification of a crack 244

11.9 Identification of MDOF vibration system 248
 11.9.1 Identification of linear coupled oscillators 249
 11.9.2 Spring coupling 249
 11.9.3 Reconstruction of coupling coefficients 251

11.10 Identification of weakly nonlinear coupled oscillators 252
 11.10.1 Coupled nonlinear oscillators with linear coupling 252
 11.10.2 Coupled linear oscillators with nonlinear coupling 255
 11.10.3 HT decomposition and analysis 256
 11.10.4 Modal skeleton curve estimation 256
 11.10.5 Mode shape estimation 257
 11.10.6 Description of the identification scheme 257
 11.10.7 Simulation examples 258

11.11 Conclusions 263

12 Experience in the practice of system analysis and industrial application 267

12.1 Non-parametric identification of nonlinear mechanical vibration systems 268

12.2 Parametric identification of nonlinear mechanical vibrating systems 269

12.3 Structural health monitoring and damage detection 270
 12.3.1 Damage detection in structures and buildings 270
 12.3.2 Detecting anomalies in beams and plates 271
 12.3.3 Health monitoring in power systems and rotors 272

12.4 Conclusions 272

References 275

Index 287
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>The ideal HT: the impulse response function (a), the module (b), and the phase (c) of the HT transfer function</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>The quasiharmonic (a) and the square wave (b): the initial signal $x(t)$, the HT pair projection $\tilde{x}(t)$, the envelope $A(t)$</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>The HT projection (1), the real signal (2), the analytic signal (3), and the phasor in complex plane (4)</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>The analytic signal in the complex plain</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>The instantaneous phase: unwrapped (- -) and wrapped (---)</td>
<td>16</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>The block diagram of the envelope and the IF extraction</td>
<td>24</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>The block diagram of the synchronous demodulation</td>
<td>26</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>The HT and the synchronous demodulations: two components of the composition (a), the composition (b, ---), the HT envelope (b, --), the synchronous amplitude (b, - -), the demodulated component (c, ---), and the synchronous amplitude (c, --)</td>
<td>26</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>The digital Hilbert transformer as a filter: the impulse characteristics (a); the magnitude (b)</td>
<td>28</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>The distortion of the envelope and the IF: the amplitude step (a), the frequency step (b), the single spike (c), the random noise (d); the signal (---), the envelope (-- -), the IF (---), and the noise (---)</td>
<td>30</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>The random signal and the envelope (a), the signal distribution (b, ---), the envelope distribution (b, --), the IF (c), and its distribution (d)</td>
<td>36</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>The random signal spectrum (a): the wideband (---) and narrowband (-- -); the narrowband signal envelope vs. IF plot (b)</td>
<td>36</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>The damped oscillation (---) and the envelope (-- -). The envelope and the extrema points</td>
<td>38</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>The damped oscillation: the spectrum (a), the envelope vs. IF plot (b)</td>
<td>39</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>The frequency sweeping oscillation (---) and the envelope (a,-- -), the IF (b)</td>
<td>39</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 4.6 The frequency sweeping oscillation: the spectrum (a), the envelope vs. IF plot (b) 40
Figure 4.7 Harmonic frequency modulation: the signal (a), the signal IF (b) 41
Figure 4.8 Fast harmonic frequency modulation: the spectrum (a), the envelope vs. IF plot (b) 42
Figure 4.9 An AM with low modulation index: the signal (a), the upper positive envelope (b), the lower negative envelope (c) 44
Figure 4.10 An AM with low modulation index: the spectrum (a), the envelope vs. IF plot (b) 45
Figure 4.11 An AM with high modulation index: the signal (a), the upper positive envelope (b), the alternate envelope (c) 45
Figure 4.12 An AM with high modulation index: the spectrum (a), the envelope vs. IF plot (b) 46
Figure 4.13 The product of two harmonics: the signal (a), the upper positive envelope (b), the alternate envelope (c) 47
Figure 4.14 The product of two harmonics: the spectrum (a), the envelope vs. IF plot (b) 47
Figure 4.15 A harmonic with DC offset: the signal (a) with the envelopes, the constant DC; the upper positive envelope (b) 48
Figure 4.16 A harmonic with DC offset: the spectrum (a), the envelope vs. IF plot (b) 49
Figure 4.17 The relative and absolute motion of the sum of two vectors 50
Figure 4.18 Two tones: the signal (a) with the envelopes, the IF (b) 51
Figure 4.19 Two tones: the spectrum (a), the envelope vs. IF plot (b) 52
Figure 5.1 The sum of two in-phase (a) and out-of-phase (b) harmonics: the envelope (- -), the congruent envelope (---), the largest (···), the secondary (---) harmonic 67
Figure 5.2 The sum of two in-phase (a) and out-of-phase (b) harmonics: the IF (- -), the congruent frequency (---), the largest (···), the secondary (---) harmonic 68
Figure 5.3 The triangle signal and its high harmonics: the envelope (a, ____) and the congruent envelope (a, - -); the IF (b, ____) and the congruent IF (b, - -) 69
Figure 5.4 The square signal and its high harmonics: the envelope (a, ____ the congruent envelope (a, - -); the IF (b, ____ and the congruent IF (b, - -) 70
Figure 6.1 Block diagram of the EMD method 74
Figure 6.2 The sum of two harmonics: the initial signal (a, ---), the upper (---) and lower (···) envelope, the top (Δ) and bottom extrema points (∇); the top (b, ---) and bottom (b, · · ·) extrema, the mean value between the top and
LIST OF FIGURES xiii

bottom extrema (- -); the EMD decomposed first harmonic (c, - -), the second harmonic (—) 75

Figure 6.3 The square wave envelope vs. the IF (—); the congruent envelope vs. the congruent IF (●) 76

Figure 6.4 The square wave Hilbert spectrum 76

Figure 6.5 The vertical position of the local maxima (—), the initial signal (— —), the upper envelope (— -) and the top maxima (Δ): the negative IF (a) (A₁ = 1, ω₁ = 1, A₂ = 0.6, ω₂ = 1.8), the positive IF (b) (A₁ = 1, ω₁ = 1, A₂ = 0.25, ω₂ = 3.9) 80

Figure 6.6 The theoretical mean value between the local maxima and minima at the highest maximum position: the envelope of the first harmonic (a), the envelope of the second harmonic (b) 82

Figure 6.7 The theoretical mean value between the local maxima and minima at the lowest maximum position: the envelope of the first harmonic (a), the envelope of the second harmonic (b) 84

Figure 6.8 The theoretical boundary of the first harmonic filtering: the highest maximum position (a), the approximation A₂/A₁ ≤ 1.44 (ω₂/ω₁)^−1.4 (— -), the approximation A₂/A₁ = ω₁/ω₂ (—); the lowest maximum position (b), the approximation A₂/A₁ ≤ (ω₂/ω₁)^−2 (—) 86

Figure 6.9 The EMD ranges of two harmonics separation: (1) the impossible decomposition for very close frequency harmonics and small amplitude ratio; (2) the decomposition requires several sifting iterations for close frequency harmonics; (3) the single iteration separation for distant frequency harmonics and large amplitude ratio 87

Figure 6.10 The EMD of two very close harmonics (A₁ = 1, ω₁ = 1, A₂ = 0.6, ω₂ = 1.1): the initial signal (a,- -), the upper (— •) and lower (— ∇) envelope, the top (Δ) and bottom maxima points (∇); the initial signal (b,- -), the top (b, — -) and bottom (b, • -) extrema curves, the mean value between them (b, - -); the first harmonic (c,- -), the second harmonic (c, - -), the mean value between the top and bottom extrema (c, - -) 88

Figure 6.11 The EMD of two close harmonics (A₁ = 1, ω₁ = 1, A₂ = 0.9, ω₂ = 1.8): the initial signal (a,- -), the upper (— •) and lower (— ∇) envelope, the top (Δ) and bottom maxima points (∇); the initial signal (b,- -), the top (b, — -) and bottom (b, • -) extrema curves, the mean value between them (b, - -); the first harmonic (c,- -), the second harmonic (c, - -), the mean value between the top and bottom extrema (c, - -) 88
LIST OF FIGURES

Figure 6.12 The EMD of two distant harmonics ($A_1 = 1$, $\omega_1 = 1$, $A_2 = 0.4$, $\omega_2 = 2.9$): the initial signal (a, -), the upper (---) and lower (····) envelope, the top (Δ) and bottom maxima points (\(\uparrow\)); the top (b, -) and bottom (b, -) maxima curves, the mean value between them (b, - -); the decomposed first harmonic (c, -), the second harmonic (c, - -), the mean value between the top and bottom maxima curves (c, - -) 89

Figure 6.13 Block diagram of the HVD method 94

Figure 6.14 The HVD ranges of two harmonics separation: (1) impossible decomposition for very close frequency harmonics; (2) good separation for distant frequency harmonics 96

Figure 6.15 The nonstationary single-tone amplitude modulated signal (a) and its decomposed superimposed components (b) 97

Figure 6.16 First three components of a nonstationary single-tone amplitude modulated signal 98

Figure 6.17 The IF (a) and envelope (b) of a single-tone amplitude modulated signal: the carrier signal component (---), the low (- - -) and high (···) modulation component 98

Figure 6.18 The Hilbert spectrum of the single-tone amplitude modulated signal 99

Figure 6.19 The overmodulated AM signal (a, —), its envelope (-□-); the alternate envelope (b, - -) 100

Figure 6.20 The first three components of a nonstationary overmodulated AM signal 100

Figure 6.21 The IF (a) and envelope (b) of an amplitude overmodulated signal; the carrier signal component (---), the low (-) and high frequency (-) modulation component 101

Figure 6.22 The Hilbert spectrum of an amplitude overmodulated signal 102

Figure 6.23 The nonstationary square wave: the initial signal (a, - -), the sum of the first five components (a, - -), and the decomposed superimposed components (b) 102

Figure 6.24 The first five components of a nonstationary square wave 103

Figure 6.25 The IF (a) and envelope (b) of each component of the nonstationary square wave: the first signal component (-) 104

Figure 6.26 The Hilbert spectrum of a nonstationary square wave 104

Figure 6.27 The nonstationary vibration solution (a) and the separated vibration components: the steady state (b), the transient (c) 105

Figure 6.28 The IF (a) and envelope (b) of a nonstationary vibration solution: the steady state component (---), the transient component (- -) 106
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.29</td>
<td>The Hilbert spectrum of a nonstationary vibration solution</td>
<td>106</td>
</tr>
<tr>
<td>6.30</td>
<td>The asymmetric transformation of the signal amplitude</td>
<td>107</td>
</tr>
<tr>
<td>6.31</td>
<td>An asymmetric signal with a linearly increasing envelope: the signal (-), the envelope (---), the IF (···)</td>
<td>109</td>
</tr>
<tr>
<td>6.32</td>
<td>The decomposed components of an asymmetric signal with a linearly increasing envelope</td>
<td>109</td>
</tr>
<tr>
<td>6.33</td>
<td>An asymmetric signal with a partial linearly increasing envelope: the signal (→), the positive partial envelope (→), the negative partial envelope (←→)</td>
<td>109</td>
</tr>
<tr>
<td>6.34</td>
<td>The envelope vs. the IF plot of an asymmetric signal with a linearly increasing envelope: the positive partial envelope (Δ), the negative partial envelope (□)</td>
<td>110</td>
</tr>
<tr>
<td>6.35</td>
<td>An asymmetric signal with a linear increasing frequency: the signal (→), the envelope (---), the IF (···)</td>
<td>110</td>
</tr>
<tr>
<td>6.36</td>
<td>The decomposed components of an asymmetric signal with a linear increasing frequency</td>
<td>111</td>
</tr>
<tr>
<td>6.37</td>
<td>An asymmetric signal with a linear increasing frequency: the signal (→), the positive envelope (→), the negative envelope (←→)</td>
<td>111</td>
</tr>
<tr>
<td>6.38</td>
<td>The envelope vs. the IF plot of an asymmetric signal with a linear increasing frequency: the positive partial envelope (Δ), the negative partial envelope (□)</td>
<td>112</td>
</tr>
<tr>
<td>6.39</td>
<td>An asymmetric signal with a linear decreasing envelope and increasing frequency: the signal (→), the envelope (---), the IF (···)</td>
<td>112</td>
</tr>
<tr>
<td>6.40</td>
<td>The decomposed components of an asymmetric signal with a linear decreasing envelope and increasing frequency</td>
<td>113</td>
</tr>
<tr>
<td>6.41</td>
<td>An asymmetric signal with a linear decreasing partial envelope and increasing frequency: the signal (→), the positive envelope (→), the negative envelope (←→)</td>
<td>113</td>
</tr>
<tr>
<td>6.42</td>
<td>The envelope vs. the IF plot of an asymmetric signal with a linear decreasing envelope and increasing frequency: the positive partial envelope (Δ), the negative partial envelope (□)</td>
<td>114</td>
</tr>
<tr>
<td>6.43</td>
<td>The largest number of valued oscillating components of the EMD: the frequency ratio is equal to 3 (→), the frequency ratio is equal to 5 (←→)</td>
<td>118</td>
</tr>
<tr>
<td>6.44</td>
<td>The HVD decomposition of two frequency-crossing components: the initial composition (a), the first decomposed component with its envelope (b), the second decomposed component with its envelope (c), the IF of the both components (d)</td>
<td>121</td>
</tr>
<tr>
<td>6.45</td>
<td>Extraction of the sweeping oscillations and exhibition of remaining impulses: the initial composition (a), the</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

extracted sweeping oscillation (b), the de-noising impulses with a slow triangle component (c) 122

Figure 7.1 The HT procedures in signal processing 128
Figure 7.2 The traveling part of a wave 134
Figure 7.3 The standing part of a wave 134

Figure 8.1 The real (a) and imaginary (b) parts of the FRF of a linear vibration system 142
Figure 8.2 The modulus (a), and phase (b) of the FRF of a linear vibration system and group delay (——) 143
Figure 8.3 A Nyquist plot of the FRF: the linear vibration system (a), the nonlinear Duffing system (b); the measured data (——), the Hilbert transformed data (——) 145
Figure 8.4 A polynomial nonlinear restoring force (a) and the vibration system backbones (b): a hardening spring (——), a softening spring (——) 147
Figure 8.5 A vibro-impact nonlinear restoring force (a) and the vibration system backbone (b) 148
Figure 8.6 An elasticity saturation restoring force (a) and the vibration system backbone (b) 148
Figure 8.7 Restoring force with backlash (a) and the vibration system backbone (b) 149
Figure 8.8 A precompressed restoring force (a) and the vibration system back-bone (b) 150
Figure 8.9 A bilinear restoring force (a) and the vibration system backbone (b) 151
Figure 8.10 The solution (a) and instantaneous oscillation period (b, —) of the Duffing equation: the average period (——) 153
Figure 8.11 The Duffing equation ($\varepsilon = 5$) phase plane (——) and the analytic signal (——) 154
Figure 8.12 The solution of the Duffing equation (a, —), the envelope (a,---), the IF (b, —), and the average IF (b, --) 156
Figure 8.13 The backbone of the Duffing system ($\alpha_3 = \varepsilon = 5$): a precise period solution (——), the average natural frequency (···) 158
Figure 8.14 The turbulent quadratic damping model: the frictional force characteristics (a), the envelope of a free decay (b), and the damping curve (c) 163
Figure 8.15 The turbulent damping force in time: the quasiharmonic solution (——), the damping force (· · ·), the HT of the damping force (· · ·), the damping force envelope (——), and the force envelope mean value (——) 163
Figure 8.16 A dry friction model: the friction force (a), the envelope of a free decay (b), and the damping curve (c) 165
Figure 8.17 The dry friction force function in time: the quasiharmonic solution (——), the square damping force (· · ·), the HT of the damping force (· · ·), the damping
force envelope (—), and the force envelope mean value (—)

Figure 9.1 Typical nonlinear stiffness force characteristics (a) and backbones (b): hardening (1), softening (2), backlash (3), preloaded (4)

Figure 9.2 Typical nonlinear damping force characteristics (a) and damping curves (b): turbulent (1), dry (2), viscous friction (3)

Figure 10.1 The free vibration of the Duffing equation: the displacement (a, —) and the envelope (a, ••) of the solution, the IF of the solution (b)

Figure 10.2 The identified Duffing equation: the backbone (a, —), the FRF (a, ••); the damping curve (b)

Figure 10.3 The identified Duffing equation spring force (a, —), the initial spring force (a, ••); the damping force (b)

Figure 10.4 Free vibration of the system with a backlash and a dry friction: the displacement (a, —), the envelope (a, ••), the IF of the solution (b)

Figure 10.5 The identified system with the backlash and dry friction: the backbone (a, —) and the FRF (a, ••); the damping curve (b)

Figure 10.6 The backlash and dry friction system identified spring force (a, —), the initial spring force (a, ••), the identified damping force (b, —), the initial damping force (b, ••)

Figure 10.7 The forced vibration of the Duffing equation: the displacement (a, —) and the envelope (a, ••); the IF of the swept excitation (b, —), the instantaneous modal frequency (b, ••), the phase shift between an input and an output (b, ••)

Figure 10.8 The identified Duffing equation: the backbone (a, —), the FRF (a, ••); the damping curve (b)

Figure 10.9 The Duffing equation identified spring force (a, —), the initial spring force (a, ••); the damping force (b)

Figure 10.10 The forced vibration of the system with the backlash and dry friction: the displacement (a, —), the envelope (a, ••); the IF of the swept excitation (b, —), the instantaneous modal frequency (b, ••), the phase shift between an input and an output (b, ••)

Figure 10.11 The identified system with the backlash and dry friction: the backbone (a, —) and the FRF (a, ••); the damping curve (b)

Figure 10.12 The backlash and dry friction identified spring force (a, —), the initial spring force (a, ••); the identified damping force (b, ••), the initial damping force (b, ••)

Figure 10.13 Linear vibration system: the excitation (a), the displacement (b), excitation spectrum (c), displacement spectrum (d)
xviii LIST OF FIGURES

Figure 10.14 Linear vibration system: the displacement and the envelope of the solution (a), the instantaneous frequencies (b) 195

Figure 10.15 The linear system identification: skeleton curve (a, —), FRF (a, · · ·); elastic static force (b); damping curve (c); friction force characteristics (d) 196

Figure 10.16 Nonlinear hardening system: the excitation (a), the displacement (b), excitation spectrum (c), displacement spectrum (d) 197

Figure 10.17 Nonlinear hardening system: the displacement and the envelope of the solution (a), the instantaneous frequencies (b) 198

Figure 10.18 The nonlinear hardening system identification: skeleton curve (a, —), FRF (a, · · ·); elastic static force (b); damping curve (c); friction force characteristics (d) 198

Figure 10.19 The softening system with biharmonics force excitation (a); the displacement solution and the envelope (b); the IF of the swept excitation (—), the instantaneous modal frequency (— · · ·), the phase shift between input and output (· · ·) 199

Figure 10.20 The identified Duffing equation under biharmonics force excitation: the backbone (a, —), the FRF (a, · · ·); the damping curve (b) 200

Figure 10.21 The identified Duffing equation under biharmonic force excitation: the spring force (a); the damping force (b) 201

Figure 10.22 Model 1: the excitation (a), the displacement (b), excitation spectrum (c), displacement spectrum (d) 203

Figure 10.23 Model 1: the displacement and envelope of the solution (a), the IF (b) 204

Figure 10.24 Model 1: the identified damping curve (a), the friction force characteristics (b) 205

Figure 10.25 Model 2: the excitation (a), the displacement (b), excitation spectrum (c), displacement spectrum (d) 206

Figure 10.26 Model 2: the displacement and the envelope of the solution (a), the IF (b) 206

Figure 10.27 Model 2: the identified damping curve (a), the friction force characteristics (b) 207

Figure 10.28 Model 3: the excitation (a), the displacement (b), excitation spectrum (c), displacement spectrum (d) 208

Figure 10.29 Model 3: the skeleton curve (a), the elastic static force (b), the damping curve (c), the friction force characteristics (d) 208

Figure 10.30 Model 4: the excitation (a), the displacement (b), excitation spectrum (c), displacement spectrum (d) 208

Figure 10.31 Model 4: the displacement and the envelope of the solution (a), the IF (b) 209
Figure 10.32 Model 4: the skeleton curve (a), the elastic static force (b), the damping curve (c), the friction force characteristics (d) 210

Figure 10.33 Model 5: the excitation (a), the displacement (b), excitation spectrum (c), displacement spectrum (d) 210

Figure 10.34 Model 5: the displacement and the envelope of the solution (a), the instantaneous frequencies (b) 211

Figure 10.35 Model 5: the skeleton curve (a), the elastic static force (b), the damping curve (c), the friction force characteristics (d) 212

Figure 10.36 Model 6: the excitation (a), the displacement (b), excitation spectrum (c), displacement spectrum (d) 212

Figure 10.37 Model 6: the displacement and the envelope of the solution (a), the instantaneous frequencies (b) 213

Figure 10.38 Model 6: the skeleton curve (a), the elastic static force (b), the damping curve (c), the friction force characteristics (d) 213

Figure 10.39 The experimental stand: mass (1), ruler springs (2), actuator (3), tension mechanism (4), LVDT sensor (5) 215

Figure 10.40 The measured time histories: the repeated interrupted force excitation (a), the output free vibration displacement (b) 216

Figure 10.41 The measured time histories: the input sweeping force excitation (a), the output displacement (b) 217

Figure 10.42 The experimental skeleton curves and frequency response: the skeleton curves of free vibrations (---), the frequency response functions (- -), the skeleton curves of forced vibrations (---) 218

Figure 10.43 The experimental stiffness static force characteristics 219

Figure 10.44 The experimental damping curve (a) and the friction static force characteristics (b) 220

Figure 11.1 The nonlinear spring free vibration: the displacement (—), the envelope (—), the congruent envelope of the displacement (—) 230

Figure 11.2 The high harmonics of the instantaneous natural frequency of the nonlinear spring free vibration. The time history of two first harmonics (a); the Hilbert spectrum (b) 231

Figure 11.3 The identified parameters of the nonlinear spring free vibration; the skeleton curve (a): instantaneous (—), averaged (- -), identified with high harmonics (—); the spring static force characteristics (b): initial (---), identified with high harmonics (—); the damping curve (c): initial (…), averaged (- -), identified with high harmonics (—); the friction static force characteristics (d): initial (---), identified with high harmonics (—) 232
xx LIST OF FIGURES

Figure 11.4 Nonlinear friction free vibration: the displacement (—), the envelope (—), the congruent envelope of the displacement (—)

Figure 11.5 The high harmonics of the instantaneous damping curve of the nonlinear friction free vibration: The time history of four first harmonics (a); the Hilbert spectrum (b)

Figure 11.6 The identified parameters of the nonlinear friction free vibration: the skeleton curve (a): instantaneous (—), averaged (—), identified with high harmonics (—); the spring static force characteristics (b): initial (—), identified with high harmonics (—); the damping curve (c): initial (—), averaged (—), identified with high harmonics (—); the friction static force characteristics (d): initial (—), identified with high harmonics (—)

Figure 11.7 Combined nonlinear spring and damping free vibration: the displacement (—), the envelope (—), the congruent envelope of the displacement (—)

Figure 11.8 The identified parameters of combined nonlinear spring and damping vibrations: the skeleton curve (a): instantaneous (—), averaged (—), identified with high harmonics (—); the spring static force characteristics (b): initial (—), identified with high harmonics (—); the damping curve (c): initial (—), averaged (—), identified with high harmonics (—); the friction force characteristics (d): initial (—), identified with high harmonics (—)

Figure 11.9 Combined nonlinear spring and damping forced vibration: the displacement (—), the envelope (—), the congruent envelope (—)

Figure 11.10 The identified parameters of combined nonlinear spring and damping forced vibrations: the skeleton curve (a): instantaneous (—), averaged (—), identified with high harmonics (—); the spring static force characteristics (b): initial (—), identified with high harmonics (—); the damping curve (c): initial (—), averaged (—), identified with high harmonics (—); the friction force characteristics (d): initial (—), identified with high harmonics (—)

Figure 11.11 The free vibration of the asymmetric bilinear system

Figure 11.12 The estimated characteristic of a bilinear system: backbone (a), spring force characteristic (b), damping curve (c), damping force characteristics (d)

Figure 11.13 The free vibration of the asymmetric system with two cubic stiffnesses
Figure 11.14 The estimated characteristic of a system with two cubic stiffnesses: backbone (a), spring force characteristic (b), damping curve (c), damping force characteristic (d) 245

Figure 11.15 The estimated force characteristic of a crack and notch structure: backbone (a), spring force characteristic (b), damping curve (c), damping force characteristic (d) 247

Figure 11.16 Influence of the coupling coefficient η on the skeleton curves of the first ω_1 and the second ω_2 mode of a nonlinear 2DOF vibration system: $\omega_1, \eta = 1$ (•••); $\omega_1, \eta = 0.5$ (—); $\omega_2, \eta = 0$ (•••); $\omega_2, \eta = 0.5$ (+) 254

Figure 11.17 The free vibration of two coupled Duffing oscillators: the first $\varphi(t)$ and second $\xi(t)$ spatial coordinate vibration (a), the HT decomposed normal coordinates (b), the mode shapes of two modes (c) 259

Figure 11.18 The skeleton curves of the first hardening stiffness mode (a): the modal (•••), the identified spatial (—), the initial spatial (···); the skeleton curves of the second softening mode (b): the modal (•••), the identified spatial (—), the initial spatial (···); the coupling of nonlinear modes (c): the first equation identified spatial (•••), the second equation identified spatial (—), the initials (—) 260

Figure 11.19 The free vibration of two oscillators with nonlinear couplings: the first $\varphi(t)$ and second $\xi(t)$ spatial coordinate vibration (a), the HT decomposed normal coordinates (b), the mode shapes of two modes (c) 261

Figure 11.20 The skeleton curves of the first mode with nonlinear couplings (a): the modal (•••), the identified spatial (—), the initial spatial (□); the skeleton curves of the second softening mode (b): the modal (•••), the identified spatial (—), the initial spatial (□); the coupling of nonlinear modes (c): the first equation identified spatial (•••), the second equation identified spatial (—), the initials (□) 262

Figure 11.21 Self-excited vibration of two coupled van der Pol oscillators: the first $\varphi(t)$ and second $\xi(t)$ spatial coordinate vibration (a), the HT decomposed normal coordinates (b), mode shapes of two modes (c) 263

Figure 11.22 Skeleton curves of the first mode (a): the modal (•••), the initial spatial (□); skeleton curves of the second mode (b): the modal (•••), the initial spatial (□); the identified nonlinear friction force of the first van der Pol oscillator (c); the identified nonlinear friction force of the second van der Pol oscillator (d) 264

Figure 12.1 HT procedures for the identification of vibration systems. 268
List of Tables

<table>
<thead>
<tr>
<th>Table 4.1</th>
<th>Typical examples of the central frequency and the spectral bandwidth of random vibration (Feldman, 2009b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 6.1</td>
<td>Application of the HT decompositions for typical vibration signals</td>
</tr>
<tr>
<td>Table 10.1</td>
<td>Extreme and mean values of the envelope and the IF of the biharmonic signal</td>
</tr>
<tr>
<td>Table 10.2</td>
<td>Model parameters</td>
</tr>
</tbody>
</table>
Preface

The object of this book, *Hilbert Transform Applications in Mechanical Vibration*, is to present a modern methodology and examples of nonstationary vibration signal analysis and nonlinear mechanical system identification. Nowadays the Hilbert transform (HT) and the related concept of an analytic signal, in combination with other time–frequency methods, has been widely adopted for diverse applications of signal and system processing.

What makes the HT so unique and so attractive?

- It solves a typical demodulation problem, giving the amplitude (envelope) and instantaneous frequency of a measured signal. The instantaneous amplitude and frequency functions are complementary characteristics that can be used to measure and detect local and global features of the signal – in the same way as for classical spectral and statistical signatures.

- The HT allows us to decompose a nonstationary complicated vibration, separating it into elementary time-varying components – preserving their shape, amplitude, and phase relations.

- It identifies and has an ability to capture – in a much faster and more precise way – the dynamic characteristics of system stiffness and damping, including their nonlinearities and the temporal evolution of modal parameters. This allows the development of more adequate mathematical models of tested vibration structures.

The information obtained can be further used in design and manufacturing to improve the dynamic behavior of the construction, to plan control actions, to instill situational awareness, and to enable health monitoring and preventive surplus maintenance procedures. Therefore, the HT is very useful for mechanical engineering applications where many types of nonlinear modeling and nonstationary parametric problems exist.

This book covers modern advances in the application of the Hilbert transform in vibration engineering, where researchers can now produce laboratory dynamic tests more quickly and accurately. It integrates important pioneering developments of signal processing and mathematical models with typical properties of mechanical construction, such as resonance, dynamic stiffness, and damping. The unique merger of technical properties and digital signal processing provides an instant solution to a variety of engineering problems, and an in-depth exploration of the physics
of vibration by analysis, identification, and simulation. These modern methods of
diagnostics and health monitoring permit a much faster development, improvement,
and economical maintenance of mechanical and electromechanical equipment.

The Hilbert Vibration Decomposition (HVD), FREEVIB, FORCEVIB, and con-
gruent envelope methods presented allow faster and simpler solutions for problems –
of a high-order and at earlier engineering levels – than traditional textbook approaches.
This book can inspire further development in the field of nonlinear vibration analysis
with the use of the HT.

Naturally, it is focused only on applying the HT and the analytic signal methods
to mechanical vibration analysis, where they have greatest use. This is a particular
one-dimensional version of the application of HT, which provides a set of tools for
understanding and working with a complex notation. HT methods are also widely
used in other disciplines of applied mechanics, such as the HT spectroscopy that
measures high-frequency emission spectra. However, the HT is also widely used
in the bidimensional (2D) case that occurs in image analysis. For example, the HT
wideband radar provides the bandwidth and dynamic range needed for high-resolution
images. The 2D HT allows the calculation of analytic images with a better edge and
envelope detection because it has a longer impulse response that helps to reduce the
effects of noise.

HT theory and realizations are continually evolving, bringing new challenges and
attractive options. The author has been working on applications of the HT to vibration
analysis for more than 25 years, and this book represents the results and achievements
of many years of research. During the last decade, interest in the topic of the HT
has been progressively rising, as evidenced by the growing number of papers on this
topic published in journals and conference proceedings. For that reason the author is
convinced that the interest of potential readers will reach its peak in 2011, and that
this is the right time to publish the book.

The author believes that this book will be of interest to professionals and stu-
dents dealing not only with mechanical, aerospace, and civil engineering, but also
with naval architecture, biomechanics, robotics, and mechatronics. For students of
engineering at both undergraduate and graduate levels, it can serve as a useful study
guide and a powerful learning aid in many courses such as signal processing, me-
chanical vibration, structural dynamics, and structural health monitoring. For in-
structors, it offers an easy and efficient approach to a curriculum development and
 teaching innovations.

The author would like to express his utmost gratitude to Prof. Yakov Ben-Haim
(Technion), Prof. Simon Braun (Technion), and Prof. Keith Worden (University of
Sheffield) for their long-standing interest and permanent support of the research
developments included in this book.

The author has also greatly benefited from many stimulating discussions with
his colleagues from the Mechanical Engineering Faculty (Technion): Prof. Izhak
Bucher, Prof. David Elata, Prof. Oleg Gendelman, and Prof. Oded Gottlieb. These
discussions provided the thrust for the author’s work and induced him to continue
research activities on the subject of Hilbert transforms.

The book summarizes and supplements the author’s investigations that have been
published in various scientific journals. It also reviews and extends the author’s recent

The author is very grateful to Donna Bossin and Irina Vatman who had such a difficult time reading, editing, and revising the text. Of course, any errors that remain are solely the responsibility of the author.

Michael Feldman