Dynamic Electrocardiography

EDITED BY

Professor Marek Malik MSc, PhD, MD, DSc, DSc (Med), FACC, FESC
Professor of Cardiac Electrophysiology,
Department of Cardiac and Vascular Sciences,
St. George’s Hospital Medical School,
London SW17 0RE, United Kingdom

AND

Professor A. John Camm QHP, BSc, MD, FRCP, FESC, FACC, FAHA, FCGC, CStJ
Professor of Clinical Cardiology,
Department of Cardiac and Vascular Sciences,
St George’s Hospital Medical School,
London SW17 0RE, United Kingdom
Dynamic Electrocardiography

EDITED BY

Professor Marek Malik MSc, PhD, MD, DSc, DSc (Med), FACC, FESC
Professor of Cardiac Electrophysiology,
Department of Cardiac and Vascular Sciences,
St. George’s Hospital Medical School,
London SW17 0RE, United Kingdom

AND

Professor A. John Camm QHP, BSc, MD, FRCP, FESC, FACC, FAHA, FCPC, CSTJ
Professor of Clinical Cardiology,
Department of Cardiac and Vascular Sciences,
St George’s Hospital Medical School,
London SW17 0RE, United Kingdom
To Kate and Joy
Contents

Contributors, vi
Foreword, xvi
Preface, xviii

Section I Heart rate variability, 1

1 Physiological background of heart rate variability, 3
Roger Hainsworth

2 Standard measurement of heart rate variability, 13
Marek Malik

3 Nonlinear dynamics of RR intervals, 22
Timo H. Mäkikallio, Juha S. Perkiömäki and Heikki V. Huikuri

4 Correlations among heart rate variability components and autonomic mechanisms, 31
Dwain L. Eckberg

5 Physiological understanding of HRV components, 40
Federico Lombardi

6 Autonomic balance, 48
Alberto Malliani and Nicola Montano

7 Heart rate variability: stress and psychiatric conditions, 57
Gary G. Berntson and John T. Cacioppo

8 Circadian rhythm of heart rate and heart rate variability, 65
Phyliss K. Stein

9 Time–frequency analysis of heart rate variability under autonomic provocations, 73
Solange Akselrod

10 Effects of drugs, 83
Xavier Copie and Jean-Yves Le Heuzey

11 Heart rate variability in healthy populations: correlates and consequences, 90
Annie Britton and Harry Hemingway

12 Heart rate variability in ischaemic disease, 112
Robert E. Kleiger and Phyllis K. Stein

13 Heart rate variability in heart failure, 122
Roger Moore and James Nolan

14 Heart rate variability in diabetes and neuropathies, 133
Ernest L. Fallen

Section II Baroreflex, 141

15 Physiological background of baroreflex, 143
Barbara Casadei

16 Invasive determination of baroreflex sensitivity, 154
Maria Teresa La Rovere

17 Noninvasive provocations of baroreflex sensitivity, 162
Josef Kautzner

18 Analysis of the interactions between heart rate and blood pressure variabilities, 170
Sergio Cerutti, Giuseppe Baselli, Anna M. Bianchi, Luca T. Mainardi and Alberto Porta

19 Arterial baroreflexes in ischaemic heart disease, and their role in sudden cardiac death, 180
Dwain L. Eckberg

20 Heart rate turbulence on Holter, 190
Raphael Schneider, Petra Barthel and Mari Watanabe

21 Heart rate turbulence in pacing studies, 194
Dan Wichterle and Marek Malik

22 Physiological hypotheses on heart rate turbulence, 203
Andreas Voss, Vico Baier, Alexander Schirdewan and Uwe Leder
Klinefield and Peter M. Okin
38 T wave and QT interval changes related to myocardial ischaemia, 380
Juha Hartikainen
39 Influence of rhythm abnormalities on ventricular repolarization, 390
Rory Childers
40 Dynamics of acquired long QT syndrome, 406
Elijah R. Behr and A. John Camm
41 Electrocardiogram of Brugada syndrome and its dynamic patterns, 417
Maximo Rivero-Ayerza, Ramon Brugada, Josep Brugada, Peter Geelen and Pedro Brugada
42 Electrocardiographic T wave changes in left ventricular hypertrophy, 425
Michael R. Franz
43 Macro T wave alternans, 433
Robert L. Lux and Konrad Brockmeier
44 Microscopic T wave alternans, 439
Otto Costantini
45 T wave alternans in ischaemic heart disease, 448
Stefan H. Hohnloser
46 Dynamic repolarization changes and arrhythmia risk assessment in nonischaemic heart disease, 454
Richard L. Verrier and Aneesh Tolat

Section V Atrial fibrillation, 463
47 Pathophysiology of the atrial fibrillation electrogram, 465
Ulrich Schotten and Maurits A. Allessie
48 P wave abnormalities before AF episodes, 475
Polychronis E. Dilaveris
49 Dynamics of atrial electrogram in AF, 486
Bertil S. Olsson, Carl J. Meurling, Leif Sörnmo and Martin Stridh
50 Detection of paroxysmal atrial fibrillation episodes, 493
Rahul Mehra and David Ritscher
Contents

51 Circadian pattern of AF paroxysms, 500
 Antonio Michelucci, Paolo Pieragnoli,
 Andrea Colella, Gianfranco Gensini
 and Luigi Padeletti

52 Monitoring after cardioversion of atrial
 fibrillation, 506
 Samuel Lévy

53 Heart rate profile in chronic atrial
 fibrillation, 511
 Alessandro Capucci, Giovanni Quinto Villani
 and Massimo Piepoli

54 Monitoring of heart rate control in atrial
 fibrillation, 517
 Shamil Yusuf and A. John Camm

55 Autonomic influence of atrial
 fibrillation, 530
 Philippe Coumel

56 Long time monitoring of cardiac rhythm in
 patients with atrial fibrillation, 537
 Milos Kesek and Mårten Rosenqvist

Section VI Ventricular arrhythmias, 547

57 Monitoring ectopic activity, 549
 Bogdan G. Ionescu, Xavier Vinolas, Iwona
 Cygankiewicz, Antoni Bayés Genis and
 Antoni Bayés de Luna

58 Circadian pattern of arrhythmic
 episodes, 560
 Yi-Fang Guo and Phyllis K. Stein

59 Holter monitor-guided antiarrhythmic
 therapy, 565
 Kelley P. Anderson

60 Dynamics of heart rate before
 arrhythmias, 571
 Polychronis E. Dilaveris and John E. Gialafos

Section VII Electrocardiogram of an
 implanted device, 581

61 Electrocardiographic monitoring with
 implantable devices, 583
 Richard Houben and Fred Lindemans

62 Ischaemic patterns, 593
 Andreas Grom, Christoph Bode
 and Manfred Zehender

63 State-of-the-art marker channels, 599
 Walter H. Olson

64 Interpretation of device stored rhythms and
 electrocardiograms, 608
 Paul J. Erlinger and Gust H. Bardy

Index, 627
Contributors

Solang Akselrod, PhD
Professor Head of Medical Physics
Abramson Center for Medical Physics
School of Physics and Astronomy
Tel-Aviv University
Ramat-Aviv, 69978
Israel
solange@post.tau.ac.il

Maurits A. Allessie, MD, PhD
Professor of Physiology
Chairman of the Department of Physiology
Department of Physiology
University Maastricht
PO Box 616
6200 MD Maastricht
The Netherlands
m.allessie@fys.unimaas.nl

Kelley P. Anderson, MD, FACC
Cardiologist
Department of Cardiology 2D2
Marshfield Clinic
1000 North Oak Avenue
Marshfield, WI 54449-5777
USA
kpand@att.net

Charles Antzelevitch, PhD, FACC, FAHA
Executive Director/Director of Research
Gordon K Moe Scholar and Professor of Pharmacology
Masonic Medical Research Laboratory
2150 Bleecker Street
Utica, NY 13501-1787
USA
c@mmrl.edu

Vico Baier, DIng
Research Assistant
Department of Medical Engineering
University of Applied Sciences Jena
Carl-Zeiss-Promenade 2
07745 Jena
Germany
vico.baier@fh-jena.de

Gust H. Bardy, MD, FACC
Clinical Professor of Medicine
University of Washington
Box 356422: Suite 300
7900 East Greenlake Drive
Seattle, WA 98103
USA
gbardy@u.washington.edu

Petra Barthel, MD
Senior Resident
Deutsches Herzzentrum München
Technische Universität München
Arbacherstrasse 10
81371 Munich
Germany
barthel@med1.med.tum.de

Giuseppe Baselli, MS
Professor in Biomedical Engineering
Department of Bioengineering
Polytechnic University in Milano
Piazza Leonardo da Vinci 32
20133 Milano
Italy
baselli@biomed.polimi.it

Velislav N. Batchvarov, MD
Senior Research Fellow
Department of Cardiac and Vascular Sciences
St. George’s Hospital Medical School
Cranmer Terrace
London SW17 0RE
United Kingdom
vbatchva@sghms.ac.uk

Axel Bauer, MD
Resident
Deutsches Herzzentrum München
Technische Universität München
Arbacherstrasse 10
81371 Munich
Germany
bauer.de@web.de
Antoni Bayés de Luna, MD, PhD, FESC, FACC
Professor of Cardiology
Chief of Institute of Cardiology
Hospital de Sant Pau i Santa Creu
St Antoni Ma Claret 167
08025 Barcelona
Spain
Abayesluna@hsp.santpau.es

Antoni Bayés Genis, MD, PhD, FESC
Assistant Professor
Heart Failure Unit Coordinator
Institute of Cardiology
Hospital de Sant Pau i Santa Creu
St Antoni Ma Claret 167
08025 Barcelona
Spain
Abayesgenis@hsp.santpau.es

Elijah Behr, MA, MBBS, MRCP
Specialist Registrar
Department of Cardiac and Vascular Sciences
St George’s Hospital Medical School
Cranmer Terrace
London SW17 0RE
United Kingdom
ebehr@sghms.ac.uk

Gary G. Berntson, PhD
Professor of Psychology, Psychiatry & Pediatrics
Department of Psychology
The Ohio State University
1885 Neil Avenue
Columbus, OH 43210
USA
berntson@osu.edu

Anna M. Bianchi, MS
Assistant Professor
Department of Bioengineering
Polytechnic University in Milano
Piazza Leonardo da Vinci 32
20133 Milano
Italy
annamaria.bianchi@polimi.it

Christoph Bode, MD, FESC
Professor of Medicine and Chairman
Universitätsklinikum Freiburg
Innere Medizin III, Kardiologie und Angiologie
Hugstetterstrasse 55
D-79106 Freiburg
Germany
bode@mm31.ukl.uni-freiburg.de

Annie Britton, PhD
Lecturer in Epidemiology and Public Health
International Centre for Health and Society
Department of Epidemiology and Public Health
University College London
1-19 Torrington Place
London WC1E 6BT
United Kingdom
a.britton@ucl.ac.uk

Konrad Brockmeier, MD
Professor of Pediatrics
Head of Pediatric Cardiology
University of Cologne
Joseph-Stelzmann-Strasse 9
50924 Köln
Germany
k.brockmeier@uni-koeln.de

Josep Brugada, MD, PhD
Director, Arrhythmia Unit
Cardiovascular Institute
Hospital Clinic
University of Barcelona
Villarreal 170, 08036
Spain
jepbrugada@grn.es

Pedro Brugada, MD, PhD, FESC, FAHA
Professor of Medicine
Director, Arrhythmia Unit
OLV Hospital, Cardiovascular Center Aalst
9300 Aalst
Belgium
p.brugada@planetinternet.be

Ramon Brugada, MD
Director, Molecular Genetics Program
Masonic Medical Research Laboratory
2150 Bleecker Street
Utica, NY 13501-1787
USA
rbrugada@mmrl.edu

A. John Camm, QHP, BSc, MD, FRCp, FESC, FACC, FAHA, FCGC, CSJ
British Heart Foundation Professor of Clinical Cardiology
Department of Cardiac and Vascular Sciences
St. George’s Hospital Medical School
Cranmer Terrace
London SW17 0RE
United Kingdom
jcamm@sghms.ac.uk
Contributors

John T. Cacioppo, PhD
Tiffany and Margaret Blake Distinguished Service Professor
Department of Psychology
The University of Chicago
5848 South University Avenue
Chicago, IL 60637
USA
cacioppo@uchicago.edu

Alessandro Capucci, MD, FESC, ACC
Director of Department of Cardiology
Guglielmo da Saliceto General Hospital
Cantone del Cristo
29100 Piacenza
Italy
progettovita@hotmail.com

Barbara Casadei, MD, DPhil, FESC, FRCP
Reader in Cardiovascular Medicine
University Department of Cardiovascular Medicine
John Radcliffe Hospital
Oxford OX3 9DU
United Kingdom
barbara.casadei@cardiov.ox.ac.uk

Sergio Cerutti, MS, FIEEE, FIAMBE
Professor and Head of the Department of Bioengineering
Politecnico University in Milano
Piazza Leonardo da Vinci 32
20133 Milano
Italy
cerutti@biomed.polimi.it

Rory W. Childers, MD
Professor of Medicine/Director, Heart Station
Cardiology Section
Department of Medicine
University of Chicago Medical Center
5848 South Maryland Avenue MC 9024
Chicago, IL 60637
USA
rchilders@medicine.bsd.uchicago.edu

Andrea Colella, MD
Senior Physician
Department of Medical and Surgical Critical Care
Section of Internal Medicine and Cardiology
University of Firenze
v. le Morgagni, 85
50134 Firenze
Italy
elettrofisiologia@dfc.unifi.it

Xavier Copie, MD, PhD
Consultant Cardiologist
Centre Cardiologique du Nord
32-36 rue des Moulins Gémeaux
93200 Saint-Denis
France
x.copie@ccncardio.com

Otto Costantini, MD
Assistant Professor of Medicine
Director, Arrhythmia Prevention Center
Case Western Reserve University @ MetroHealth Medical Center
Heart & Vascular Center H-334
2500 MetroHealth Drive
Cleveland, OH 44109
USA
ocostantini@metrohealth.org

Philippe Coumel, MD, FESC
Consultant Cardiologist
Department of Cardiology
Lariboisière Hospital
2, rue Ambroise-Paré
75010 Paris
France
philippe.coumel@lrb.ap-hop-paris.fr

Iwona Cygankiewicz, MD, PhD
Fellow of Cardiology
Institute of Cardiology
Hospital de Sant Pau i Santa Creu
St Antoni Ma Claret 167
08025 Barcelona
Spain
Icygankiewicz@hsp.santpau.es

Polychronis E. Dilaveris, MD, FESC
Research Registrar
Department of Cardiology
University of Athens Medical School
22 Miltiadou Str
155 61 Holaragos
Athens
Greece
hrodil@yahoo.com

Dwain L. Eckberg, MD
Professor, Medicine and Physiology
Medical College of Virginia at Virginia Commonwealth University
4614 Riverside Drive
Richmond, VA 23225
USA
deckberg@ekholmen.com

Paul J. Erlinger, BSEE
Field Clinical Engineer
Cameron Health Inc.
905 Calle Amanecer
Suite 300
San Clemente, CA 92673
USA
perlinger@cameronhealth.com
Contributors

Ernest L. Fallen, MD FRCP(C)
Professor Emeritus, Department of Medicine
McMaster University Faculty of Health Sciences
McMaster University Medical Center, Rm 3U8
1200 Main St. West
Hamilton
Ontario L8N 3Z5
Canada
fallene@mcmaster.ca

Shlomo Feldman, MD, FACC
Senior Lecturer in Cardiology
Tel Aviv University.
Past Director of the Pacemaker and Electrophysiology Unit
Heart Institute
Sheba Medical Center
Tel Hashomer Hospital
Ramat Gan
Israel 52621
shlomofeldman@hotmail.com

Michael R. Franz, MD, PhD, FACC
Professor of Medicine and Pharmacology
George Town University Medical Center
Director, Clinical and Experimental Electrophysiology
VA Medical Center
50 Irving St. NW
Washington, DC 20422
USA
michael.r.franz@verizon.net

J. Lee Garvey, MD
Medical Director, Chest Pain Evaluation Center
Department of Emergency Medicine
Carolinas Medical Center
1000 Blythe Blvd
Charlotte, NC 28203
USA
lgarvey@carolinas.org

Peter Geelen, MD, PhD
Co-director, Arrhythmia Unit
OLV Hospital. Cardiovascular Center Aalst
164, Moorselbaan
9300 Aalst
Belgium
peter.geelen@olvz-aalst.be

Gian Franco Gensini, MD
Professor of Internal Medicine
Department of Medical and Surgical Critical Care
Section of Internal Medicine and Cardiology
University of Firenze
v. le Morgagni, 85
50134 Firenze,
Italy
g.gensini@dfc.unifi.it

John E. Gialafos, MD, FESC, FACC
Professor of Cardiology
Department of Cardiology
University of Athens Medical School
37 Ipsilanto Street
106 76 Athens
Greece
gialaf@yahoo.com

Andreas Grom, MD
Research Fellow
Universitätsklinikum Freiburg
Innere Medizin III, Kardiologie und Angiologie
Hugstetterstrasse 55
D-79106 Freiburg
Germany
grom@med1.ukl.uni-freiburg.de

Roger Hainsworth, MB, ChB, PhD, DSc
Professor of Applied Physiology and Honorary Consultant
Clinical Physiologist
Institute for Cardiovascular Research
University of Leeds
Leeds LS2 9JT
United Kingdom
medrh@leeds.ac.uk

Juha E. K. Hartikainen, MD, PhD
Senior Consultant Cardiologist
Department of Medicine
Kuopio University Hospital
Box 1777
70211 Kuopio
Finland
juha.hartikainen@kuh.fi

Harry Hemingway, MRCP
Reader in Clinical Epidemiology
International Centre for Health and Society
Department of Epidemiology and Public Health
University College London
1-19 Torrington Place
London WC1E 6BT
United Kingdom
h.heminway@ucl.ac.uk

Katerina Hnatkova, MSc, PhD, FESC
Senior Research Fellow
Department of Cardiac and Vascular Sciences
St George’s Hospital Medical School
Cranmer Terrace
London SW17 0RE
United Kingdom
k.hnatkova@sghms.ac.uk
Contributors

Stefan H. Hohnloser, MD, FACC, FESC
Professor of Medicine
Department of Medicine
Division of Electrophysiology
Theodor-Stern-Kai 7
60590 Frankfurt
Germany
Hohnloser@em.uni-frankfurt.de

Josef Kautzner, MD, PhD, FESC
Head, Department of Cardiology
Institute for Clinical and Experimental Medicine
Videnska 800
140 21 Prague 4
Czech Republic
josef.kautzner@medicon.cz

B. Milan Horacek, PhD
Professor of Biophysics
Department of Physiology & Biophysics
Dalhousie University
Sir Charles Tupper Medical Building
5859 University Avenue
Halifax, Nova Scotia B3H 4H7
Canada
milan.horacek@dal.ca

Milos Kesek, MD
Consultant Cardiologist
Department of Cardiology
Norrland University Hospital
901 85 Umea
Sweden
milos.kesek@comhem.se

Richard P.M. Houben, BSc
Principal Design Engineer
Advanced Concepts
Medtronic Bakken Research Center
Endepolsdomein 5
6229 GW Maastricht
The Netherlands
richard.houben@medtronic.com

Robert E. Kleiger, MD, FACC
Professor of Medicine
Cardiovascular Division
Washington University School of Medicine
660 S. Euclid Ave
Campus Box 8086
St. Louis, MO 63110
USA
mleaders@im.wustl.edu

Heikki Huikuri, MD, PhD, FACC, FESC
Professor in Medicine
Department of Internal Medicine
Division of Cardiology
Oulu University Hospital, Oulu
PO Box 20
FIN-90029 OYS
Finland
heikki.huikuri@oulu.fi

Paul Kligfield, MD, FACC
Professor of Medicine
Division of Cardiology
Weill Medical College of Cornell University
1300 York Avenue
New York, NY 10021
USA
pkligfi@med.cornell.edu

Bogdan G. Ionescu, MD
Fellow in Cardiology
Institute of Cardiology
Hospital de Sant Pau i Santa Creu
St Antoni Ma Claret 167
08025 Barcelona
Spain
bionescu@hsp.santpau.es

María Teresa La Rovere, MD, FESC
Director Autonomic Laboratories
Department of Cardiology
Fondazione ‘Salvatore Maugeri’, IRCCS
Istituto Scientifico di Montesano
27040 Montesano (Pavia)
Italy
mtlarovere@fsm.it

Juan Carlos Kaski, MD, DSC, FRCP, FACC, FESC
Professor of Cardiovascular Science
Department of Cardiac and Vascular Sciences
St George’s Hospital Medical School
Cranmer Terrace
London SW17 0RE
United Kingdom
jkaski@sghms.ac.uk

Uwe Leder, MD
Cardiologist
Department of Cardiology
Clinic of Internal Medicine III
University of Jena
Erlanger Allee 101
07740 Jena
Germany
uwe.leder@uni-jena.de
Jean-Yves Le Heuzey, MD
Professor of Medicine
Department of Cardiology
Hôpital Européen Georges Pompidou
20 rue Leblanc
75015 Paris
France
Jean-yves.le-heuzey@egp.ap-hop-paris.fr

Samuel Lévy, MD, FACC, FESC
Professor
Hospital Nord Cardiologie
13015 Marseille
France
samuel@samuel-levy.com

Fred W. Lindemans, PhD
General Manager
Medtronic Bakken Research Center
Endepolsdomein 5
6229 GW Maastricht
The Netherlands
fred.lindemans@medtronic.com

Federico Lombardi, MD, FESC
Associate Professor of Cardiology
Cardiologia, Dip. di Medicina, Chirurgia e Odontoiatria
Ospedale San Paolo, University of Milan
Via A. di rudini 8
20142 Milan
Italy
Federico.Lombardi@unimi.it

Robert L. Lux, PhD
Professor of Medicine
CVRTI/Bldg 500
University of Utah
95 South 2000 East
Salt Lake City, UT 84112-2000
USA
lux@cvrti.utah.edu

Luca T. Mainardi, MS, PhD
Assistant Professor
Department of Bioengineering
Polytechnic University in Milano
Piazza Leonardo da Vinci 32
20133 Milano
Italy
mainardi@biomed.polimi.it

Timo Mäkikallio, MD, PhD
Associate Professor of Experimental Cardiology
Department of Internal Medicine
Division of Cardiology
Oulu University Hospital, Oulu
PO Box 20
FIN-90029 OYS
Finland
timo.makikallio@oulu.fi

Marek Malik, MSc, PhD, MD, DSc, DSc(Med), FACC, FESC
Professor of Cardiac Electrophysiology
Department of Cardiac and Vascular Sciences
St. George’s Hospital Medical School
Cranmer Terrace
London SW17 0RE
United Kingdom
m.malik@sghms.ac.uk

Alberto Malliani, MD
Head of Department
Dipartimento di Scienze Cliniche ‘Luigi Sacco’
Ospedale Sacco
Via GB Grassi 74
20137 Milano
Italy
alberto.malliani@unimi.it

Rahul Mehra, PhD
Senior Director, Atrial Fibrillation Research
Medtronic, Inc.
7000 Central Avenue N.E
Minneapolis, MN 55432
USA
rahul.mehra@medtronic.com

Carl J. Meurling, MD, PhD, FESC
Consultant Cardiologist
Department of Cardiology
University Hospital of Lund
SE-221 85 Lund
Sweden
carl.meurling@kard.lu.se

Antonio Michelucci, MD
Associate Professor of Cardiology
Department of Medical and Surgical Critical Care
Section of Internal Medicine and Cardiology
University of Firenze
v. le Morgagni, 85
50134 Firenze
Italy
michelucci@unifi.it

Nicola Montano, PhD, MD
Assistant Professor of Medicine
Dipartimento di Scienze Cliniche “Luigi Sacco”
Ospedale Sacco
Via GB Grassi 74
20157 Milano
Italy
nicola.montano@unimi.it

Roger Moore, BSc (Hons), MBChB, MRCP
Cardiology Specialist Registrar
Cardiothoracic Centre
Liverpool L14 3PE
United Kingdom
moore@roger.go-legend.net
Contributors

James Nolan, MBChB, FRCP, MD
Consultant Cardiologist and Honorary Senior Lecturer
University Hospital
578 Newcastle Road, Stoke-on-Trent
North Staffordshire ST4 6QG
United Kingdom
nolanjim@hotmail.com

Divaka Perera, MA, MBBChir, MRCP
Specialist Registrar in Cardiology
Department of Cardiology
6th Floor, East Wing
St Thomas’ Hospital
Lambeth Palace Road
London SE1 7EH
United Kingdom
divaka.perera@gstt.sthames.nhs.uk

Peter M. Okin, MD, FACC
Professor of Medicine
Division of Cardiology
Weill Medical College of Cornell University
1300 York Avenue
New York 10021
USA
pokin@med.cornell.edu

Juha Perkiömäki, MD, PhD
Senior Lecturer in Internal Medicine
Department of Internal Medicine, Division of Cardiology
Oulu University Hospital.
Oulu
PO Box 20
FIN-90029 OYS
Finland
juha.perkiomaki@oulu.fi

Walter H. Olson, PhD
Senior Director
Implantable Defibrillators
Medtronic, Inc. B173
7000 Central Avenue N.E
Minneapolis, MN 55432-3576.
USA
walt.olson@medtronic.com

Massimo F. Piepoli, MD, PhD, FESC
Consultant Cardiologist
Cardiology Department
Guglielmo da Saliceto General Hospital
Cantone del Cristo
29100 Piacenza
Italy
m.piepoli@ic.ac.uk

S. Bertil Olsson, MD, PhD, FESC, FAHA, RPhS
Professor of Cardiology
Department of Cardiology
University of Lund
SE-221 85 Lund
Sweden
Bertil.Olsson@kard.lu.se

Paolo Pieragnoli, MD
Senior Physician
Department of Medical and Surgical Critical Care
Section of Internal Medicine and Cardiology
University of Firenze
v. le Morgagni, 85
50134 Firenze
Italy
elettrofisiologia@dfc.unifi.it

Alberto Porta, MS, PhD
Research Fellow
LITA-Vialba, Department of Pre-Clinical Sciences
University in Milano
via G.B. Grassi 74
20157 Milano
Italy
alberto.porta@unimi.it

Sundip J. Patel, MBBCh, MRCP
Specialist Registrar in Cardiology
Department of Cardiology
6th Floor, East Wing
St Thomas’ Hospital
Lambeth Palace Road
London SE1 7EH
United Kingdom
sundip.patel@gstt.sthames.nhs.uk

Esther Pueyo, BSc
Lecturer in Biomedical Engineering
Department of Electronic Engineering and Communications
University of Zaragoza
Maria de Luna 1
50018 Zaragoza
Spain
epueyo@unizar.es
Simon R. Redwood, MBBS, MD, FRCP, FACC
Consultant Cardiologist
Department of Cardiology
6th Floor, East Wing
St Thomas’ Hospital
Lambeth Palace Road
London SE1 7EH
United Kingdom
simon.redwood@gstt.sthames.nhs.uk

David Ritscher, MS
Principal Scientist,
Atrial Fibrillation Research
Medtronic, Inc.
7000 Central Avenue N.E.
Mailstop B170
Minneapolis, MN 55432
USA
david.ritscher@medtronic.com

Maximo Rivero-Ayerza, MD
Clinical Fellow, Electrophysiology
Arrhythmia Unit
OLV Hospital Aalst, Cardiovascular Center
9300 Aalst
Belgium
mriveroayerza@yahoo.com.ar

Marten Rosenqvist, MD, PhD
Professor of Cardiology
Karolinska Institutet,
Stockholm Söder Hospital
Department of Cardiology
118 83 Stockholm
Sweden
marten.rosenqvist@sos.sll.se

Juan Cosin Sales, MD
Research Fellow
Department of Cardiac and Vascular Sciences
St George’s Hospital Medical School
Cranmer Terrace
London SW17 0RE
United Kingdom
jcosin@sghms.ac.uk

Alexander Schirdewan, MD
Cardiologist
Head of the Department of Electrophysiology
Franz-Volhard-Clinic Berlin
Humboldt University Berlin
Witbergstrasse 50
13125 Berlin
Germany
schirdewan@fvk.charite-buch.de

Georg Schmidt, MD
Professor of Medicine
1. Medizinische Klinik
Technische Universität München
Munich
Germany
gschmidt@med1.med.tum.de

Raphael Schneider, Dipl. Ing. (FH)
Software Engineer
1. Medizinische Klinik
Technische Universität München
Munich
Germany
rasch@med1.med.tum.de

Ulrich Schotten, MD, PhD
Assistant Professor of Physiology
Department of Physiology
University Maastricht
PO Box 616
6200 MD Maastricht
The Netherlands
schotten@fys.unimaas.nl

Paul Schweitzer, MD, FACC
Director, Cardiac Arrhythmia Services
Professor of Medicine
Albert Einstein College of Medicine
Beth Israel Medical Center
Milton and Carroll Petrie Division
First Avenue at 16th Street
New York, NY 10003
USA
pschweiz@bethisraelny.org

Peter Smetana, MD
Cardiologist
Wilhelminenspital der Stadt Wien
Department of Cardiology
Montleartstrasse 37
1160 Vienna
Austria
psmetana@hotmail.com

Leif Sörnmo, MSEE, PhD
Professor of Electrical Engineering
Department of Electroscience
Lund University
Box 118
SE-221 00 Lund
Sweden
leif.sornmo@es.lth.se
Contributors

Phyllis K. Stein, PhD
Director, Heart Rate Variability Laboratory
Cardiovascular Division
Washington University School of Medicine
4625 Lindell Blvd, Suite 402
St Louis, MO 63108
USA
pstein@im.wustl.edu

Shlomo Stern, MD, FACC, FAHA, FESC
Professor Emeritus of Medicine
Hebrew University
Department of Cardiology
Bikur Cholim Hospital
PO Box 492
Jerusalem 91004
Israel
sh_stern@netvision.net.il

Martin Stridh, MSEE, PhD
Researcher
Department of Electroscience
Lund University
Box 118
SE-221 00 Lund
Sweden
martin.stridh@es.lth.se

Aneesh Tolat, MD
Clinical Cardiac Electrophysiology Fellow
Beth Israel Deaconess Medical Center
Department of Medicine, Division of Cardiology
330 Brookline Avenue, W/BA-4
Boston, MA 02215
USA
atolat@bidmc.harvard.edu

Marion VanDyck, MD, FACC
Director, Cardiology Outpatient Services
Clinical Instructor of Medicine
Beth Israel Medical Center
Milton and Carroll Petrie Division
First Avenue at 16th Street
New York, NY10003
USA
mvandyck@bethisraelny.org

Richard L. Verrier, PhD, FACC
Associate Professor of Medicine,
Harvard Medical School
Beth Israel Deaconess Medical Center
Harvard Institutes of Medicine
4 Blackfan Circle, Room 223
Boston, MA 02115
USA
rverrier@bidmc.harvard.edu

Giovanni Q. Villani, MD
Consultant Cardiology, EP Laboratory
Cardiology Department
Guglielmo da Saliceto General Hospital
Cantone del Cristo
29100 Piacenza
Italy
gqvillani@hotmail.com

Xavier Viñolas, MD
Chief of Electrophysiology Laboratory
Institute of Cardiology
Hospital de Sant Pau i Santa Creu
St Antoni Ma Claret 167
08025 Barcelona
Spain
xvinolas@hsp.santpau.es

Andreas Voss, PhD
Professor of Medical Informatics and Biosignal Analysis
Department of Medical Engineering
University of Applied Sciences Jena
Carl-Zeiss-Promenade 2
07745 Jena
Germany
voss@fh-jena.de

Galen S. Wagner, MD
Associate Professor of Medicine
Department of Medicine
Duke University Medical Center
2400 Pratt St., Room 0306
Durham, NC 27705
USA
wagne004@mc.duke.edu

Mari A. Watanabe, MD, PhD
Postdoctoral Research Associate
Institute of Biomedical Life Sciences
Glasgow University
Glasgow G12 8QO
United Kingdom
maw16h@udef.gla.ac.uk

Dan Wichterle, MD
Clinical Electrocardiologist
2nd Department of Internal Medicine
1st Medical School, Charles University
Univerzitni nemocnice 2
128 08 Prague 2
Czech Republic
wichterle@hotmail.com
Shamil Yusuf, BSc (Hons), MbChB (Hons), MCOptom, MRCP
Research Fellow in Cardiology
Department of Cardiac and Vascular Sciences
St. Georges Hospital Medical School
Cranmer Terrace
London SW17 0RE
United Kingdom
syusuf@sghms.ac.uk

Markus Zabel, MD
Director of Electrophysiology
Division of Cardiology
Charité - Campus Benjamin Franklin
Hindenburgdamm 30
12200 Berlin
Germany
mzabel@compuserve.com

Manfred Zehender, MD, MBA, FESC
Professor of Medicine
Universitätsklinikum Freiburg
Innere Medizin III, Kardiologie und Angiologie
Hugstetterstrasse 55
D-79106 Freiburg
Germany
zehender@medizin.ukl.uni-freiburg.de
The mysteries of the electrocardiogram unfold in the encyclopaedic tome, *Dynamic Electrocardiography*, edited by Marek Malik and John Camm. Since the first published human electrocardiogram was recorded in 1887 by Augustus Waller (*Journal of Physiology* 1887; 8: 229–234), our understanding of cardiac arrhythmias and the electrical manifestations of cardiac diseases has burgeoned. Over the last several decades, advanced signal analysis and processing techniques have been applied to the electrocardiographic signal to extract increasingly important information regarding cardiac physiology. These techniques and their clinical importance are highlighted in *Dynamic Electrocardiography*.

The editors have been extensively involved in setting the standards in many of the areas discussed in the book. They fortunately provide their expertise as both authors and editors. Drs Malik and Camm have also assembled an outstanding group of contributors, many of whom are the leading experts in their field. As with all new developments, there are many applications and misapplications of these techniques. The editors have synthesized the topics so that the reader may focus on the technical details of how the techniques are performed, how they are properly applied, and what they might mean to the clinician. This compendium therefore serves as an important resource to the clinician and researcher. To our knowledge, there is no book that has the breadth of topics and the breadth of appeal.

The book opens with a section on heart rate variability. This section describes the multiple techniques that are used to measure heart rate variability and puts into context how these measurements are to be interpreted. The ability to extract information regarding autonomic modulation of the heart rate from detailed signal processing techniques focused on characterizing small changes in heart rhythm has opened up many areas of study. Because heart rate variability measurements can be made noninvasively, much effort has been expended to better understand what it means physiologically and prognostically. The ability of these measurements of heart rate variability to provide prognostic information regarding mortality, particularly in patients with cardiac disease, has been an important contribution. The role of the autonomic nervous system in modulating cardiac electrophysiology underlies its pathophysiologic link to sudden cardiac death. Further work in this area will better define this link. Ongoing and future studies will provide the information necessary on how to use these techniques to better treat patients and improve their survival.

Section II deals with measurement of baroreflex sensitivity and heart rate turbulence. These techniques are used to measure the responsiveness of the autonomic nervous system to a perturbation, via the arterial baroreflex. Once again, the physiology, techniques, and clinical utility of these tests are described in this section. These measurements have been shown to be independent powerful predictors of mortality, even when compared to standard heart rate variability measurements. Just as the exercise electrocardiogram is a more useful test for the detection of myocardial ischaemia than the resting electrocardiogram, so too these provocative manoeuvres may provide additional information not obtained by resting measurements of autonomic modulation.

Section III is devoted to evaluation of the ST segment for detection of myocardial ischaemia with review of the underlying basic electrophysiology and clinical methods. Though ST segment changes as a manifestation of myocardial ischaemia have long been recognized, this represents a crucial area of electrocardiography with important implications in patients with ischaemic heart disease.

Section IV highlights the developments made in understanding ventricular repolarization and their impact on patients with cardiac disease.
The complexities of ventricular repolarization become apparent with the multiple ways that exist to characterize it: the QT/RR relationship; circadian variation; QT dispersion; T wave morphology; and T wave alternans. The improved understanding from the cellular to the tissue level has led to the advanced application of these techniques. The chapters are very well organized to help guide the reader through the multidimensional approach to ventricular repolarization.

Sections V, VI, and VII deal with atrial fibrillation, ventricular arrhythmias, and recordings from implanted devices. These sections include selected topics regarding electrocardiographic techniques with a specific focus on newer techniques.

This book will serve the reader as an important reference for this broad array of topics. As the chapters are succinct and to the point, they will provide the reader the most readily accessible information in an easy to read format. Congratulations to Drs Malik and Camm on a superb effort.

Jeffrey Goldberger, MD
Melvin Scheinman, MD
Compared to many clinical methods and procedures, electrocardiography is not particularly new. The first human electrocardiogram was recorded by Dr Augustus Desiré Waller in 1887. Since that time, the development of electrocardiography was not uniform. Several waves of advancement of the physiologic understanding and clinical utility of the electrocardiogram can be traced throughout the past century. After the very first human recording, it took about 20 years for more precise equipment to be developed that allowed recordings to be made with sufficient fidelity for meaningful biological interpretation. Another two decades elapsed before the very core and principal rhythm abnormalities were appreciated and classified; it took some further decades to understand the ischaemic patterns in details; and so on.

The most recent wave of electrocardiographic advances resulted from the observations that not only the static snapshots of cardiac electrical activity but also their temporal development carry physiologically important and clinically useful information. In many aspects, the investigation of this dynamicity of electrocardiographic recordings was not only facilitated but directly allowed by modern electronic and computing technologies. Indeed, it is inconceivable to imagine a modern electrocardiograph without substantial electronic and computer components aimed not only at recording the tiny electrical potentials at the body surface but also at their processing and detailed elaboration. Meaningful and important electrocardiographic measurements and valuable clinical diagnoses reached in this way frequently go far beyond the ‘classical’ visual interpretation of the recorded images.

Because of the research and clinical importance of this new window of electrocardiography, we were very pleased when asked by Futura/Blackwell to edit a comprehensive book aimed at summarizing the most recent advances in electrocardiography, concentrating primarily but not exclusively on the dynamicity of the recordings. The field of modern dynamic electrocardiography is obviously rather broad. Therefore, we have divided the book into seven sections dealing with heart rate variability, baro-reflexes, dynamicity of ischaemic patterns, electrocardiography of ventricular repolarization, atrial fibrillation, ventricular arrhythmias, and finally the recordings made by an implanted device.

As with any other multi-author book, we faced the usual editorial dilemma between having the book tightly cross-referenced and having the individual chapters suitable for stand-alone reading. We eventually felt that a volume of this size should also serve as a reference textbook and that having individual chapters as stand-alone reviews is therefore preferable. Consequently, we are happy to recommend the reader to select separate chapters according to his/her particular needs. Needless to say, reading the book in its entirety will provide a more comprehensive insight into the recent advances in dynamic electrocardiography. In some areas of the field, the rapid development in dynamic electrocardiography leads to occasional controversies. In such cases, we tried to offer the reader the possibility of learning and comparing the different views.

With a book of this broad spectrum, we of course needed to rely on the help of others. Our sincere thanks therefore go to all the contributors who helped us by writing individual chapters. We truly appreciate their efforts – without their enthusiasms and kind involvement in the project, the book would never have been written. We are also grateful to the publisher for careful technical editing of the text and for their understanding and flexibility. Finally, our deep thanks go to Mrs Pam Fernandes who helped us with running the editorial office of the book. It would have been extremely difficult to organise the whole volume without her meticulous involvement.

Marek Malik
A. John Camm
October 2003
SECTION I
Heart Rate Variability
CHAPTER 1
Physiological Background of Heart Rate Variability

Roger Hainsworth

Introduction
Heart rate shows variations which are related, amongst other things to breathing, circadian rhythm and exercise. Resting heart rates can be very different in different subjects, with some having rates of 100 beats/min and others only 50 beats/min for no obvious reason. Highly trained endurance athletes may have resting rates of only 40–50 beats/min with very large stroke volumes to compensate. The maximum rate is partly age-dependent with older subjects achieving maxima during heavy exercise of 20–30 beats/min less than those achieved by younger individuals.

The rate of the heart and its beat-to-beat variations are dependent on the rate of discharge of the pacemaker, normally the sinu-atrial node. The sinu-atrial node in turn is influenced by activity in the two main divisions of autonomic nerves, which are controlled in a complex way by a variety of reflexes as well as by cortical factors.

This chapter will consider in turn the effects on the heart of the autonomic nerves, the control of autonomic activity by various reflexes, and the interaction of these reflexes during some more complex events.

Effects of the autonomic nerves
In the absence of activity in sympathetic or parasympathetic nerves and with low levels of circulating hormones, particularly catecholamines, the heart will beat at its intrinsic rate of 100–120 beats/min. The rate at any particular time is determined by the balance between vagal activity, which slows it, and sympathetic activity, which accelerates it (Levy & Martin 1979). Generally, if the rate is lower than the intrinsic rate of the pacemaker, it implies predominant vagal activity, whereas high heart rates are achieved by increased sympathetic drive.

Vagal responses
The cell bodies of the vagal neurones lie in the dorsal motor nucleus and the nucleus ambiguus. The vagi run down the neck alongside the carotid arteries into the thorax. These nerves carry not only the nerve fibres which control heart rate but many other efferent nerves including those to the bronchi and the gastrointestinal tract. They also contain vast numbers of both myelinated and nonmyelinated afferent nerves innervating thoracic and abdominal viscera. Activity in the vagal branches innervating the sinu-atrial node determines heart rate. Activity in nerves to the conducting mechanism reduces its conduction velocity and high levels of vagal activity may completely block atrio-ventricular conduction. The question of vagal efferent activity on ventricular contractility remains controversial. Earlier work indicated that in mammalian hearts inotropic responses occurred only in atrial and not in ventricular muscle (Furnival et al. 1973). Confusion has arisen due to the depressed atrial contractility causing reduced ventricular filling. Recent work, however, does point to the existence of a small vagally mediated negative inotropic effect in the human ventricular myocardium (Casadei 2001).
Electrical stimulation of either vagus nerve results in slowing of the heart, and high frequencies of stimulation may result in asystole and this may last several seconds. Often during prolonged atrial asystole ‘escape’ beats may originate from other parts of the conducting mechanism. In animals at least, stimulation of the right vagus nerve seems to have a larger chronotropic effect than that from left vagal stimulation (Hamlin & Smith 1968). Stimulation of the left nerve has been reported to have a greater effect on A-V conduction and high frequencies cause A-V conduction block.

The relationship between vagal stimulation frequency and the resulting change in heart rate is hyperbolic, with changes in frequency at low heart rates having a much greater effect than when the rate is high. However, vagal activity does not directly control heart rate but rather it acts to regulate the interval between successive beats. If therefore, instead of plotting heart rate, we plot pulse interval against vagal stimulation, we see that the relationship becomes linear instead of hyperbolic (Fig. 1.2). The choice between pulse interval and heart rate is largely influenced by the interpretation that is required. If it is intended to be used to calculate cardiac output, then clearly heart rate is the appropriate variable. If, however, we wish to quantitate a vagal response, for example to a baroreceptor stimulus, then pulse interval should be used. The effect of this can be seen if, for example, a change in vagal activity induces a prolongation of pulse interval of 333 ms. At a heart rate of 90 beats/min this would correspond to a rate change of 30 beats/min, but at 180 beats/min the change in rate would be three times as much at 90 beats/min.

Sympathetic responses

The effect of vagal stimulation is very rapid. A single pulse has been reported to induce a maximal effect in only 400 ms (Levy et al. 1970). The significance of this is that heart rate can be controlled through changes in vagal activity, on a beat-to-beat basis. The effect of vagal stimulation is to release the neurotransmitter acetylcholine and this has two effects on the pacemaker potentials. Firstly, the cells become hyperpolarized and secondly, their rate of depolarization is decreased. Both effects prolong the interval before the critical depolarizing threshold is reached (Fig. 1.1)

Cardiac sympathetic preganglionic nerve fibres originate in the lateral grey horn of the upper thoracic region, synapse in the sympathetic ganglia, then form a plexus together with parasympathetic fibres over the mediastinum, before supplying all parts of the heart. Increasing the activity in cardiac sympathetic nerves is the principal way by which heart rate is
increased above its intrinsic level. This is achieved by causing an increase in the rate of depolarization of the pacemaker cells, causing the critical depolarization of the pacemaker cells to be reached more rapidly (Fig. 1.3). Sympathetic activity, therefore, acts in a similar way to vagal activity in that it directly regulates the pulse interval rather than the heart rate. The responses differ from those to vagal stimulation in that they develop much more slowly. Following the start of stimulation, there is a latency of up to 5s and then heart rate gradually increases to reach a new steady level in 20–30 s. This is clearly of significance when considering heart rate variability and reflex responses. If a change occurs in response to a stimulation within 5 s of its application the efferent mechanism can only be vagally mediated. Responses with longer latencies are likely to be mainly sympathetic.

In addition to its effect on the sinu-atrial node, sympathetic fibres also influence the conducting mechanism and the ventricular myocardium. The right sympathetic nerves, at least in dogs, have a greater effect on heart rate whereas the left nerves have a relatively greater inotropic effect (Fig. 1.4). It should be noted, however, that the high levels of heart rate reached through sympathetic activity can only be achieved because sympathetic activity also shortens the duration of ventricular systole. At rest, ventricular systole lasts about 300ms in a cardiac cycle of 800ms. At high heart rates, when the entire cardiac cycle shortens to 300ms, systolic time must be reduced to allow time for filling.

Reflex control of heart rate

The efferent activity in both vagal and sympathetic nerves is regulated by the central nervous system in response to excitatory and inhibitory reflex inputs. Table 1.1 lists some reflexes responsible for decreasing or increasing the heart rate. The body, however, is influenced by many diverse inputs and the overall effect is dependent on often complex interactions as well as cortical influences.

Table 1.1 Reflex control of heart rate

<table>
<thead>
<tr>
<th>Reflexes increasing heart rate</th>
<th>Reflexes decreasing heart rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial receptors</td>
<td>Baroreceptors</td>
</tr>
<tr>
<td>Pulmonary stretch receptors</td>
<td>Chemoreceptors</td>
</tr>
<tr>
<td>Muscle metaboceptors</td>
<td>Ventricular chemosensitive</td>
</tr>
<tr>
<td>Pain receptors</td>
<td>afferents</td>
</tr>
<tr>
<td></td>
<td>Pulmonary 'J' receptors</td>
</tr>
<tr>
<td></td>
<td>Trigeminal afferents (diving)</td>
</tr>
</tbody>
</table>

Baroreceptors

Arterial baroreceptors exist in many regions of the body. Owing to their accessibility those in the carotid sinuses have been most extensively studied, and in humans these are the only receptors capable of being selectively stimulated. Animal studies, however, have established potentially important baroreceptors in the aortic arch.
Baroreceptors are stretch receptors which respond to changes in vessel transmural pressure. An important characteristic is their response to changes in pulsatility. This enables them to respond to changes in cardiac stroke volume caused by changes in venous return which may be too small to be detected as changes in pressure (Taylor et al. 1995). Baroreceptors are effective at ‘buffering’ short-term changes in blood pressure. They are less effective in long-term pressure control due to their property of resetting (Chapleau & Abboud, 1993).

Baroreceptors control blood pressure by their effects on the heart and blood vessels. The immediate cardiac response is vagally mediated and occurs very rapidly (Fig. 1.5). Eckberg (1978) applied brief stimuli to carotid baroreceptors by means of a neck suction device that increased carotid transmural pressure. He observed that maximal effects were obtained when a stimulus was applied 750 ms before a subsequent anticipated P wave. Baroreceptors, therefore, can control heart period on a beat-to-beat basis. Variations in heart rate mediated through the baroreflex can occur at relatively high frequencies. The actual frequency is dependent rather on the variations in the stimulus than on latency of the reflex.

Baroreceptor reflex stimulus–response relationships have a limited range of linearity. The nonlinearity may be a feature of the effector mechanism. For example in resting conditions where sympathetic activity is low baroreceptor stimulation has little effect on vascular resistance, whereas unloading can cause an increase in resistance (Vukasovic et al. 1990). Cardiac responses have different constraints. Stimulation at rest causes interval prolongation and unloading causes interval shortening. During exercise or orthostatic stress, if little vagal activity is present baroreceptor unloading would be expected to have a smaller effect.

It seems likely that the various baroreceptor groups operate over different ranges of pressures. Coronary artery baroreceptors have been shown in the dog to have very low operating ranges and therefore are suited to protect against hypotension. (McMahon et al. 1996). Carotid and aortic receptors have higher operating ranges and can, therefore, stabilize both increases and decreases in pressure.

Chemoreceptors

Peripheral chemoreceptors are situated in carotid and aortic bodies and are stimulated by asphyxia, i.e. hypoxia, hypercapnia and acidemia, as well as by severe hypotension. Under most conditions their level of stimulation is low and it is only during severe hypoxia or hypotension that they become strongly stimulated. The most obvious response to chemoreceptor stimulation is an increase in breathing. Their effects on the cardiovascular system are complicated by the effect on respiration. These effects are mediated mainly through pulmonary stretch receptors and, if this secondary modulation is prevented, carotid chemoreceptor stimulation leads to a cardiac slowing (Fig. 1.6).

Trigeminal afferents: the diving reflex

Immersion of the face or stimulation of trigeminal receptors by application of cold packs to the face elicits a diving reflex. This is very pronounced and of great importance to diving mammals. A response can also be seen in humans (Daly 1985). This comprises apnoea, hypertension and bradycardia. The respiratory arrest leads to asphyxial changes which stimulate chemoreceptors and further augments the bradycardia and vasoconstriction.

Cardiac and pulmonary nonmyelinated afferents

The various cardiac chambers are extensively innervated with nonmyelinated vagal afferents.
Physiological Background of Heart Rate Variability

(Hainsworth, 1991a). Similar innervation extends to the lungs, the so-called J receptors (Paintal 1995). The most effective stimuli to any of these nerves is injection of various noxious chemicals such as veratridine, capsaicin and phenyldiguanide. The most sensitive intrathoracic region for chemical stimulation is the left coronary artery and minute injections of stimulating chemicals there can lead to a profound bradycardia and hypotension (Fig. 1.7). Excitation of these cardiac and pulmonary reflexes may occur in humans following intravenous drug administration or injection of radio-opaque dyes (Perez-Gomez & Garcia-Aguado, 1977).

The normal physiological role of cardiac and pulmonary nonmyelinated afferents seems to be relatively minor. Large changes in ventricular pressure may cause a transient stimulation of ventricular afferents, but pressures need to be beyond those normally encountered (Drinkhill et al. 1993), and changes in coronary arterial pressure cause much larger responses. Similarly pulmonary nonmyelinated afferents are only excited by chemical stimulation, pulmonary congestion or gross overdistension (Coleridge & Coleridge 1991). It is hard to disagree with the proposition that, although cardiac and pulmonary nonmyelinated afferents may be involved in disease processes, they do not have an important regulatory role.

Atrial receptors

Complex unencapsulated nerve endings of myelinated nerve fibres are located mainly near the junctions between the venae cava and the pulmonary veins with the atria (Nonidez, 1937). They are responsible for what was originally known as the Bainbridge reflex. They are stretch receptors and their discharge is linearly related to atrial volume and pressure. Because atrial filling is dependent, amongst other things, on blood volume they are often thought of as volume receptors.

Stimulation of atrial receptors induces an unusual pattern of responses (Linden &
Kappagoda 1982; Hainsworth 1991b). Heart rate increases, but atrial receptors have little or no effect on vascular resistance in most regions. They do, however, target the kidney and increase salt and water excretion through a reduction in renal nerve activity and central inhibition of vasopressin. In this way an increase in cardiac filling leads to a diuresis and a natriuresis. Note that these responses are reflexly mediated in that nervous pathways are involved. They should not be confused with the diuresis and natriuresis resulting from the release of atrial natriuretic peptide. This occurs in response to stretching of cardiac myocytes and its physiological significance is uncertain.

Atrial receptors are likely to have an important role in circulatory control. However, the time course of any change needs to be considered in relation to its possible role in influencing heart rate variability. Because responses are mediated through sympathetic efferents, following stimulation a period of 20–30 s is required for a maximal response. Atrial receptors, therefore, are unlikely to be important in mediating or modulating high frequency heart rate oscillations.

Heart rate changes during complex events
The foregoing has considered the effects of changes in stimuli to single discrete reflexogenic areas. This is of importance in analysing the mechanisms which are involved but normal daily activities, including breathing, straining, changes in body position and various forms of physical exercise, result in changes in the stimulation of many diverse reflex mechanisms. This section is concerned with some of the more common activities which can affect the heart rate.

Sinus arrhythmia
Sinus arrhythmia is caused by variations in cardiac vagal efferent activity. Vagal activity occurs only during expiration, being inhibited during the inspiratory phase (Fig. 1.9). Several mechanisms seem to contribute. Reflexes from the low threshold pulmonary stretch receptors, which are also responsible for the Hering–Breuer reflex, almost certainly play a part (Hainsworth 1974). However, sinus arrhythmia can be seen to some extent in paralysed animals in absence of breathing movements and this has been attributed to central connections between the respiratory centres and the vagal nuclei (Anrep et al. 1936). Baroreceptors are also likely to be involved as the variations in heart rate are also associated with variations in blood pressure. It has been proposed that there is a central ‘gating’ mechanism whereby during inspiration the baroreflex is inhibited (Spyer & Jordan 1987). This concept is supported by the findings of Eckberg et al. (1980) who applied brief stimuli to the carotid baroreceptors in humans and observed maximal prolongation of pulse interval during expiration and almost complete inhibition of the reflex in early inspiration (Fig. 1.10).
Sinus arrhythmia occurs with a period of about 4 s which is too fast for variations in efferent vagal nerve activity during respiratory cycle and during changes in carotid sinus pressure. Note the cardiac acceleration during the phase of inspiration associated with cessation of vagal activity. Activity is also influenced by changes in carotid sinus pressure, but the inspiratory inhibition persists. (Reproduced from Neil 1979, with permission.)

Postural changes
In humans moving from supine to motionless standing results not only in displacement of blood into dependent capacitance vessels but also in a progressive transudation of plasma fluid across dependent capillaries (Hainsworth 1999). This inevitably results in decreases in venous return and in pulse pressure. This and the altered position of carotid baroreceptors leads to compensatory reflex vasoconstriction and tachycardia. Because of the exquisite sensitivity of baroreceptors to changes in pulsatility mean blood pressure in the upright position is maintained close to or even above that in the supine position. If the orthostatic stress becomes too great, and in susceptible individuals this can happen with relatively minor stresses, the vasoconstriction and tachycardia abruptly reverse to become vasodilatation and bradycardia (Fig. 1.11). This was described by Lewis (1932) as a vasovagal reaction indicating vasodilatation and a vagally mediated bradycardia. Occasionally, the bradycardia may extend to several seconds of asystole. The mechanism switching off the sympathetic activity and turning on vagal activity is unknown. It was formerly thought to be the result of a paradoxical stimulation of the ventricular receptor but this has now been shown not to be the case (see Hainsworth 2003).

Valsalva
The Valsalva manoeuvre involves straining against either a closed glottis or an external resistance. Pressures within the thorax and abdomen are greatly increased, impeding the inflow of
blood from outside these regions. It is important to note that, unlike positive pressure ventilation, blood does not pool in the abdomen. Fig. 1.12 shows effects of a controlled Valsalva and illustrates the various phases. Firstly, the raised intrathoracic and intra-abdominal pressures compress the major vessels causing an abrupt transient pressure rise. Secondly, the reduced venous return leads to a fall in cardiac output and blood pressure. The pressure fall is compensated by reflex vaso-constriction and tachycardia. On releasing the Valsalva, the intrathoracic and intraabdominal pressures fall again decompressing the vessels and causing a transient fall in arterial pressure. The previously impeded blood flows rapidly into the heart, and is pumped out into a constricted circulation resulting in an overshoot of blood pressure and, often, bradycardia.

The Valsalva manoeuvre provides a test of the integrity of the autonomic nerves and of the baroreceptor reflex. Deficient reflexes result in